about summary refs log tree commit diff
path: root/src/logistic.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/logistic.h')
-rw-r--r--src/logistic.h93
1 files changed, 47 insertions, 46 deletions
diff --git a/src/logistic.h b/src/logistic.h
index a68ee09..e951935 100644
--- a/src/logistic.h
+++ b/src/logistic.h
@@ -1,52 +1,54 @@
 #ifndef LOGISTIC_H_   /* Include guard */

 #define LOGISTIC_H_

 

-/* Mixed interface */

-void logistic_mixed_pred(gsl_vector *beta  // Vector of parameters length = 1 + Sum_k(C_k - 1) + Kc

-			 ,gsl_matrix_int *X  //Matrix Nobs x K 

-			 ,gsl_vector_int *nlev // Vector with number categories

-			 ,gsl_matrix *Xc   // continuous covariates  Matrix Nobs x Kc 

-			 ,gsl_vector *yhat //Vector of prob. predicted by the logistic

-			 );

+// Mixed interface.

+void logistic_mixed_pred(gsl_vector *beta,     // Vector of parameters

+					       // length = 1+Sum_k(C_k-1)+Kc.

+			 gsl_matrix_int *X,    // Matrix Nobs x K.

+			 gsl_vector_int *nlev, // Vector with num. categories.

+			 gsl_matrix *Xc,       // Continuous covariates matrix

+					       // Nobs x Kc

+			 gsl_vector *yhat);    // Vector of prob. predicted by

+					       // the logistic.

  

-int logistic_mixed_fit(gsl_vector *beta  // Vector of parameters length = 1 + Sum_k(C_k - 1) + Kc

-		       ,gsl_matrix_int *X  //Matrix Nobs x K 

-		       ,gsl_vector_int *nlev // Vector with number categories

-		       ,gsl_matrix *Xc   // continuous covariates  Matrix Nobs x Kc 

-		       ,gsl_vector *y //Vector of prob. to predict

-		       ,double lambdaL1 // Regularization L1 0.0 if not used

-		       ,double lambdaL2); // Regularization L2 0.0 if not used

+int logistic_mixed_fit(gsl_vector *beta,     // Vector of parameters

+					     // length = 1+Sum_k(C_k-1)+Kc

+		       gsl_matrix_int *X,    // Matrix Nobs x K.

+		       gsl_vector_int *nlev, // Vector with number categories.

+		       gsl_matrix *Xc,       // Continuous covariates

+					     // matrix Nobs x Kc

+		       gsl_vector *y,        // Vector of prob. to predict.

+		       double lambdaL1,      // Reg. L1 0.0 if not used.

+		       double lambdaL2);     // Reg. L2 0.0 if not used.

 

-double fLogit_mixed(gsl_vector *beta

-		    ,gsl_matrix_int *X

-		    ,gsl_vector_int *nlev

-		    ,gsl_matrix *Xc   // continuous covariates  Matrix Nobs x Kc 

-		    ,gsl_vector *y

-		    ,double lambdaL1

-		    ,double lambdaL2);

+double fLogit_mixed(gsl_vector *beta,

+		    gsl_matrix_int *X,

+		    gsl_vector_int *nlev,

+		    gsl_matrix *Xc, // continuous covariates matrix Nobs x Kc 

+		    gsl_vector *y,

+		    double lambdaL1,

+		    double lambdaL2);

 

 

-/* Categorical only interface */

-void logistic_cat_pred(gsl_vector *beta  // Vector of parameters length = 1 + Sum_k(C_k - 1) + Kc

-		       ,gsl_matrix_int *X  //Matrix Nobs x K 

-		       ,gsl_vector_int *nlev // Vector with number categories

-		       ,gsl_vector *yhat //Vector of prob. predicted by the logistic

-		       );

+// Categorical-only interface.

+void logistic_cat_pred(gsl_vector *beta,  // Vector of parameters length = 1 + Sum_k(C_k - 1) + Kc

+		       gsl_matrix_int *X,  //Matrix Nobs x K 

+		       gsl_vector_int *nlev, // Vector with number categories

+		       gsl_vector *yhat); //Vector of prob. predicted by the logistic

  

-int logistic_cat_fit(gsl_vector *beta  // Vector of parameters length = 1 + Sum_k(C_k - 1) + Kc

-		     ,gsl_matrix_int *X  //Matrix Nobs x K 

-		     ,gsl_vector_int *nlev // Vector with number categories

-		     ,gsl_vector *y //Vector of prob. to predict

-		     ,double lambdaL1 // Regularization L1 0.0 if not used

-		     ,double lambdaL2); // Regularization L2 0.0 if not used

-

-double fLogit_cat(gsl_vector *beta

-		  ,gsl_matrix_int *X

-		  ,gsl_vector_int *nlev

-		  ,gsl_vector *y

-		  ,double lambdaL1

-		  ,double lambdaL2);

+int logistic_cat_fit(gsl_vector *beta,  // Vector of parameters length = 1 + Sum_k(C_k - 1) + Kc

+		     gsl_matrix_int *X,  //Matrix Nobs x K 

+		     gsl_vector_int *nlev, // Vector with number categories

+		     gsl_vector *y, //Vector of prob. to predict

+		     double lambdaL1, // Regularization L1 0.0 if not used

+		     double lambdaL2); // Regularization L2 0.0 if not used

 

+double fLogit_cat(gsl_vector *beta,

+		  gsl_matrix_int *X,

+		  gsl_vector_int *nlev,

+		  gsl_vector *y,

+		  double lambdaL1,

+		  double lambdaL2);

 

 /* Continuous only interface */

 void logistic_cont_pred(gsl_vector *beta  // Vector of parameters length = 1 + Sum_k(C_k - 1) + Kc

@@ -60,11 +62,10 @@ int logistic_cont_fit(gsl_vector *beta  // Vector of parameters length = 1 + Sum
 		      ,double lambdaL1 // Regularization L1 0.0 if not used

 		      ,double lambdaL2); // Regularization L2 0.0 if not used

 

-double fLogit_cont(gsl_vector *beta

-		   ,gsl_matrix *Xc   // continuous covariates  Matrix Nobs x Kc 

-		   ,gsl_vector *y

-		   ,double lambdaL1

-		   ,double lambdaL2);

-

+double fLogit_cont(gsl_vector *beta,

+		   gsl_matrix *Xc, // Continuous covariates matrix Nobs x Kc .

+		   gsl_vector *y,

+		   double lambdaL1,

+		   double lambdaL2);

 

 #endif // LOGISTIC_H_