about summary refs log tree commit diff
path: root/src/logistic.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/logistic.h')
-rw-r--r--src/logistic.h150
1 files changed, 75 insertions, 75 deletions
diff --git a/src/logistic.h b/src/logistic.h
index 7f9e133..b61ab14 100644
--- a/src/logistic.h
+++ b/src/logistic.h
@@ -1,75 +1,75 @@
-#ifndef LOGISTIC_H_

-#define LOGISTIC_H_

-

-// Mixed interface.

-void logistic_mixed_pred(gsl_vector *beta,     // Vector of parameters

-					       // length = 1+Sum_k(C_k-1)+Kc.

-			 gsl_matrix_int *X,    // Matrix Nobs x K.

-			 gsl_vector_int *nlev, // Vector with num. categories.

-			 gsl_matrix *Xc,       // Continuous covariates matrix

-					       // Nobs x Kc

-			 gsl_vector *yhat);    // Vector of prob. predicted by

-					       // the logistic.

- 

-int logistic_mixed_fit(gsl_vector *beta,     // Vector of parameters

-					     // length = 1+Sum_k(C_k-1)+Kc

-		       gsl_matrix_int *X,    // Matrix Nobs x K.

-		       gsl_vector_int *nlev, // Vector with number categories.

-		       gsl_matrix *Xc,       // Continuous covariates

-					     // matrix Nobs x Kc

-		       gsl_vector *y,        // Vector of prob. to predict.

-		       double lambdaL1,      // Reg. L1 0.0 if not used.

-		       double lambdaL2);     // Reg. L2 0.0 if not used.

-

-double fLogit_mixed(gsl_vector *beta,

-		    gsl_matrix_int *X,

-		    gsl_vector_int *nlev,

-		    gsl_matrix *Xc, // continuous covariates matrix Nobs x Kc 

-		    gsl_vector *y,

-		    double lambdaL1,

-		    double lambdaL2);

-

-// Categorical-only interface.

-void logistic_cat_pred(gsl_vector *beta,     // Vector of parameters

-					     // length = 1+Sum_k(C_k-1)+Kc.

-		       gsl_matrix_int *X,    // Matrix Nobs x K.

-		       gsl_vector_int *nlev, // Vector with number categories.

-		       gsl_vector *yhat);    // Vector of prob. predicted by 

-					     // the logistic.

- 

-int logistic_cat_fit(gsl_vector *beta,     // Vector of parameters

-					   // length = 1+Sum_k(C_k-1)+Kc.

-		     gsl_matrix_int *X,    // Matrix Nobs x K .

-		     gsl_vector_int *nlev, // Vector with number categories.

-		     gsl_vector *y,        // Vector of prob. to predict.

-		     double lambdaL1,      // Regularization L1, 0 if not used

-		     double lambdaL2);     // Regularization L2, 0 if not used

-

-double fLogit_cat(gsl_vector *beta,

-		  gsl_matrix_int *X,

-		  gsl_vector_int *nlev,

-		  gsl_vector *y,

-		  double lambdaL1,

-		  double lambdaL2);

-

-// Continuous-only interface.

-void logistic_cont_pred(gsl_vector *beta, // Vector of parameters

-					  // length = 1 + Sum_k(C_k-1) + Kc.

-			gsl_matrix *Xc,   // Continuous cov's matrix Nobs x Kc.

-			gsl_vector *yhat);// Vector of prob. predicted

-					  // by the logistic.

- 

-int logistic_cont_fit(gsl_vector *beta, // Vector of parameters

-					// length = 1+Sum_k(C_k-1)+Kc.

-		      gsl_matrix *Xc,   // Continuous cov's matrix Nobs x Kc.

-		      gsl_vector *y,    // Vector of prob. to predict.

-		      double lambdaL1,  // Regularization L1, 0 if not used.

-		      double lambdaL2); // Regularization L2, 0 if not used.

-

-double fLogit_cont(gsl_vector *beta,

-		   gsl_matrix *Xc, // Continuous covariates matrix Nobs x Kc.

-		   gsl_vector *y,

-		   double lambdaL1,

-		   double lambdaL2);

-

-#endif

+#ifndef LOGISTIC_H_
+#define LOGISTIC_H_
+
+// Mixed interface.
+void logistic_mixed_pred(gsl_vector *beta,     // Vector of parameters
+					       // length = 1+Sum_k(C_k-1)+Kc.
+			 gsl_matrix_int *X,    // Matrix Nobs x K.
+			 gsl_vector_int *nlev, // Vector with num. categories.
+			 gsl_matrix *Xc,       // Continuous covariates matrix
+					       // Nobs x Kc
+			 gsl_vector *yhat);    // Vector of prob. predicted by
+					       // the logistic.
+
+int logistic_mixed_fit(gsl_vector *beta,     // Vector of parameters
+					     // length = 1+Sum_k(C_k-1)+Kc
+		       gsl_matrix_int *X,    // Matrix Nobs x K.
+		       gsl_vector_int *nlev, // Vector with number categories.
+		       gsl_matrix *Xc,       // Continuous covariates
+					     // matrix Nobs x Kc
+		       gsl_vector *y,        // Vector of prob. to predict.
+		       double lambdaL1,      // Reg. L1 0.0 if not used.
+		       double lambdaL2);     // Reg. L2 0.0 if not used.
+
+double fLogit_mixed(gsl_vector *beta,
+		    gsl_matrix_int *X,
+		    gsl_vector_int *nlev,
+		    gsl_matrix *Xc, // continuous covariates matrix Nobs x Kc
+		    gsl_vector *y,
+		    double lambdaL1,
+		    double lambdaL2);
+
+// Categorical-only interface.
+void logistic_cat_pred(gsl_vector *beta,     // Vector of parameters
+					     // length = 1+Sum_k(C_k-1)+Kc.
+		       gsl_matrix_int *X,    // Matrix Nobs x K.
+		       gsl_vector_int *nlev, // Vector with number categories.
+		       gsl_vector *yhat);    // Vector of prob. predicted by
+					     // the logistic.
+
+int logistic_cat_fit(gsl_vector *beta,     // Vector of parameters
+					   // length = 1+Sum_k(C_k-1)+Kc.
+		     gsl_matrix_int *X,    // Matrix Nobs x K .
+		     gsl_vector_int *nlev, // Vector with number categories.
+		     gsl_vector *y,        // Vector of prob. to predict.
+		     double lambdaL1,      // Regularization L1, 0 if not used
+		     double lambdaL2);     // Regularization L2, 0 if not used
+
+double fLogit_cat(gsl_vector *beta,
+		  gsl_matrix_int *X,
+		  gsl_vector_int *nlev,
+		  gsl_vector *y,
+		  double lambdaL1,
+		  double lambdaL2);
+
+// Continuous-only interface.
+void logistic_cont_pred(gsl_vector *beta, // Vector of parameters
+					  // length = 1 + Sum_k(C_k-1) + Kc.
+			gsl_matrix *Xc,   // Continuous cov's matrix Nobs x Kc.
+			gsl_vector *yhat);// Vector of prob. predicted
+					  // by the logistic.
+
+int logistic_cont_fit(gsl_vector *beta, // Vector of parameters
+					// length = 1+Sum_k(C_k-1)+Kc.
+		      gsl_matrix *Xc,   // Continuous cov's matrix Nobs x Kc.
+		      gsl_vector *y,    // Vector of prob. to predict.
+		      double lambdaL1,  // Regularization L1, 0 if not used.
+		      double lambdaL2); // Regularization L2, 0 if not used.
+
+double fLogit_cont(gsl_vector *beta,
+		   gsl_matrix *Xc, // Continuous covariates matrix Nobs x Kc.
+		   gsl_vector *y,
+		   double lambdaL1,
+		   double lambdaL2);
+
+#endif