aboutsummaryrefslogtreecommitdiff
path: root/src/lmm.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/lmm.cpp')
-rw-r--r--src/lmm.cpp137
1 files changed, 68 insertions, 69 deletions
diff --git a/src/lmm.cpp b/src/lmm.cpp
index 4bca3fb..8c90b28 100644
--- a/src/lmm.cpp
+++ b/src/lmm.cpp
@@ -1197,7 +1197,7 @@ void LMM::AnalyzeGene(const gsl_matrix *U, const gsl_vector *eval,
for (size_t t = 0; t < ng_total; t++) {
!safeGetline(infile, line).eof();
if (t % d_pace == 0 || t == ng_total - 1) {
- ProgressBar("Performing Analysis ", t, ng_total - 1);
+ ProgressBar("Performing Analysis", t, ng_total - 1);
}
ch_ptr = strtok((char *)line.c_str(), " , \t");
rs = ch_ptr;
@@ -1269,26 +1269,6 @@ void LMM::AnalyzeGene(const gsl_matrix *U, const gsl_vector *eval,
return;
}
-/*
-
-AnalyzeBimBam, AnalyzeGene and AnalyzePlink contain duplicate logic -
-and they differ now because the first has LOCO support. To add LOCO
-support to PLINK we'll converge on logic and make the functions DRY.
-
-The functions can be split into:
-
-1. Initialization
-2. Partially read genotype data (batch processing)
-3. LMM on the submatrix
-4. Collate the results
-5. Cleanup
-
-The only thing specific regarding the input file format is (2). The
-way to solve is is to put that reader in a function that gets passed
-in.
-
- */
-
void LMM::Analyze(std::function< SnpNameValues(size_t) >& fetch_snp,
const gsl_matrix *U, const gsl_vector *eval,
const gsl_matrix *UtW, const gsl_vector *Uty,
@@ -1305,6 +1285,7 @@ void LMM::Analyze(std::function< SnpNameValues(size_t) >& fetch_snp,
size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2;
const size_t inds = U->size1;
+ enforce(inds == ni_test);
gsl_vector *x = gsl_vector_alloc(inds); // #inds
gsl_vector *x_miss = gsl_vector_alloc(inds);
gsl_vector *Utx = gsl_vector_alloc(U->size2);
@@ -1317,6 +1298,7 @@ void LMM::Analyze(std::function< SnpNameValues(size_t) >& fetch_snp,
gsl_matrix *Xlarge = gsl_matrix_alloc(inds, msize);
gsl_matrix *UtXlarge = gsl_matrix_alloc(inds, msize);
enforce_msg(Xlarge && UtXlarge, "Xlarge memory check"); // just to be sure
+ enforce(Xlarge->size1 == inds);
gsl_matrix_set_zero(Xlarge);
gsl_matrix_set_zero(Uab);
CalcUab(UtW, Uty, Uab);
@@ -1375,10 +1357,12 @@ void LMM::Analyze(std::function< SnpNameValues(size_t) >& fetch_snp,
}
};
- for (size_t t = 0; t < indicator_snp.size(); ++t) {
- // for every SNP
- if (t % d_pace == 0 || t == (ns_total - 1)) {
- ProgressBar("Reading SNPs ", t, ns_total - 1);
+ const auto num_snps = indicator_snp.size();
+ const size_t progress_step = (num_snps/20>d_pace ? num_snps/20 : d_pace);
+
+ for (size_t t = 0; t < num_snps; ++t) {
+ if (t % progress_step == 0 || t == (num_snps - 1)) {
+ ProgressBar("Reading SNPs", t, num_snps - 1);
}
if (indicator_snp[t] == 0)
continue;
@@ -1391,34 +1375,51 @@ void LMM::Analyze(std::function< SnpNameValues(size_t) >& fetch_snp,
if (process_gwasnps && gwasnps.count(snp) == 0)
continue;
- double x_mean = 0.0;
- int c_phen = 0;
- int n_miss = 0;
+ // drop missing idv and plug mean values for missing geno
+ double x_total = 0.0; // sum genotype values to compute x_mean
+ uint pos = 0; // position in target vector
+ uint n_miss = 0;
gsl_vector_set_zero(x_miss);
for (size_t i = 0; i < ni_total; ++i) {
// get the genotypes per individual and compute stats per SNP
- if (indicator_idv[i] == 0) // skip individual column
+ if (indicator_idv[i] == 0) // skip individual
continue;
double geno = gs[i];
if (std::isnan(geno)) {
- gsl_vector_set(x_miss, c_phen, 0.0);
+ gsl_vector_set(x_miss, pos, 1.0);
n_miss++;
} else {
- gsl_vector_set(x, c_phen, geno);
- gsl_vector_set(x_miss, c_phen, 1.0);
- x_mean += geno;
+ gsl_vector_set(x, pos, geno);
+ x_total += geno;
}
- c_phen++;
+ pos++;
}
+ enforce(pos == ni_test);
- x_mean /= (double)(ni_test - n_miss);
+ const double x_mean = x_total/(double)(ni_test - n_miss);
+ // plug x_mean back into missing values
for (size_t i = 0; i < ni_test; ++i) {
- if (gsl_vector_get(x_miss, i) == 0) {
+ if (gsl_vector_get(x_miss, i) == 1.0) {
+ gsl_vector_set(x, i, x_mean);
+ }
+ }
+
+ /* this is what below GxE does
+ for (size_t i = 0; i < ni_test; ++i) {
+ auto geno = gsl_vector_get(x, i);
+ if (std::isnan(geno)) {
gsl_vector_set(x, i, x_mean);
+ geno = x_mean;
+ }
+ if (x_mean > 1.0) {
+ gsl_vector_set(x, i, 2 - geno);
}
}
+ */
+ enforce(x->size == ni_test);
+
// copy genotype values for SNP into Xlarge cache
gsl_vector_view Xlarge_col = gsl_matrix_column(Xlarge, c % msize);
gsl_vector_memcpy(&Xlarge_col.vector, x);
@@ -1513,45 +1514,43 @@ void LMM::AnalyzePlink(const gsl_matrix *U, const gsl_vector *eval,
// fetch_snp is a callback function for every SNP row
std::function<SnpNameValues(size_t)> fetch_snp = [&](size_t num) {
-
gs.assign (ni_total,nan("")); // wipe values
// n_bit, and 3 is the number of magic numbers.
auto t = num;
infile.seekg(t * n_bit + 3);
- for (size_t i = 0; i < ni_total; ++i) {
- auto ci_total = 0;
- auto ci_test = 0;
- for (int i = 0; i < n_bit; ++i) {
- infile.read(ch, 1);
- bset8 = ch[0];
-
- // Minor allele homozygous: 2.0; major: 0.0.
- for (size_t j = 0; j < 4; ++j) {
- if ((i == (n_bit - 1)) && ci_total == (int)ni_total) {
- break;
- }
- if (indicator_idv[ci_total] == 0) {
- ci_total++;
- continue;
- }
+ auto ci_total = 0;
+ auto ci_test = 0;
+ // ---- for all genotypes
+ for (int i = 0; i < n_bit; ++i) {
+ infile.read(ch, 1);
+ bset8 = ch[0];
- if (bset8[2 * j] == 0) {
- if (bset8[2 * j + 1] == 0) {
- gs[ci_test] = 2.0;
- } else {
- gs[ci_test] = 1.0;
- }
+ // Minor allele homozygous: 2.0; major: 0.0.
+ for (size_t j = 0; j < 4; ++j) {
+ if ((i == (n_bit - 1)) && ci_total == (int)ni_total) {
+ break;
+ }
+ if (indicator_idv[ci_total] == 0) { // skip individual
+ ci_total++;
+ continue;
+ }
+
+ if (bset8[2 * j] == 0) {
+ if (bset8[2 * j + 1] == 0) {
+ gs[ci_test] = 2.0;
} else {
- if (bset8[2 * j + 1] == 1) {
- gs[ci_test] = 0.0;
- } else {
- gs[ci_test] = nan(""); // already set to NaN
- }
+ gs[ci_test] = 1.0;
+ }
+ } else {
+ if (bset8[2 * j + 1] == 1) {
+ gs[ci_test] = 0.0;
+ } else {
+ gs[ci_test] = nan(""); // already set to NaN - originally was -9.0
}
-
- ci_total++;
- ci_test++;
}
+
+ ci_total++;
+ ci_test++;
}
}
string snp="unknown";
@@ -1936,7 +1935,7 @@ void LMM::AnalyzeBimbamGXE(const gsl_matrix *U, const gsl_vector *eval,
for (size_t t = 0; t < indicator_snp.size(); ++t) {
!safeGetline(infile, line).eof();
if (t % d_pace == 0 || t == (ns_total - 1)) {
- ProgressBar("Reading SNPs ", t, ns_total - 1);
+ ProgressBar("Reading SNPs", t, ns_total - 1);
}
if (indicator_snp[t] == 0) {
continue;
@@ -2096,7 +2095,7 @@ void LMM::AnalyzePlinkGXE(const gsl_matrix *U, const gsl_vector *eval,
for (vector<SNPINFO>::size_type t = 0; t < snpInfo.size(); ++t) {
if (t % d_pace == 0 || t == snpInfo.size() - 1) {
- ProgressBar("Reading SNPs ", t, snpInfo.size() - 1);
+ ProgressBar("Reading SNPs", t, snpInfo.size() - 1);
}
if (indicator_snp[t] == 0) {
continue;