aboutsummaryrefslogtreecommitdiff
path: root/src/lapack.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/lapack.cpp')
-rw-r--r--src/lapack.cpp1030
1 files changed, 514 insertions, 516 deletions
diff --git a/src/lapack.cpp b/src/lapack.cpp
index 05b85f4..8f6e8ff 100644
--- a/src/lapack.cpp
+++ b/src/lapack.cpp
@@ -16,614 +16,612 @@
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
-#include <iostream>
+#include "gsl/gsl_linalg.h"
+#include "gsl/gsl_matrix.h"
+#include "gsl/gsl_vector.h"
#include <cmath>
+#include <iostream>
#include <vector>
-#include "gsl/gsl_vector.h"
-#include "gsl/gsl_matrix.h"
-#include "gsl/gsl_linalg.h"
using namespace std;
extern "C" void sgemm_(char *TRANSA, char *TRANSB, int *M, int *N, int *K,
- float *ALPHA, float *A, int *LDA, float *B, int *LDB,
- float *BETA, float *C, int *LDC);
+ float *ALPHA, float *A, int *LDA, float *B, int *LDB,
+ float *BETA, float *C, int *LDC);
extern "C" void spotrf_(char *UPLO, int *N, float *A, int *LDA, int *INFO);
extern "C" void spotrs_(char *UPLO, int *N, int *NRHS, float *A, int *LDA,
- float *B, int *LDB, int *INFO);
-extern "C" void ssyev_(char* JOBZ, char* UPLO, int *N, float *A, int *LDA,
- float *W, float *WORK, int *LWORK, int *INFO);
-extern "C" void ssyevr_(char* JOBZ, char *RANGE, char* UPLO, int *N,
- float *A, int *LDA, float *VL, float *VU, int *IL,
- int *IU, float *ABSTOL, int *M, float *W, float *Z,
- int *LDZ, int *ISUPPZ, float *WORK, int *LWORK,
- int *IWORK, int *LIWORK, int *INFO);
+ float *B, int *LDB, int *INFO);
+extern "C" void ssyev_(char *JOBZ, char *UPLO, int *N, float *A, int *LDA,
+ float *W, float *WORK, int *LWORK, int *INFO);
+extern "C" void ssyevr_(char *JOBZ, char *RANGE, char *UPLO, int *N, float *A,
+ int *LDA, float *VL, float *VU, int *IL, int *IU,
+ float *ABSTOL, int *M, float *W, float *Z, int *LDZ,
+ int *ISUPPZ, float *WORK, int *LWORK, int *IWORK,
+ int *LIWORK, int *INFO);
extern "C" double sdot_(int *N, float *DX, int *INCX, float *DY, int *INCY);
extern "C" void dgemm_(char *TRANSA, char *TRANSB, int *M, int *N, int *K,
- double *ALPHA, double *A, int *LDA, double *B,
- int *LDB, double *BETA, double *C, int *LDC);
+ double *ALPHA, double *A, int *LDA, double *B, int *LDB,
+ double *BETA, double *C, int *LDC);
extern "C" void dpotrf_(char *UPLO, int *N, double *A, int *LDA, int *INFO);
extern "C" void dpotrs_(char *UPLO, int *N, int *NRHS, double *A, int *LDA,
- double *B, int *LDB, int *INFO);
-extern "C" void dsyev_(char* JOBZ, char* UPLO, int *N, double *A, int *LDA,
- double *W, double *WORK, int *LWORK, int *INFO);
-extern "C" void dsyevr_(char* JOBZ, char *RANGE, char* UPLO, int *N,
- double *A, int *LDA, double *VL, double *VU,
- int *IL, int *IU, double *ABSTOL, int *M,
- double *W, double *Z, int *LDZ, int *ISUPPZ,
- double *WORK, int *LWORK, int *IWORK,
- int *LIWORK, int *INFO);
+ double *B, int *LDB, int *INFO);
+extern "C" void dsyev_(char *JOBZ, char *UPLO, int *N, double *A, int *LDA,
+ double *W, double *WORK, int *LWORK, int *INFO);
+extern "C" void dsyevr_(char *JOBZ, char *RANGE, char *UPLO, int *N, double *A,
+ int *LDA, double *VL, double *VU, int *IL, int *IU,
+ double *ABSTOL, int *M, double *W, double *Z, int *LDZ,
+ int *ISUPPZ, double *WORK, int *LWORK, int *IWORK,
+ int *LIWORK, int *INFO);
extern "C" double ddot_(int *N, double *DX, int *INCX, double *DY, int *INCY);
// Cholesky decomposition, A is destroyed.
-void lapack_float_cholesky_decomp (gsl_matrix_float *A) {
- int N=A->size1, LDA=A->size1, INFO;
- char UPLO='L';
-
- if (N!=(int)A->size2) {
- cout << "Matrix needs to be symmetric and same dimension in " <<
- "lapack_cholesky_decomp." << endl;
- return;
- }
-
- spotrf_(&UPLO, &N, A->data, &LDA, &INFO);
- if (INFO!=0) {
- cout << "Cholesky decomposition unsuccessful in " <<
- "lapack_cholesky_decomp." << endl;
- return;
- }
-
- return;
+void lapack_float_cholesky_decomp(gsl_matrix_float *A) {
+ int N = A->size1, LDA = A->size1, INFO;
+ char UPLO = 'L';
+
+ if (N != (int)A->size2) {
+ cout << "Matrix needs to be symmetric and same dimension in "
+ << "lapack_cholesky_decomp." << endl;
+ return;
+ }
+
+ spotrf_(&UPLO, &N, A->data, &LDA, &INFO);
+ if (INFO != 0) {
+ cout << "Cholesky decomposition unsuccessful in "
+ << "lapack_cholesky_decomp." << endl;
+ return;
+ }
+
+ return;
}
// Cholesky decomposition, A is destroyed.
-void lapack_cholesky_decomp (gsl_matrix *A) {
- int N=A->size1, LDA=A->size1, INFO;
- char UPLO='L';
-
- if (N!=(int)A->size2) {
- cout << "Matrix needs to be symmetric and same dimension in " <<
- "lapack_cholesky_decomp." << endl;
- return;
- }
-
- dpotrf_(&UPLO, &N, A->data, &LDA, &INFO);
- if (INFO!=0) {
- cout << "Cholesky decomposition unsuccessful in " <<
- "lapack_cholesky_decomp."<<endl;
- return;
- }
-
- return;
+void lapack_cholesky_decomp(gsl_matrix *A) {
+ int N = A->size1, LDA = A->size1, INFO;
+ char UPLO = 'L';
+
+ if (N != (int)A->size2) {
+ cout << "Matrix needs to be symmetric and same dimension in "
+ << "lapack_cholesky_decomp." << endl;
+ return;
+ }
+
+ dpotrf_(&UPLO, &N, A->data, &LDA, &INFO);
+ if (INFO != 0) {
+ cout << "Cholesky decomposition unsuccessful in "
+ << "lapack_cholesky_decomp." << endl;
+ return;
+ }
+
+ return;
}
// Cholesky solve, A is decomposed.
-void lapack_float_cholesky_solve (gsl_matrix_float *A,
- const gsl_vector_float *b,
- gsl_vector_float *x) {
- int N=A->size1, NRHS=1, LDA=A->size1, LDB=b->size, INFO;
- char UPLO='L';
-
-
- if (N!=(int)A->size2 || N!=LDB) {
- cout << "Matrix needs to be symmetric and same dimension in " <<
- "lapack_cholesky_solve." << endl;
- return;
- }
-
- gsl_vector_float_memcpy (x, b);
- spotrs_(&UPLO, &N, &NRHS, A->data, &LDA, x->data, &LDB, &INFO);
- if (INFO!=0) {
- cout << "Cholesky solve unsuccessful in lapack_cholesky_solve." <<
- endl;
- return;
- }
-
- return;
+void lapack_float_cholesky_solve(gsl_matrix_float *A, const gsl_vector_float *b,
+ gsl_vector_float *x) {
+ int N = A->size1, NRHS = 1, LDA = A->size1, LDB = b->size, INFO;
+ char UPLO = 'L';
+
+ if (N != (int)A->size2 || N != LDB) {
+ cout << "Matrix needs to be symmetric and same dimension in "
+ << "lapack_cholesky_solve." << endl;
+ return;
+ }
+
+ gsl_vector_float_memcpy(x, b);
+ spotrs_(&UPLO, &N, &NRHS, A->data, &LDA, x->data, &LDB, &INFO);
+ if (INFO != 0) {
+ cout << "Cholesky solve unsuccessful in lapack_cholesky_solve." << endl;
+ return;
+ }
+
+ return;
}
// Cholesky solve, A is decomposed.
-void lapack_cholesky_solve (gsl_matrix *A, const gsl_vector *b,
- gsl_vector *x) {
- int N=A->size1, NRHS=1, LDA=A->size1, LDB=b->size, INFO;
- char UPLO='L';
-
- if (N!=(int)A->size2 || N!=LDB) {
- cout << "Matrix needs to be symmetric and same dimension in " <<
- "lapack_cholesky_solve." << endl;
- return;
- }
-
- gsl_vector_memcpy (x, b);
- dpotrs_(&UPLO, &N, &NRHS, A->data, &LDA, x->data, &LDB, &INFO);
- if (INFO!=0) {
- cout << "Cholesky solve unsuccessful in lapack_cholesky_solve." <<
- endl;
- return;
- }
-
- return;
-}
+void lapack_cholesky_solve(gsl_matrix *A, const gsl_vector *b, gsl_vector *x) {
+ int N = A->size1, NRHS = 1, LDA = A->size1, LDB = b->size, INFO;
+ char UPLO = 'L';
+
+ if (N != (int)A->size2 || N != LDB) {
+ cout << "Matrix needs to be symmetric and same dimension in "
+ << "lapack_cholesky_solve." << endl;
+ return;
+ }
+
+ gsl_vector_memcpy(x, b);
+ dpotrs_(&UPLO, &N, &NRHS, A->data, &LDA, x->data, &LDB, &INFO);
+ if (INFO != 0) {
+ cout << "Cholesky solve unsuccessful in lapack_cholesky_solve." << endl;
+ return;
+ }
-void lapack_sgemm (char *TransA, char *TransB, float alpha,
- const gsl_matrix_float *A, const gsl_matrix_float *B,
- float beta, gsl_matrix_float *C) {
- int M, N, K1, K2, LDA=A->size1, LDB=B->size1, LDC=C->size2;
-
- if (*TransA=='N' || *TransA=='n') {M=A->size1; K1=A->size2;}
- else if (*TransA=='T' || *TransA=='t') {M=A->size2; K1=A->size1;}
- else {cout<<"need 'N' or 'T' in lapack_sgemm"<<endl; return;}
-
- if (*TransB=='N' || *TransB=='n') {N=B->size2; K2=B->size1;}
- else if (*TransB=='T' || *TransB=='t') {N=B->size1; K2=B->size2;}
- else {cout<<"need 'N' or 'T' in lapack_sgemm"<<endl; return;}
-
- if (K1!=K2) {
- cout<<"A and B not compatible in lapack_sgemm"<<endl;
- return;
- }
- if (C->size1!=(size_t)M || C->size2!=(size_t)N) {
- cout<<"C not compatible in lapack_sgemm"<<endl;
- return;
- }
-
- gsl_matrix_float *A_t=gsl_matrix_float_alloc (A->size2, A->size1);
- gsl_matrix_float_transpose_memcpy (A_t, A);
- gsl_matrix_float *B_t=gsl_matrix_float_alloc (B->size2, B->size1);
- gsl_matrix_float_transpose_memcpy (B_t, B);
- gsl_matrix_float *C_t=gsl_matrix_float_alloc (C->size2, C->size1);
- gsl_matrix_float_transpose_memcpy (C_t, C);
-
- sgemm_(TransA, TransB, &M, &N, &K1, &alpha, A_t->data, &LDA,
- B_t->data, &LDB, &beta, C_t->data, &LDC);
- gsl_matrix_float_transpose_memcpy (C, C_t);
-
- gsl_matrix_float_free (A_t);
- gsl_matrix_float_free (B_t);
- gsl_matrix_float_free (C_t);
- return;
+ return;
}
+void lapack_sgemm(char *TransA, char *TransB, float alpha,
+ const gsl_matrix_float *A, const gsl_matrix_float *B,
+ float beta, gsl_matrix_float *C) {
+ int M, N, K1, K2, LDA = A->size1, LDB = B->size1, LDC = C->size2;
+
+ if (*TransA == 'N' || *TransA == 'n') {
+ M = A->size1;
+ K1 = A->size2;
+ } else if (*TransA == 'T' || *TransA == 't') {
+ M = A->size2;
+ K1 = A->size1;
+ } else {
+ cout << "need 'N' or 'T' in lapack_sgemm" << endl;
+ return;
+ }
+ if (*TransB == 'N' || *TransB == 'n') {
+ N = B->size2;
+ K2 = B->size1;
+ } else if (*TransB == 'T' || *TransB == 't') {
+ N = B->size1;
+ K2 = B->size2;
+ } else {
+ cout << "need 'N' or 'T' in lapack_sgemm" << endl;
+ return;
+ }
-void lapack_dgemm (char *TransA, char *TransB, double alpha,
- const gsl_matrix *A, const gsl_matrix *B,
- double beta, gsl_matrix *C) {
- int M, N, K1, K2, LDA=A->size1, LDB=B->size1, LDC=C->size2;
+ if (K1 != K2) {
+ cout << "A and B not compatible in lapack_sgemm" << endl;
+ return;
+ }
+ if (C->size1 != (size_t)M || C->size2 != (size_t)N) {
+ cout << "C not compatible in lapack_sgemm" << endl;
+ return;
+ }
- if (*TransA=='N' || *TransA=='n') {M=A->size1; K1=A->size2;}
- else if (*TransA=='T' || *TransA=='t') {M=A->size2; K1=A->size1;}
- else {cout<<"need 'N' or 'T' in lapack_dgemm"<<endl; return;}
+ gsl_matrix_float *A_t = gsl_matrix_float_alloc(A->size2, A->size1);
+ gsl_matrix_float_transpose_memcpy(A_t, A);
+ gsl_matrix_float *B_t = gsl_matrix_float_alloc(B->size2, B->size1);
+ gsl_matrix_float_transpose_memcpy(B_t, B);
+ gsl_matrix_float *C_t = gsl_matrix_float_alloc(C->size2, C->size1);
+ gsl_matrix_float_transpose_memcpy(C_t, C);
+
+ sgemm_(TransA, TransB, &M, &N, &K1, &alpha, A_t->data, &LDA, B_t->data, &LDB,
+ &beta, C_t->data, &LDC);
+ gsl_matrix_float_transpose_memcpy(C, C_t);
+
+ gsl_matrix_float_free(A_t);
+ gsl_matrix_float_free(B_t);
+ gsl_matrix_float_free(C_t);
+ return;
+}
- if (*TransB=='N' || *TransB=='n') {N=B->size2; K2=B->size1;}
- else if (*TransB=='T' || *TransB=='t') {N=B->size1; K2=B->size2;}
- else {cout<<"need 'N' or 'T' in lapack_dgemm"<<endl; return;}
+void lapack_dgemm(char *TransA, char *TransB, double alpha, const gsl_matrix *A,
+ const gsl_matrix *B, double beta, gsl_matrix *C) {
+ int M, N, K1, K2, LDA = A->size1, LDB = B->size1, LDC = C->size2;
+
+ if (*TransA == 'N' || *TransA == 'n') {
+ M = A->size1;
+ K1 = A->size2;
+ } else if (*TransA == 'T' || *TransA == 't') {
+ M = A->size2;
+ K1 = A->size1;
+ } else {
+ cout << "need 'N' or 'T' in lapack_dgemm" << endl;
+ return;
+ }
+
+ if (*TransB == 'N' || *TransB == 'n') {
+ N = B->size2;
+ K2 = B->size1;
+ } else if (*TransB == 'T' || *TransB == 't') {
+ N = B->size1;
+ K2 = B->size2;
+ } else {
+ cout << "need 'N' or 'T' in lapack_dgemm" << endl;
+ return;
+ }
- if (K1!=K2) {
- cout << "A and B not compatible in lapack_dgemm"<<endl;
- return;
- }
- if (C->size1!=(size_t)M || C->size2!=(size_t)N) {
- cout<<"C not compatible in lapack_dgemm"<<endl;
- return;
- }
+ if (K1 != K2) {
+ cout << "A and B not compatible in lapack_dgemm" << endl;
+ return;
+ }
+ if (C->size1 != (size_t)M || C->size2 != (size_t)N) {
+ cout << "C not compatible in lapack_dgemm" << endl;
+ return;
+ }
- gsl_matrix *A_t=gsl_matrix_alloc (A->size2, A->size1);
- gsl_matrix_transpose_memcpy (A_t, A);
- gsl_matrix *B_t=gsl_matrix_alloc (B->size2, B->size1);
- gsl_matrix_transpose_memcpy (B_t, B);
- gsl_matrix *C_t=gsl_matrix_alloc (C->size2, C->size1);
- gsl_matrix_transpose_memcpy (C_t, C);
+ gsl_matrix *A_t = gsl_matrix_alloc(A->size2, A->size1);
+ gsl_matrix_transpose_memcpy(A_t, A);
+ gsl_matrix *B_t = gsl_matrix_alloc(B->size2, B->size1);
+ gsl_matrix_transpose_memcpy(B_t, B);
+ gsl_matrix *C_t = gsl_matrix_alloc(C->size2, C->size1);
+ gsl_matrix_transpose_memcpy(C_t, C);
- dgemm_(TransA, TransB, &M, &N, &K1, &alpha, A_t->data, &LDA,
- B_t->data, &LDB, &beta, C_t->data, &LDC);
+ dgemm_(TransA, TransB, &M, &N, &K1, &alpha, A_t->data, &LDA, B_t->data, &LDB,
+ &beta, C_t->data, &LDC);
- gsl_matrix_transpose_memcpy (C, C_t);
+ gsl_matrix_transpose_memcpy(C, C_t);
- gsl_matrix_free (A_t);
- gsl_matrix_free (B_t);
- gsl_matrix_free (C_t);
- return;
+ gsl_matrix_free(A_t);
+ gsl_matrix_free(B_t);
+ gsl_matrix_free(C_t);
+ return;
}
// Eigen value decomposition, matrix A is destroyed, float seems to
// have problem with large matrices (in mac).
-void lapack_float_eigen_symmv (gsl_matrix_float *A, gsl_vector_float *eval,
- gsl_matrix_float *evec,
- const size_t flag_largematrix) {
- if (flag_largematrix==1) {
- int N=A->size1, LDA=A->size1, INFO, LWORK=-1;
- char JOBZ='V', UPLO='L';
-
- if (N!=(int)A->size2 || N!=(int)eval->size) {
- cout << "Matrix needs to be symmetric and same " <<
- "dimension in lapack_eigen_symmv."<<endl;
- return;
- }
-
- LWORK=3*N;
- float *WORK=new float [LWORK];
- ssyev_(&JOBZ, &UPLO, &N, A->data, &LDA, eval->data, WORK,
- &LWORK, &INFO);
- if (INFO!=0) {
- cout << "Eigen decomposition unsuccessful in " <<
- "lapack_eigen_symmv."<<endl;
- return;
- }
-
- gsl_matrix_float_view A_sub =
- gsl_matrix_float_submatrix(A, 0, 0, N, N);
- gsl_matrix_float_memcpy (evec, &A_sub.matrix);
- gsl_matrix_float_transpose (evec);
-
- delete [] WORK;
- } else {
- int N=A->size1, LDA=A->size1, LDZ=A->size1, INFO,
- LWORK=-1, LIWORK=-1;
- char JOBZ='V', UPLO='L', RANGE='A';
- float ABSTOL=1.0E-7;
-
- // VL, VU, IL, IU are not referenced; M equals N if RANGE='A'.
- float VL=0.0, VU=0.0;
- int IL=0, IU=0, M;
-
- if (N!=(int)A->size2 || N!=(int)eval->size) {
- cout << "Matrix needs to be symmetric and same " <<
- "dimension in lapack_float_eigen_symmv." << endl;
- return;
- }
-
- int *ISUPPZ=new int [2*N];
-
- float WORK_temp[1];
- int IWORK_temp[1];
- ssyevr_(&JOBZ, &RANGE, &UPLO, &N, A->data, &LDA, &VL,
- &VU, &IL, &IU, &ABSTOL, &M, eval->data,
- evec->data, &LDZ, ISUPPZ, WORK_temp, &LWORK,
- IWORK_temp, &LIWORK, &INFO);
- if (INFO!=0) {
- cout << "Work space estimate unsuccessful in " <<
- "lapack_float_eigen_symmv." << endl;
- return;
- }
- LWORK=(int)WORK_temp[0]; LIWORK=(int)IWORK_temp[0];
-
- float *WORK=new float [LWORK];
- int *IWORK=new int [LIWORK];
-
- ssyevr_(&JOBZ, &RANGE, &UPLO, &N, A->data, &LDA, &VL,
- &VU, &IL, &IU, &ABSTOL, &M, eval->data, evec->data,
- &LDZ, ISUPPZ, WORK, &LWORK, IWORK, &LIWORK, &INFO);
- if (INFO!=0) {
- cout << "Eigen decomposition unsuccessful in " <<
- "lapack_float_eigen_symmv." << endl;
- return;
- }
-
- gsl_matrix_float_transpose (evec);
-
- delete [] ISUPPZ;
- delete [] WORK;
- delete [] IWORK;
- }
-
-
- return;
-}
-
+void lapack_float_eigen_symmv(gsl_matrix_float *A, gsl_vector_float *eval,
+ gsl_matrix_float *evec,
+ const size_t flag_largematrix) {
+ if (flag_largematrix == 1) {
+ int N = A->size1, LDA = A->size1, INFO, LWORK = -1;
+ char JOBZ = 'V', UPLO = 'L';
+
+ if (N != (int)A->size2 || N != (int)eval->size) {
+ cout << "Matrix needs to be symmetric and same "
+ << "dimension in lapack_eigen_symmv." << endl;
+ return;
+ }
+
+ LWORK = 3 * N;
+ float *WORK = new float[LWORK];
+ ssyev_(&JOBZ, &UPLO, &N, A->data, &LDA, eval->data, WORK, &LWORK, &INFO);
+ if (INFO != 0) {
+ cout << "Eigen decomposition unsuccessful in "
+ << "lapack_eigen_symmv." << endl;
+ return;
+ }
+
+ gsl_matrix_float_view A_sub = gsl_matrix_float_submatrix(A, 0, 0, N, N);
+ gsl_matrix_float_memcpy(evec, &A_sub.matrix);
+ gsl_matrix_float_transpose(evec);
+
+ delete[] WORK;
+ } else {
+ int N = A->size1, LDA = A->size1, LDZ = A->size1, INFO, LWORK = -1,
+ LIWORK = -1;
+ char JOBZ = 'V', UPLO = 'L', RANGE = 'A';
+ float ABSTOL = 1.0E-7;
+
+ // VL, VU, IL, IU are not referenced; M equals N if RANGE='A'.
+ float VL = 0.0, VU = 0.0;
+ int IL = 0, IU = 0, M;
+
+ if (N != (int)A->size2 || N != (int)eval->size) {
+ cout << "Matrix needs to be symmetric and same "
+ << "dimension in lapack_float_eigen_symmv." << endl;
+ return;
+ }
+
+ int *ISUPPZ = new int[2 * N];
+
+ float WORK_temp[1];
+ int IWORK_temp[1];
+ ssyevr_(&JOBZ, &RANGE, &UPLO, &N, A->data, &LDA, &VL, &VU, &IL, &IU,
+ &ABSTOL, &M, eval->data, evec->data, &LDZ, ISUPPZ, WORK_temp,
+ &LWORK, IWORK_temp, &LIWORK, &INFO);
+ if (INFO != 0) {
+ cout << "Work space estimate unsuccessful in "
+ << "lapack_float_eigen_symmv." << endl;
+ return;
+ }
+ LWORK = (int)WORK_temp[0];
+ LIWORK = (int)IWORK_temp[0];
+
+ float *WORK = new float[LWORK];
+ int *IWORK = new int[LIWORK];
+
+ ssyevr_(&JOBZ, &RANGE, &UPLO, &N, A->data, &LDA, &VL, &VU, &IL, &IU,
+ &ABSTOL, &M, eval->data, evec->data, &LDZ, ISUPPZ, WORK, &LWORK,
+ IWORK, &LIWORK, &INFO);
+ if (INFO != 0) {
+ cout << "Eigen decomposition unsuccessful in "
+ << "lapack_float_eigen_symmv." << endl;
+ return;
+ }
+
+ gsl_matrix_float_transpose(evec);
+
+ delete[] ISUPPZ;
+ delete[] WORK;
+ delete[] IWORK;
+ }
+ return;
+}
// Eigenvalue decomposition, matrix A is destroyed.
-void lapack_eigen_symmv (gsl_matrix *A, gsl_vector *eval, gsl_matrix *evec,
- const size_t flag_largematrix) {
- if (flag_largematrix==1) {
- int N=A->size1, LDA=A->size1, INFO, LWORK=-1;
- char JOBZ='V', UPLO='L';
-
- if (N!=(int)A->size2 || N!=(int)eval->size) {
- cout << "Matrix needs to be symmetric and same " <<
- "dimension in lapack_eigen_symmv." << endl;
- return;
- }
-
- LWORK=3*N;
- double *WORK=new double [LWORK];
- dsyev_(&JOBZ, &UPLO, &N, A->data, &LDA, eval->data, WORK,
- &LWORK, &INFO);
- if (INFO!=0) {
- cout<<"Eigen decomposition unsuccessful in " <<
- "lapack_eigen_symmv." << endl;
- return;
- }
-
- gsl_matrix_view A_sub=gsl_matrix_submatrix(A, 0, 0, N, N);
- gsl_matrix_memcpy (evec, &A_sub.matrix);
- gsl_matrix_transpose (evec);
-
- delete [] WORK;
- } else {
- int N=A->size1, LDA=A->size1, LDZ=A->size1, INFO;
- int LWORK=-1, LIWORK=-1;
- char JOBZ='V', UPLO='L', RANGE='A';
- double ABSTOL=1.0E-7;
-
- // VL, VU, IL, IU are not referenced; M equals N if RANGE='A'.
- double VL=0.0, VU=0.0;
- int IL=0, IU=0, M;
-
- if (N!=(int)A->size2 || N!=(int)eval->size) {
- cout << "Matrix needs to be symmetric and same " <<
- "dimension in lapack_eigen_symmv." << endl;
- return;
- }
-
- int *ISUPPZ=new int [2*N];
-
- double WORK_temp[1];
- int IWORK_temp[1];
-
- dsyevr_(&JOBZ, &RANGE, &UPLO, &N, A->data, &LDA, &VL, &VU,
- &IL, &IU, &ABSTOL, &M, eval->data, evec->data,
- &LDZ, ISUPPZ, WORK_temp, &LWORK, IWORK_temp,
- &LIWORK, &INFO);
- if (INFO!=0) {
- cout << "Work space estimate unsuccessful in " <<
- "lapack_eigen_symmv." << endl;
- return;
- }
- LWORK=(int)WORK_temp[0]; LIWORK=(int)IWORK_temp[0];
-
- double *WORK=new double [LWORK];
- int *IWORK=new int [LIWORK];
-
- dsyevr_(&JOBZ, &RANGE, &UPLO, &N, A->data, &LDA, &VL, &VU,
- &IL, &IU, &ABSTOL, &M, eval->data, evec->data,
- &LDZ, ISUPPZ, WORK, &LWORK, IWORK, &LIWORK, &INFO);
- if (INFO!=0) {
- cout << "Eigen decomposition unsuccessful in " <<
- "lapack_eigen_symmv." << endl;
- return;
- }
-
- gsl_matrix_transpose (evec);
-
- delete [] ISUPPZ;
- delete [] WORK;
- delete [] IWORK;
- }
-
- return;
+void lapack_eigen_symmv(gsl_matrix *A, gsl_vector *eval, gsl_matrix *evec,
+ const size_t flag_largematrix) {
+ if (flag_largematrix == 1) {
+ int N = A->size1, LDA = A->size1, INFO, LWORK = -1;
+ char JOBZ = 'V', UPLO = 'L';
+
+ if (N != (int)A->size2 || N != (int)eval->size) {
+ cout << "Matrix needs to be symmetric and same "
+ << "dimension in lapack_eigen_symmv." << endl;
+ return;
+ }
+
+ LWORK = 3 * N;
+ double *WORK = new double[LWORK];
+ dsyev_(&JOBZ, &UPLO, &N, A->data, &LDA, eval->data, WORK, &LWORK, &INFO);
+ if (INFO != 0) {
+ cout << "Eigen decomposition unsuccessful in "
+ << "lapack_eigen_symmv." << endl;
+ return;
+ }
+
+ gsl_matrix_view A_sub = gsl_matrix_submatrix(A, 0, 0, N, N);
+ gsl_matrix_memcpy(evec, &A_sub.matrix);
+ gsl_matrix_transpose(evec);
+
+ delete[] WORK;
+ } else {
+ int N = A->size1, LDA = A->size1, LDZ = A->size1, INFO;
+ int LWORK = -1, LIWORK = -1;
+ char JOBZ = 'V', UPLO = 'L', RANGE = 'A';
+ double ABSTOL = 1.0E-7;
+
+ // VL, VU, IL, IU are not referenced; M equals N if RANGE='A'.
+ double VL = 0.0, VU = 0.0;
+ int IL = 0, IU = 0, M;
+
+ if (N != (int)A->size2 || N != (int)eval->size) {
+ cout << "Matrix needs to be symmetric and same "
+ << "dimension in lapack_eigen_symmv." << endl;
+ return;
+ }
+
+ int *ISUPPZ = new int[2 * N];
+
+ double WORK_temp[1];
+ int IWORK_temp[1];
+
+ dsyevr_(&JOBZ, &RANGE, &UPLO, &N, A->data, &LDA, &VL, &VU, &IL, &IU,
+ &ABSTOL, &M, eval->data, evec->data, &LDZ, ISUPPZ, WORK_temp,
+ &LWORK, IWORK_temp, &LIWORK, &INFO);
+ if (INFO != 0) {
+ cout << "Work space estimate unsuccessful in "
+ << "lapack_eigen_symmv." << endl;
+ return;
+ }
+ LWORK = (int)WORK_temp[0];
+ LIWORK = (int)IWORK_temp[0];
+
+ double *WORK = new double[LWORK];
+ int *IWORK = new int[LIWORK];
+
+ dsyevr_(&JOBZ, &RANGE, &UPLO, &N, A->data, &LDA, &VL, &VU, &IL, &IU,
+ &ABSTOL, &M, eval->data, evec->data, &LDZ, ISUPPZ, WORK, &LWORK,
+ IWORK, &LIWORK, &INFO);
+ if (INFO != 0) {
+ cout << "Eigen decomposition unsuccessful in "
+ << "lapack_eigen_symmv." << endl;
+ return;
+ }
+
+ gsl_matrix_transpose(evec);
+
+ delete[] ISUPPZ;
+ delete[] WORK;
+ delete[] IWORK;
+ }
+
+ return;
}
// DO NOT set eigenvalues to be positive.
-double EigenDecomp (gsl_matrix *G, gsl_matrix *U, gsl_vector *eval,
- const size_t flag_largematrix) {
- lapack_eigen_symmv (G, eval, U, flag_largematrix);
-
- // Calculate track_G=mean(diag(G)).
- double d=0.0;
- for (size_t i=0; i<eval->size; ++i) {
- d+=gsl_vector_get(eval, i);
- }
- d/=(double)eval->size;
-
- return d;
-}
+double EigenDecomp(gsl_matrix *G, gsl_matrix *U, gsl_vector *eval,
+ const size_t flag_largematrix) {
+ lapack_eigen_symmv(G, eval, U, flag_largematrix);
+
+ // Calculate track_G=mean(diag(G)).
+ double d = 0.0;
+ for (size_t i = 0; i < eval->size; ++i) {
+ d += gsl_vector_get(eval, i);
+ }
+ d /= (double)eval->size;
+ return d;
+}
// DO NOT set eigen values to be positive.
-double EigenDecomp (gsl_matrix_float *G, gsl_matrix_float *U,
- gsl_vector_float *eval, const size_t flag_largematrix) {
- lapack_float_eigen_symmv (G, eval, U, flag_largematrix);
-
- // Calculate track_G=mean(diag(G)).
- double d = 0.0;
- for (size_t i=0; i<eval->size; ++i) {
- d+=gsl_vector_float_get(eval, i);
- }
- d/=(double)eval->size;
-
- return d;
-}
+double EigenDecomp(gsl_matrix_float *G, gsl_matrix_float *U,
+ gsl_vector_float *eval, const size_t flag_largematrix) {
+ lapack_float_eigen_symmv(G, eval, U, flag_largematrix);
+
+ // Calculate track_G=mean(diag(G)).
+ double d = 0.0;
+ for (size_t i = 0; i < eval->size; ++i) {
+ d += gsl_vector_float_get(eval, i);
+ }
+ d /= (double)eval->size;
+ return d;
+}
double CholeskySolve(gsl_matrix *Omega, gsl_vector *Xty, gsl_vector *OiXty) {
- double logdet_O=0.0;
+ double logdet_O = 0.0;
- lapack_cholesky_decomp(Omega);
- for (size_t i=0; i<Omega->size1; ++i) {
- logdet_O+=log(gsl_matrix_get (Omega, i, i));
- }
- logdet_O*=2.0;
- lapack_cholesky_solve(Omega, Xty, OiXty);
+ lapack_cholesky_decomp(Omega);
+ for (size_t i = 0; i < Omega->size1; ++i) {
+ logdet_O += log(gsl_matrix_get(Omega, i, i));
+ }
+ logdet_O *= 2.0;
+ lapack_cholesky_solve(Omega, Xty, OiXty);
- return logdet_O;
+ return logdet_O;
}
-
double CholeskySolve(gsl_matrix_float *Omega, gsl_vector_float *Xty,
- gsl_vector_float *OiXty) {
- double logdet_O=0.0;
+ gsl_vector_float *OiXty) {
+ double logdet_O = 0.0;
- lapack_float_cholesky_decomp(Omega);
- for (size_t i=0; i<Omega->size1; ++i) {
- logdet_O+=log(gsl_matrix_float_get (Omega, i, i));
- }
- logdet_O*=2.0;
- lapack_float_cholesky_solve(Omega, Xty, OiXty);
+ lapack_float_cholesky_decomp(Omega);
+ for (size_t i = 0; i < Omega->size1; ++i) {
+ logdet_O += log(gsl_matrix_float_get(Omega, i, i));
+ }
+ logdet_O *= 2.0;
+ lapack_float_cholesky_solve(Omega, Xty, OiXty);
- return logdet_O;
+ return logdet_O;
}
-
// LU decomposition.
-void LUDecomp (gsl_matrix *LU, gsl_permutation *p, int *signum) {
- gsl_linalg_LU_decomp (LU, p, signum);
- return;
+void LUDecomp(gsl_matrix *LU, gsl_permutation *p, int *signum) {
+ gsl_linalg_LU_decomp(LU, p, signum);
+ return;
}
-void LUDecomp (gsl_matrix_float *LU, gsl_permutation *p, int *signum) {
- gsl_matrix *LU_double=gsl_matrix_alloc (LU->size1, LU->size2);
-
- // Copy float matrix to double.
- for (size_t i=0; i<LU->size1; i++) {
- for (size_t j=0; j<LU->size2; j++) {
- gsl_matrix_set (LU_double, i, j,
- gsl_matrix_float_get(LU, i, j));
- }
- }
-
- // LU decomposition.
- gsl_linalg_LU_decomp (LU_double, p, signum);
-
- // Copy float matrix to double.
- for (size_t i=0; i<LU->size1; i++) {
- for (size_t j=0; j<LU->size2; j++) {
- gsl_matrix_float_set (LU, i, j,
- gsl_matrix_get(LU_double, i, j));
- }
- }
-
- // Free matrix.
- gsl_matrix_free (LU_double);
- return;
-}
+void LUDecomp(gsl_matrix_float *LU, gsl_permutation *p, int *signum) {
+ gsl_matrix *LU_double = gsl_matrix_alloc(LU->size1, LU->size2);
+
+ // Copy float matrix to double.
+ for (size_t i = 0; i < LU->size1; i++) {
+ for (size_t j = 0; j < LU->size2; j++) {
+ gsl_matrix_set(LU_double, i, j, gsl_matrix_float_get(LU, i, j));
+ }
+ }
+ // LU decomposition.
+ gsl_linalg_LU_decomp(LU_double, p, signum);
+
+ // Copy float matrix to double.
+ for (size_t i = 0; i < LU->size1; i++) {
+ for (size_t j = 0; j < LU->size2; j++) {
+ gsl_matrix_float_set(LU, i, j, gsl_matrix_get(LU_double, i, j));
+ }
+ }
+
+ // Free matrix.
+ gsl_matrix_free(LU_double);
+ return;
+}
// LU invert.
-void LUInvert (const gsl_matrix *LU, const gsl_permutation *p,
- gsl_matrix *inverse) {
- gsl_linalg_LU_invert (LU, p, inverse);
- return;
+void LUInvert(const gsl_matrix *LU, const gsl_permutation *p,
+ gsl_matrix *inverse) {
+ gsl_linalg_LU_invert(LU, p, inverse);
+ return;
}
-void LUInvert (const gsl_matrix_float *LU, const gsl_permutation *p,
- gsl_matrix_float *inverse) {
- gsl_matrix *LU_double=gsl_matrix_alloc (LU->size1, LU->size2);
- gsl_matrix *inverse_double=gsl_matrix_alloc (inverse->size1,
- inverse->size2);
-
- // Copy float matrix to double.
- for (size_t i=0; i<LU->size1; i++) {
- for (size_t j=0; j<LU->size2; j++) {
- gsl_matrix_set (LU_double, i, j,
- gsl_matrix_float_get(LU, i, j));
- }
- }
-
- // LU decomposition.
- gsl_linalg_LU_invert (LU_double, p, inverse_double);
-
- // Copy float matrix to double.
- for (size_t i=0; i<inverse->size1; i++) {
- for (size_t j=0; j<inverse->size2; j++) {
- gsl_matrix_float_set (inverse, i, j,
- gsl_matrix_get(inverse_double,
- i, j));
- }
- }
-
- // Free matrix.
- gsl_matrix_free (LU_double);
- gsl_matrix_free (inverse_double);
- return;
+void LUInvert(const gsl_matrix_float *LU, const gsl_permutation *p,
+ gsl_matrix_float *inverse) {
+ gsl_matrix *LU_double = gsl_matrix_alloc(LU->size1, LU->size2);
+ gsl_matrix *inverse_double = gsl_matrix_alloc(inverse->size1, inverse->size2);
+
+ // Copy float matrix to double.
+ for (size_t i = 0; i < LU->size1; i++) {
+ for (size_t j = 0; j < LU->size2; j++) {
+ gsl_matrix_set(LU_double, i, j, gsl_matrix_float_get(LU, i, j));
+ }
+ }
+
+ // LU decomposition.
+ gsl_linalg_LU_invert(LU_double, p, inverse_double);
+
+ // Copy float matrix to double.
+ for (size_t i = 0; i < inverse->size1; i++) {
+ for (size_t j = 0; j < inverse->size2; j++) {
+ gsl_matrix_float_set(inverse, i, j, gsl_matrix_get(inverse_double, i, j));
+ }
+ }
+
+ // Free matrix.
+ gsl_matrix_free(LU_double);
+ gsl_matrix_free(inverse_double);
+ return;
}
// LU lndet.
-double LULndet (gsl_matrix *LU) {
- double d;
- d=gsl_linalg_LU_lndet (LU);
- return d;
+double LULndet(gsl_matrix *LU) {
+ double d;
+ d = gsl_linalg_LU_lndet(LU);
+ return d;
}
-double LULndet (gsl_matrix_float *LU) {
- gsl_matrix *LU_double=gsl_matrix_alloc (LU->size1, LU->size2);
- double d;
+double LULndet(gsl_matrix_float *LU) {
+ gsl_matrix *LU_double = gsl_matrix_alloc(LU->size1, LU->size2);
+ double d;
- // Copy float matrix to double.
- for (size_t i=0; i<LU->size1; i++) {
- for (size_t j=0; j<LU->size2; j++) {
- gsl_matrix_set (LU_double, i, j, gsl_matrix_float_get(LU, i, j));
- }
- }
+ // Copy float matrix to double.
+ for (size_t i = 0; i < LU->size1; i++) {
+ for (size_t j = 0; j < LU->size2; j++) {
+ gsl_matrix_set(LU_double, i, j, gsl_matrix_float_get(LU, i, j));
+ }
+ }
- // LU decomposition.
- d=gsl_linalg_LU_lndet (LU_double);
+ // LU decomposition.
+ d = gsl_linalg_LU_lndet(LU_double);
- // Free matrix
- gsl_matrix_free (LU_double);
- return d;
+ // Free matrix
+ gsl_matrix_free(LU_double);
+ return d;
}
-
// LU solve.
-void LUSolve (const gsl_matrix *LU, const gsl_permutation *p,
- const gsl_vector *b, gsl_vector *x) {
- gsl_linalg_LU_solve (LU, p, b, x);
- return;
+void LUSolve(const gsl_matrix *LU, const gsl_permutation *p,
+ const gsl_vector *b, gsl_vector *x) {
+ gsl_linalg_LU_solve(LU, p, b, x);
+ return;
}
-void LUSolve (const gsl_matrix_float *LU, const gsl_permutation *p,
- const gsl_vector_float *b, gsl_vector_float *x) {
- gsl_matrix *LU_double=gsl_matrix_alloc (LU->size1, LU->size2);
- gsl_vector *b_double=gsl_vector_alloc (b->size);
- gsl_vector *x_double=gsl_vector_alloc (x->size);
-
- // Copy float matrix to double.
- for (size_t i=0; i<LU->size1; i++) {
- for (size_t j=0; j<LU->size2; j++) {
- gsl_matrix_set (LU_double, i, j,
- gsl_matrix_float_get(LU, i, j));
- }
- }
-
- for (size_t i=0; i<b->size; i++) {
- gsl_vector_set (b_double, i, gsl_vector_float_get(b, i));
- }
-
- for (size_t i=0; i<x->size; i++) {
- gsl_vector_set (x_double, i, gsl_vector_float_get(x, i));
- }
-
- // LU decomposition.
- gsl_linalg_LU_solve (LU_double, p, b_double, x_double);
-
- // Copy float matrix to double.
- for (size_t i=0; i<x->size; i++) {
- gsl_vector_float_set (x, i, gsl_vector_get(x_double, i));
- }
-
- // Free matrix.
- gsl_matrix_free (LU_double);
- gsl_vector_free (b_double);
- gsl_vector_free (x_double);
- return;
-}
+void LUSolve(const gsl_matrix_float *LU, const gsl_permutation *p,
+ const gsl_vector_float *b, gsl_vector_float *x) {
+ gsl_matrix *LU_double = gsl_matrix_alloc(LU->size1, LU->size2);
+ gsl_vector *b_double = gsl_vector_alloc(b->size);
+ gsl_vector *x_double = gsl_vector_alloc(x->size);
+
+ // Copy float matrix to double.
+ for (size_t i = 0; i < LU->size1; i++) {
+ for (size_t j = 0; j < LU->size2; j++) {
+ gsl_matrix_set(LU_double, i, j, gsl_matrix_float_get(LU, i, j));
+ }
+ }
+ for (size_t i = 0; i < b->size; i++) {
+ gsl_vector_set(b_double, i, gsl_vector_float_get(b, i));
+ }
+
+ for (size_t i = 0; i < x->size; i++) {
+ gsl_vector_set(x_double, i, gsl_vector_float_get(x, i));
+ }
+
+ // LU decomposition.
+ gsl_linalg_LU_solve(LU_double, p, b_double, x_double);
+
+ // Copy float matrix to double.
+ for (size_t i = 0; i < x->size; i++) {
+ gsl_vector_float_set(x, i, gsl_vector_get(x_double, i));
+ }
+
+ // Free matrix.
+ gsl_matrix_free(LU_double);
+ gsl_vector_free(b_double);
+ gsl_vector_free(x_double);
+ return;
+}
bool lapack_ddot(vector<double> &x, vector<double> &y, double &v) {
- bool flag=false;
- int incx=1;
- int incy=1;
- int n=(int)x.size();
- if (x.size()==y.size()) {
- v=ddot_(&n, &x[0], &incx, &y[0], &incy);
- flag=true;
+ bool flag = false;
+ int incx = 1;
+ int incy = 1;
+ int n = (int)x.size();
+ if (x.size() == y.size()) {
+ v = ddot_(&n, &x[0], &incx, &y[0], &incy);
+ flag = true;
}
return flag;
}
-
bool lapack_sdot(vector<float> &x, vector<float> &y, double &v) {
- bool flag=false;
- int incx=1;
- int incy=1;
- int n=(int)x.size();
- if (x.size()==y.size()) {
- v=sdot_(&n, &x[0], &incx, &y[0], &incy);
- flag=true;
+ bool flag = false;
+ int incx = 1;
+ int incy = 1;
+ int n = (int)x.size();
+ if (x.size() == y.size()) {
+ v = sdot_(&n, &x[0], &incx, &y[0], &incy);
+ flag = true;
}
return flag;