diff options
Diffstat (limited to 'src/bslmm.cpp')
-rw-r--r-- | src/bslmm.cpp | 780 |
1 files changed, 390 insertions, 390 deletions
diff --git a/src/bslmm.cpp b/src/bslmm.cpp index 563b743..d579802 100644 --- a/src/bslmm.cpp +++ b/src/bslmm.cpp @@ -1,17 +1,17 @@ /* Genome-wide Efficient Mixed Model Association (GEMMA) Copyright (C) 2011-2017, Xiang Zhou - + This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. - + This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. - + You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ @@ -24,7 +24,7 @@ #include <cmath> #include <iostream> #include <stdio.h> -#include <stdlib.h> +#include <stdlib.h> #include <ctime> #include <cstring> #include <algorithm> @@ -50,32 +50,32 @@ using namespace std; void BSLMM::CopyFromParam (PARAM &cPar) { a_mode=cPar.a_mode; d_pace=cPar.d_pace; - + file_bfile=cPar.file_bfile; file_geno=cPar.file_geno; file_out=cPar.file_out; path_out=cPar.path_out; - - l_min=cPar.h_min; - l_max=cPar.h_max; - n_region=cPar.n_region; + + l_min=cPar.h_min; + l_max=cPar.h_max; + n_region=cPar.n_region; pve_null=cPar.pve_null; pheno_mean=cPar.pheno_mean; - + time_UtZ=0.0; time_Omega=0.0; n_accept=0; - - h_min=cPar.h_min; - h_max=cPar.h_max; + + h_min=cPar.h_min; + h_max=cPar.h_max; h_scale=cPar.h_scale; - rho_min=cPar.rho_min; - rho_max=cPar.rho_max; + rho_min=cPar.rho_min; + rho_max=cPar.rho_max; rho_scale=cPar.rho_scale; - logp_min=cPar.logp_min; - logp_max=cPar.logp_max; + logp_min=cPar.logp_min; + logp_max=cPar.logp_max; logp_scale=cPar.logp_scale; - + s_min=cPar.s_min; s_max=cPar.s_max; w_step=cPar.w_step; @@ -86,17 +86,17 @@ void BSLMM::CopyFromParam (PARAM &cPar) { geo_mean=cPar.geo_mean; randseed=cPar.randseed; trace_G=cPar.trace_G; - + ni_total=cPar.ni_total; ns_total=cPar.ns_total; ni_test=cPar.ni_test; ns_test=cPar.ns_test; n_cvt=cPar.n_cvt; - + indicator_idv=cPar.indicator_idv; indicator_snp=cPar.indicator_snp; snpInfo=cPar.snpInfo; - + return; } @@ -108,7 +108,7 @@ void BSLMM::CopyToParam (PARAM &cPar) { cPar.n_accept=n_accept; cPar.pheno_mean=pheno_mean; cPar.randseed=randseed; - + return; } @@ -119,28 +119,28 @@ void BSLMM::WriteBV (const gsl_vector *bv) { ofstream outfile (file_str.c_str(), ofstream::out); if (!outfile) { - cout<<"error writing file: "<<file_str.c_str()<<endl; + cout<<"error writing file: "<<file_str.c_str()<<endl; return; } - + size_t t=0; for (size_t i=0; i<ni_total; ++i) { if (indicator_idv[i]==0) { outfile<<"NA"<<endl; - } + } else { outfile<<scientific<<setprecision(6)<< gsl_vector_get(bv, t)<<endl; t++; } - } - - outfile.clear(); - outfile.close(); + } + + outfile.clear(); + outfile.close(); return; } -void BSLMM::WriteParam (vector<pair<double, double> > &beta_g, +void BSLMM::WriteParam (vector<pair<double, double> > &beta_g, const gsl_vector *alpha, const size_t w) { string file_str; file_str=path_out+"/"+file_out; @@ -148,20 +148,20 @@ void BSLMM::WriteParam (vector<pair<double, double> > &beta_g, ofstream outfile (file_str.c_str(), ofstream::out); if (!outfile) { - cout<<"error writing file: "<<file_str.c_str()<<endl; + cout<<"error writing file: "<<file_str.c_str()<<endl; return;} - + outfile<<"chr"<<"\t"<<"rs"<<"\t" <<"ps"<<"\t"<<"n_miss"<<"\t"<<"alpha"<<"\t" <<"beta"<<"\t"<<"gamma"<<endl; - + size_t t=0; for (size_t i=0; i<ns_total; ++i) { - if (indicator_snp[i]==0) {continue;} - + if (indicator_snp[i]==0) {continue;} + outfile<<snpInfo[i].chr<<"\t"<<snpInfo[i].rs_number<<"\t" <<snpInfo[i].base_position<<"\t"<<snpInfo[i].n_miss<<"\t"; - + outfile<<scientific<<setprecision(6)<< gsl_vector_get(alpha, t)<<"\t"; if (beta_g[t].second!=0) { @@ -172,10 +172,10 @@ void BSLMM::WriteParam (vector<pair<double, double> > &beta_g, outfile<<0.0<<"\t"<<0.0<<endl; } t++; - } - - outfile.clear(); - outfile.close(); + } + + outfile.clear(); + outfile.close(); return; } @@ -186,17 +186,17 @@ void BSLMM::WriteParam (const gsl_vector *alpha) { ofstream outfile (file_str.c_str(), ofstream::out); if (!outfile) { - cout<<"error writing file: "<<file_str.c_str()<<endl; + cout<<"error writing file: "<<file_str.c_str()<<endl; return; } - + outfile<<"chr"<<"\t"<<"rs"<<"\t" <<"ps"<<"\t"<<"n_miss"<<"\t"<<"alpha"<<"\t" <<"beta"<<"\t"<<"gamma"<<endl; - + size_t t=0; for (size_t i=0; i<ns_total; ++i) { - if (indicator_snp[i]==0) {continue;} + if (indicator_snp[i]==0) {continue;} outfile<<snpInfo[i].chr<<"\t"<<snpInfo[i].rs_number<<"\t"<< snpInfo[i].base_position<<"\t"<<snpInfo[i].n_miss<<"\t"; @@ -204,14 +204,14 @@ void BSLMM::WriteParam (const gsl_vector *alpha) { gsl_vector_get(alpha, t)<<"\t"; outfile<<0.0<<"\t"<<0.0<<endl; t++; - } - - outfile.clear(); - outfile.close(); + } + + outfile.clear(); + outfile.close(); return; } -void BSLMM::WriteResult (const int flag, const gsl_matrix *Result_hyp, +void BSLMM::WriteResult (const int flag, const gsl_matrix *Result_hyp, const gsl_matrix *Result_gamma, const size_t w_col) { string file_gamma, file_hyp; file_gamma=path_out+"/"+file_out; @@ -220,21 +220,21 @@ void BSLMM::WriteResult (const int flag, const gsl_matrix *Result_hyp, file_hyp+=".hyp.txt"; ofstream outfile_gamma, outfile_hyp; - + if (flag==0) { outfile_gamma.open (file_gamma.c_str(), ofstream::out); outfile_hyp.open (file_hyp.c_str(), ofstream::out); if (!outfile_gamma) { - cout<<"error writing file: "<<file_gamma<<endl; + cout<<"error writing file: "<<file_gamma<<endl; return; } if (!outfile_hyp) { - cout<<"error writing file: "<<file_hyp<<endl; + cout<<"error writing file: "<<file_hyp<<endl; return; } - + outfile_hyp<<"h \t pve \t rho \t pge \t pi \t n_gamma"<<endl; - + for (size_t i=0; i<s_max; ++i) { outfile_gamma<<"s"<<i<<"\t"; } @@ -244,18 +244,18 @@ void BSLMM::WriteResult (const int flag, const gsl_matrix *Result_hyp, outfile_gamma.open (file_gamma.c_str(), ofstream::app); outfile_hyp.open (file_hyp.c_str(), ofstream::app); if (!outfile_gamma) { - cout<<"error writing file: "<<file_gamma<<endl; + cout<<"error writing file: "<<file_gamma<<endl; return; } if (!outfile_hyp) { - cout<<"error writing file: "<<file_hyp<<endl; + cout<<"error writing file: "<<file_hyp<<endl; return; } - + size_t w; if (w_col==0) {w=w_pace;} else {w=w_col;} - + for (size_t i=0; i<w; ++i) { outfile_hyp<<scientific; for (size_t j=0; j<4; ++j) { @@ -267,7 +267,7 @@ void BSLMM::WriteResult (const int flag, const gsl_matrix *Result_hyp, outfile_hyp<<(int)gsl_matrix_get(Result_hyp,i,5)<<"\t"; outfile_hyp<<endl; } - + for (size_t i=0; i<w; ++i) { for (size_t j=0; j<s_max; ++j) { outfile_gamma<< @@ -275,13 +275,13 @@ void BSLMM::WriteResult (const int flag, const gsl_matrix *Result_hyp, } outfile_gamma<<endl; } - + } - + outfile_hyp.close(); outfile_hyp.clear(); outfile_gamma.close(); - outfile_gamma.clear(); + outfile_gamma.clear(); return; } @@ -300,7 +300,7 @@ void BSLMM::CalcPgamma (double *p_gamma) { return; } -void BSLMM::SetXgamma (gsl_matrix *Xgamma, const gsl_matrix *X, +void BSLMM::SetXgamma (gsl_matrix *Xgamma, const gsl_matrix *X, vector<size_t> &rank) { size_t pos; for (size_t i=0; i<rank.size(); ++i) { @@ -309,32 +309,32 @@ void BSLMM::SetXgamma (gsl_matrix *Xgamma, const gsl_matrix *X, gsl_vector_const_view X_col=gsl_matrix_const_column (X, pos); gsl_vector_memcpy (&Xgamma_col.vector, &X_col.vector); } - + return; } -double BSLMM::CalcPveLM (const gsl_matrix *UtXgamma, const gsl_vector *Uty, +double BSLMM::CalcPveLM (const gsl_matrix *UtXgamma, const gsl_vector *Uty, const double sigma_a2) { - double pve, var_y; - + double pve, var_y; + gsl_matrix *Omega=gsl_matrix_alloc (UtXgamma->size2, UtXgamma->size2); gsl_vector *Xty=gsl_vector_alloc (UtXgamma->size2); gsl_vector *OiXty=gsl_vector_alloc (UtXgamma->size2); gsl_matrix_set_identity (Omega); - gsl_matrix_scale (Omega, 1.0/sigma_a2); + gsl_matrix_scale (Omega, 1.0/sigma_a2); lapack_dgemm ((char *)"T", (char *)"N", 1.0, UtXgamma, UtXgamma, 1.0, Omega); gsl_blas_dgemv (CblasTrans, 1.0, UtXgamma, Uty, 0.0, Xty); CholeskySolve(Omega, Xty, OiXty); - + gsl_blas_ddot (Xty, OiXty, &pve); gsl_blas_ddot (Uty, Uty, &var_y); - + pve/=var_y; - + gsl_matrix_free (Omega); gsl_vector_free (Xty); gsl_vector_free (OiXty); @@ -342,28 +342,28 @@ double BSLMM::CalcPveLM (const gsl_matrix *UtXgamma, const gsl_vector *Uty, return pve; } -void BSLMM::InitialMCMC (const gsl_matrix *UtX, const gsl_vector *Uty, - vector<size_t> &rank, class HYPBSLMM &cHyp, +void BSLMM::InitialMCMC (const gsl_matrix *UtX, const gsl_vector *Uty, + vector<size_t> &rank, class HYPBSLMM &cHyp, vector<pair<size_t, double> > &pos_loglr) { double q_genome=gsl_cdf_chisq_Qinv(0.05/(double)ns_test, 1); - + cHyp.n_gamma=0; for (size_t i=0; i<pos_loglr.size(); ++i) { if (2.0*pos_loglr[i].second>q_genome) {cHyp.n_gamma++;} } if (cHyp.n_gamma<10) {cHyp.n_gamma=10;} - + if (cHyp.n_gamma>s_max) {cHyp.n_gamma=s_max;} - if (cHyp.n_gamma<s_min) {cHyp.n_gamma=s_min;} - + if (cHyp.n_gamma<s_min) {cHyp.n_gamma=s_min;} + rank.clear(); for (size_t i=0; i<cHyp.n_gamma; ++i) { rank.push_back(i); } - + cHyp.logp=log((double)cHyp.n_gamma/(double)ns_test); - cHyp.h=pve_null; - + cHyp.h=pve_null; + if (cHyp.logp==0) {cHyp.logp=-0.000001;} if (cHyp.h==0) {cHyp.h=0.1;} @@ -376,114 +376,114 @@ void BSLMM::InitialMCMC (const gsl_matrix *UtX, const gsl_vector *Uty, } else { sigma_a2=cHyp.h*1.0/( (1-cHyp.h)*exp(cHyp.logp)*(double)ns_test); } - if (sigma_a2==0) {sigma_a2=0.025;} + if (sigma_a2==0) {sigma_a2=0.025;} cHyp.rho=CalcPveLM (UtXgamma, Uty, sigma_a2)/cHyp.h; gsl_matrix_free (UtXgamma); - + if (cHyp.rho>1.0) {cHyp.rho=1.0;} - + if (cHyp.h<h_min) {cHyp.h=h_min;} if (cHyp.h>h_max) {cHyp.h=h_max;} if (cHyp.rho<rho_min) {cHyp.rho=rho_min;} if (cHyp.rho>rho_max) {cHyp.rho=rho_max;} if (cHyp.logp<logp_min) {cHyp.logp=logp_min;} if (cHyp.logp>logp_max) {cHyp.logp=logp_max;} - + cout<<"initial value of h = "<<cHyp.h<<endl; cout<<"initial value of rho = "<<cHyp.rho<<endl; cout<<"initial value of pi = "<<exp(cHyp.logp)<<endl; cout<<"initial value of |gamma| = "<<cHyp.n_gamma<<endl; - + return; } -double BSLMM::CalcPosterior (const gsl_vector *Uty, const gsl_vector *K_eval, - gsl_vector *Utu, gsl_vector *alpha_prime, +double BSLMM::CalcPosterior (const gsl_vector *Uty, const gsl_vector *K_eval, + gsl_vector *Utu, gsl_vector *alpha_prime, class HYPBSLMM &cHyp) { double sigma_b2=cHyp.h*(1.0-cHyp.rho)/(trace_G*(1-cHyp.h)); - - gsl_vector *Utu_rand=gsl_vector_alloc (Uty->size); + + gsl_vector *Utu_rand=gsl_vector_alloc (Uty->size); gsl_vector *weight_Hi=gsl_vector_alloc (Uty->size); - + double logpost=0.0; double d, ds, uy, Hi_yy=0, logdet_H=0.0; for (size_t i=0; i<ni_test; ++i) { d=gsl_vector_get (K_eval, i)*sigma_b2; ds=d/(d+1.0); - d=1.0/(d+1.0); + d=1.0/(d+1.0); gsl_vector_set (weight_Hi, i, d); - + logdet_H-=log(d); uy=gsl_vector_get (Uty, i); Hi_yy+=d*uy*uy; - - gsl_vector_set (Utu_rand, i, + + gsl_vector_set (Utu_rand, i, gsl_ran_gaussian(gsl_r, 1)*sqrt(ds)); } - + // Sample tau. double tau=1.0; if (a_mode==11) { - tau = gsl_ran_gamma (gsl_r, (double)ni_test/2.0, 2.0/Hi_yy); + tau = gsl_ran_gamma (gsl_r, (double)ni_test/2.0, 2.0/Hi_yy); } - + // Sample alpha. gsl_vector_memcpy (alpha_prime, Uty); gsl_vector_mul (alpha_prime, weight_Hi); gsl_vector_scale (alpha_prime, sigma_b2); - + // Sample u. gsl_vector_memcpy (Utu, alpha_prime); gsl_vector_mul (Utu, K_eval); if (a_mode==11) {gsl_vector_scale (Utu_rand, sqrt(1.0/tau));} - gsl_vector_add (Utu, Utu_rand); - + gsl_vector_add (Utu, Utu_rand); + // For quantitative traits, calculate pve and ppe. if (a_mode==11) { gsl_blas_ddot (Utu, Utu, &d); - cHyp.pve=d/(double)ni_test; + cHyp.pve=d/(double)ni_test; cHyp.pve/=cHyp.pve+1.0/tau; - cHyp.pge=0.0; + cHyp.pge=0.0; } // Calculate likelihood. logpost=-0.5*logdet_H; if (a_mode==11) {logpost-=0.5*(double)ni_test*log(Hi_yy);} else {logpost-=0.5*Hi_yy;} - + logpost+=((double)cHyp.n_gamma-1.0)*cHyp.logp+ ((double)ns_test-(double)cHyp.n_gamma)*log(1-exp(cHyp.logp)); - + gsl_vector_free (Utu_rand); gsl_vector_free (weight_Hi); - + return logpost; } -double BSLMM::CalcPosterior (const gsl_matrix *UtXgamma, - const gsl_vector *Uty, const gsl_vector *K_eval, - gsl_vector *UtXb, gsl_vector *Utu, - gsl_vector *alpha_prime, gsl_vector *beta, +double BSLMM::CalcPosterior (const gsl_matrix *UtXgamma, + const gsl_vector *Uty, const gsl_vector *K_eval, + gsl_vector *UtXb, gsl_vector *Utu, + gsl_vector *alpha_prime, gsl_vector *beta, class HYPBSLMM &cHyp) { - clock_t time_start; - + clock_t time_start; + double sigma_a2=cHyp.h*cHyp.rho/ (trace_G*(1-cHyp.h)*exp(cHyp.logp)*(double)ns_test); double sigma_b2=cHyp.h*(1.0-cHyp.rho)/(trace_G*(1-cHyp.h)); - + double logpost=0.0; double d, ds, uy, P_yy=0, logdet_O=0.0, logdet_H=0.0; - - gsl_matrix *UtXgamma_eval=gsl_matrix_alloc (UtXgamma->size1, - UtXgamma->size2); + + gsl_matrix *UtXgamma_eval=gsl_matrix_alloc (UtXgamma->size1, + UtXgamma->size2); gsl_matrix *Omega=gsl_matrix_alloc (UtXgamma->size2, UtXgamma->size2); gsl_vector *XtHiy=gsl_vector_alloc (UtXgamma->size2); gsl_vector *beta_hat=gsl_vector_alloc (UtXgamma->size2); - gsl_vector *Utu_rand=gsl_vector_alloc (UtXgamma->size1); + gsl_vector *Utu_rand=gsl_vector_alloc (UtXgamma->size1); gsl_vector *weight_Hi=gsl_vector_alloc (UtXgamma->size1); - + gsl_matrix_memcpy (UtXgamma_eval, UtXgamma); - + logdet_H=0.0; P_yy=0.0; for (size_t i=0; i<ni_test; ++i) { gsl_vector_view UtXgamma_row= @@ -492,139 +492,139 @@ double BSLMM::CalcPosterior (const gsl_matrix *UtXgamma, ds=d/(d+1.0); d=1.0/(d+1.0); gsl_vector_set (weight_Hi, i, d); - + logdet_H-=log(d); uy=gsl_vector_get (Uty, i); P_yy+=d*uy*uy; gsl_vector_scale (&UtXgamma_row.vector, d); - + gsl_vector_set(Utu_rand,i,gsl_ran_gaussian(gsl_r,1)*sqrt(ds)); } - + // Calculate Omega. gsl_matrix_set_identity (Omega); - + time_start=clock(); lapack_dgemm ((char *)"T", (char *)"N", sigma_a2, UtXgamma_eval, UtXgamma, 1.0, Omega); time_Omega+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0); - - + + // Calculate beta_hat. gsl_blas_dgemv (CblasTrans, 1.0, UtXgamma_eval, Uty, 0.0, XtHiy); logdet_O=CholeskySolve(Omega, XtHiy, beta_hat); - + gsl_vector_scale (beta_hat, sigma_a2); gsl_blas_ddot (XtHiy, beta_hat, &d); P_yy-=d; - + // Sample tau. double tau=1.0; if (a_mode==11) { - tau =gsl_ran_gamma (gsl_r, (double)ni_test/2.0, 2.0/P_yy); + tau =gsl_ran_gamma (gsl_r, (double)ni_test/2.0, 2.0/P_yy); } // Sample beta. for (size_t i=0; i<beta->size; i++) { - d=gsl_ran_gaussian(gsl_r, 1); - gsl_vector_set(beta, i, d); + d=gsl_ran_gaussian(gsl_r, 1); + gsl_vector_set(beta, i, d); } - gsl_blas_dtrsv(CblasUpper, CblasNoTrans, CblasNonUnit, Omega, beta); - + gsl_blas_dtrsv(CblasUpper, CblasNoTrans, CblasNonUnit, Omega, beta); + // This computes inv(L^T(Omega)) %*% beta. gsl_vector_scale(beta, sqrt(sigma_a2/tau)); - gsl_vector_add(beta, beta_hat); + gsl_vector_add(beta, beta_hat); gsl_blas_dgemv (CblasNoTrans, 1.0, UtXgamma, beta, 0.0, UtXb); - + // Sample alpha. gsl_vector_memcpy (alpha_prime, Uty); gsl_vector_sub (alpha_prime, UtXb); gsl_vector_mul (alpha_prime, weight_Hi); gsl_vector_scale (alpha_prime, sigma_b2); - + // Sample u. gsl_vector_memcpy (Utu, alpha_prime); gsl_vector_mul (Utu, K_eval); - + if (a_mode==11) {gsl_vector_scale (Utu_rand, sqrt(1.0/tau));} - gsl_vector_add (Utu, Utu_rand); - + gsl_vector_add (Utu, Utu_rand); + // For quantitative traits, calculate pve and pge. if (a_mode==11) { gsl_blas_ddot (UtXb, UtXb, &d); cHyp.pge=d/(double)ni_test; - + gsl_blas_ddot (Utu, Utu, &d); cHyp.pve=cHyp.pge+d/(double)ni_test; - + if (cHyp.pve==0) {cHyp.pge=0.0;} else {cHyp.pge/=cHyp.pve;} - cHyp.pve/=cHyp.pve+1.0/tau; - } + cHyp.pve/=cHyp.pve+1.0/tau; + } gsl_matrix_free (UtXgamma_eval); gsl_matrix_free (Omega); gsl_vector_free (XtHiy); gsl_vector_free (beta_hat); - gsl_vector_free (Utu_rand); + gsl_vector_free (Utu_rand); gsl_vector_free (weight_Hi); - + logpost=-0.5*logdet_H-0.5*logdet_O; if (a_mode==11) {logpost-=0.5*(double)ni_test*log(P_yy);} else {logpost-=0.5*P_yy;} logpost+=((double)cHyp.n_gamma-1.0)*cHyp.logp+ ((double)ns_test-(double)cHyp.n_gamma)*log(1.0-exp(cHyp.logp)); - + return logpost; } // Calculate pve and pge, and calculate z_hat for case-control data. -void BSLMM::CalcCC_PVEnZ (const gsl_matrix *U, const gsl_vector *Utu, +void BSLMM::CalcCC_PVEnZ (const gsl_matrix *U, const gsl_vector *Utu, gsl_vector *z_hat, class HYPBSLMM &cHyp) { double d; - + gsl_blas_ddot (Utu, Utu, &d); - cHyp.pve=d/(double)ni_test; - + cHyp.pve=d/(double)ni_test; + gsl_blas_dgemv (CblasNoTrans, 1.0, U, Utu, 0.0, z_hat); - + cHyp.pve/=cHyp.pve+1.0; - cHyp.pge=0.0; - + cHyp.pge=0.0; + return; } // Calculate pve and pge, and calculate z_hat for case-control data. -void BSLMM::CalcCC_PVEnZ (const gsl_matrix *U, const gsl_vector *UtXb, - const gsl_vector *Utu, gsl_vector *z_hat, +void BSLMM::CalcCC_PVEnZ (const gsl_matrix *U, const gsl_vector *UtXb, + const gsl_vector *Utu, gsl_vector *z_hat, class HYPBSLMM &cHyp) { double d; gsl_vector *UtXbU=gsl_vector_alloc (Utu->size); - + gsl_blas_ddot (UtXb, UtXb, &d); cHyp.pge=d/(double)ni_test; - + gsl_blas_ddot (Utu, Utu, &d); cHyp.pve=cHyp.pge+d/(double)ni_test; - + gsl_vector_memcpy (UtXbU, Utu); gsl_vector_add (UtXbU, UtXb); - gsl_blas_dgemv (CblasNoTrans, 1.0, U, UtXbU, 0.0, z_hat); - + gsl_blas_dgemv (CblasNoTrans, 1.0, U, UtXbU, 0.0, z_hat); + if (cHyp.pve==0) {cHyp.pge=0.0;} else {cHyp.pge/=cHyp.pve;} - + cHyp.pve/=cHyp.pve+1.0; - + gsl_vector_free(UtXbU); return; } -void BSLMM::SampleZ (const gsl_vector *y, const gsl_vector *z_hat, - gsl_vector *z) { +void BSLMM::SampleZ (const gsl_vector *y, const gsl_vector *z_hat, + gsl_vector *z) { double d1, d2, z_rand=0.0; for (size_t i=0; i<z->size; ++i) { d1=gsl_vector_get (y, i); @@ -634,7 +634,7 @@ void BSLMM::SampleZ (const gsl_vector *y, const gsl_vector *z_hat, if (d1<=0.0) { // Control, right truncated. - do { + do { z_rand=d2+gsl_ran_gaussian(gsl_r, 1.0); } while (z_rand>0.0); } @@ -643,25 +643,25 @@ void BSLMM::SampleZ (const gsl_vector *y, const gsl_vector *z_hat, z_rand=d2+gsl_ran_gaussian(gsl_r, 1.0); } while (z_rand<0.0); } - + gsl_vector_set (z, i, z_rand); } return; } -double BSLMM::ProposeHnRho (const class HYPBSLMM &cHyp_old, +double BSLMM::ProposeHnRho (const class HYPBSLMM &cHyp_old, class HYPBSLMM &cHyp_new, const size_t &repeat) { - + double h=cHyp_old.h, rho=cHyp_old.rho; - + double d_h=(h_max-h_min)*h_scale, d_rho=(rho_max-rho_min)*rho_scale; - + for (size_t i=0; i<repeat; ++i) { h=h+(gsl_rng_uniform(gsl_r)-0.5)*d_h; if (h<h_min) {h=2*h_min-h;} if (h>h_max) {h=2*h_max-h;} - + rho=rho+(gsl_rng_uniform(gsl_r)-0.5)*d_rho; if (rho<rho_min) {rho=2*rho_min-rho;} if (rho>rho_max) {rho=2*rho_max-rho;} @@ -671,13 +671,13 @@ double BSLMM::ProposeHnRho (const class HYPBSLMM &cHyp_old, return 0.0; } -double BSLMM::ProposePi (const class HYPBSLMM &cHyp_old, +double BSLMM::ProposePi (const class HYPBSLMM &cHyp_old, class HYPBSLMM &cHyp_new, const size_t &repeat) { double logp_old=cHyp_old.logp, logp_new=cHyp_old.logp; double log_ratio=0.0; - + double d_logp=min(0.1, (logp_max-logp_min)*logp_scale); - + for (size_t i=0; i<repeat; ++i) { logp_new=logp_old+(gsl_rng_uniform(gsl_r)-0.5)*d_logp; if (logp_new<logp_min) {logp_new=2*logp_min-logp_new;} @@ -686,29 +686,29 @@ double BSLMM::ProposePi (const class HYPBSLMM &cHyp_old, logp_old=logp_new; } cHyp_new.logp=logp_new; - + return log_ratio; } bool comp_vec (size_t a, size_t b) { - return (a < b); + return (a < b); } -double BSLMM::ProposeGamma (const vector<size_t> &rank_old, - vector<size_t> &rank_new, - const double *p_gamma, - const class HYPBSLMM &cHyp_old, - class HYPBSLMM &cHyp_new, +double BSLMM::ProposeGamma (const vector<size_t> &rank_old, + vector<size_t> &rank_new, + const double *p_gamma, + const class HYPBSLMM &cHyp_old, + class HYPBSLMM &cHyp_new, const size_t &repeat) { map<size_t, int> mapRank2in; size_t r; double unif, logp=0.0; int flag_gamma; size_t r_add, r_remove, col_id; - + rank_new.clear(); if (cHyp_old.n_gamma!=rank_old.size()) {cout<<"size wrong"<<endl;} - + if (cHyp_old.n_gamma!=0) { for (size_t i=0; i<rank_old.size(); ++i) { r=rank_old[i]; @@ -716,29 +716,29 @@ double BSLMM::ProposeGamma (const vector<size_t> &rank_old, mapRank2in[r]=1; } } - cHyp_new.n_gamma=cHyp_old.n_gamma; - + cHyp_new.n_gamma=cHyp_old.n_gamma; + for (size_t i=0; i<repeat; ++i) { - unif=gsl_rng_uniform(gsl_r); - + unif=gsl_rng_uniform(gsl_r); + if (unif < 0.40 && cHyp_new.n_gamma<s_max) {flag_gamma=1;} - else if (unif>=0.40 && unif < 0.80 && + else if (unif>=0.40 && unif < 0.80 && cHyp_new.n_gamma>s_min) { flag_gamma=2; } - else if (unif>=0.80 && cHyp_new.n_gamma>0 && + else if (unif>=0.80 && cHyp_new.n_gamma>0 && cHyp_new.n_gamma<ns_test) { flag_gamma=3; } else {flag_gamma=4;} - + if(flag_gamma==1) { // Add a SNP. do { r_add=gsl_ran_discrete (gsl_r, gsl_t); - } while (mapRank2in.count(r_add)!=0); - + } while (mapRank2in.count(r_add)!=0); + double prob_total=1.0; for (size_t i=0; i<cHyp_new.n_gamma; ++i) { r=rank_new[i]; @@ -756,14 +756,14 @@ double BSLMM::ProposeGamma (const vector<size_t> &rank_old, // Delete a SNP. col_id=gsl_rng_uniform_int(gsl_r, cHyp_new.n_gamma); r_remove=rank_new[col_id]; - + double prob_total=1.0; for (size_t i=0; i<cHyp_new.n_gamma; ++i) { r=rank_new[i]; prob_total-=p_gamma[r]; } prob_total+=p_gamma[r_remove]; - + mapRank2in.erase(r_remove); rank_new.erase(rank_new.begin()+col_id); logp+=log(p_gamma[r_remove]/prob_total)+ @@ -779,18 +779,18 @@ double BSLMM::ProposeGamma (const vector<size_t> &rank_old, // Be careful with the proposal. do { r_add=gsl_ran_discrete (gsl_r, gsl_t); - } while (mapRank2in.count(r_add)!=0); - + } while (mapRank2in.count(r_add)!=0); + double prob_total=1.0; for (size_t i=0; i<cHyp_new.n_gamma; ++i) { r=rank_new[i]; prob_total-=p_gamma[r]; } - + logp+=log(p_gamma[r_remove]/ (prob_total+p_gamma[r_remove]-p_gamma[r_add])); logp-=log(p_gamma[r_add]/prob_total); - + mapRank2in.erase(r_remove); mapRank2in[r_add]=1; rank_new.erase(rank_new.begin()+col_id); @@ -798,7 +798,7 @@ double BSLMM::ProposeGamma (const vector<size_t> &rank_old, } else {logp+=0;} // Do not change. } - + stable_sort (rank_new.begin(), rank_new.end(), comp_vec); mapRank2in.clear(); @@ -806,54 +806,54 @@ double BSLMM::ProposeGamma (const vector<size_t> &rank_old, } bool comp_lr (pair<size_t, double> a, pair<size_t, double> b) { - return (a.second > b.second); + return (a.second > b.second); } // If a_mode==13 then Uty==y. -void BSLMM::MCMC (const gsl_matrix *U, const gsl_matrix *UtX, - const gsl_vector *Uty, const gsl_vector *K_eval, +void BSLMM::MCMC (const gsl_matrix *U, const gsl_matrix *UtX, + const gsl_vector *Uty, const gsl_vector *K_eval, const gsl_vector *y) { - clock_t time_start; + clock_t time_start; class HYPBSLMM cHyp_old, cHyp_new; - + gsl_matrix *Result_hyp=gsl_matrix_alloc (w_pace, 6); - gsl_matrix *Result_gamma=gsl_matrix_alloc (w_pace, s_max); - - gsl_vector *alpha_prime=gsl_vector_alloc (ni_test); + gsl_matrix *Result_gamma=gsl_matrix_alloc (w_pace, s_max); + + gsl_vector *alpha_prime=gsl_vector_alloc (ni_test); gsl_vector *alpha_new=gsl_vector_alloc (ni_test); - gsl_vector *alpha_old=gsl_vector_alloc (ni_test); + gsl_vector *alpha_old=gsl_vector_alloc (ni_test); gsl_vector *Utu=gsl_vector_alloc (ni_test); gsl_vector *Utu_new=gsl_vector_alloc (ni_test); gsl_vector *Utu_old=gsl_vector_alloc (ni_test); - + gsl_vector *UtXb_new=gsl_vector_alloc (ni_test); gsl_vector *UtXb_old=gsl_vector_alloc (ni_test); - + gsl_vector *z_hat=gsl_vector_alloc (ni_test); gsl_vector *z=gsl_vector_alloc (ni_test); - gsl_vector *Utz=gsl_vector_alloc (ni_test); + gsl_vector *Utz=gsl_vector_alloc (ni_test); + + gsl_vector_memcpy (Utz, Uty); - gsl_vector_memcpy (Utz, Uty); - double logPost_new, logPost_old; double logMHratio; - double mean_z=0.0; - + double mean_z=0.0; + gsl_matrix_set_zero (Result_gamma); gsl_vector_set_zero (Utu); gsl_vector_set_zero (alpha_prime); if (a_mode==13) { pheno_mean=0.0; } - + vector<pair<double, double> > beta_g; for (size_t i=0; i<ns_test; i++) { beta_g.push_back(make_pair(0.0, 0.0)); } - + vector<size_t> rank_new, rank_old; - vector<double> beta_new, beta_old; + vector<double> beta_new, beta_old; vector<pair<size_t, double> > pos_loglr; @@ -865,59 +865,59 @@ void BSLMM::MCMC (const gsl_matrix *U, const gsl_matrix *UtX, for (size_t i=0; i<ns_test; ++i) { mapRank2pos[i]=pos_loglr[i].first; } - + // Calculate proposal distribution for gamma (unnormalized), // and set up gsl_r and gsl_t. gsl_rng_env_setup(); const gsl_rng_type * gslType; - gslType = gsl_rng_default; + gslType = gsl_rng_default; if (randseed<0) { time_t rawtime; time (&rawtime); tm * ptm = gmtime (&rawtime); - + randseed = (unsigned) (ptm->tm_hour%24*3600+ ptm->tm_min*60+ptm->tm_sec); } - gsl_r = gsl_rng_alloc(gslType); + gsl_r = gsl_rng_alloc(gslType); gsl_rng_set(gsl_r, randseed); - - double *p_gamma = new double[ns_test]; + + double *p_gamma = new double[ns_test]; CalcPgamma (p_gamma); - + gsl_t=gsl_ran_discrete_preproc (ns_test, p_gamma); - + // Initial parameters. InitialMCMC (UtX, Utz, rank_old, cHyp_old, pos_loglr); - + cHyp_initial=cHyp_old; - + if (cHyp_old.n_gamma==0 || cHyp_old.rho==0) { - logPost_old=CalcPosterior(Utz, K_eval, Utu_old, alpha_old, + logPost_old=CalcPosterior(Utz, K_eval, Utu_old, alpha_old, cHyp_old); beta_old.clear(); for (size_t i=0; i<cHyp_old.n_gamma; ++i) { beta_old.push_back(0); - } + } } else { - gsl_matrix *UtXgamma=gsl_matrix_alloc (ni_test, + gsl_matrix *UtXgamma=gsl_matrix_alloc (ni_test, cHyp_old.n_gamma); gsl_vector *beta=gsl_vector_alloc (cHyp_old.n_gamma); - SetXgamma (UtXgamma, UtX, rank_old); - logPost_old=CalcPosterior(UtXgamma, Utz, K_eval, UtXb_old, + SetXgamma (UtXgamma, UtX, rank_old); + logPost_old=CalcPosterior(UtXgamma, Utz, K_eval, UtXb_old, Utu_old, alpha_old, beta, cHyp_old); - + beta_old.clear(); for (size_t i=0; i<beta->size; ++i) { beta_old.push_back(gsl_vector_get(beta, i)); - } + } gsl_matrix_free (UtXgamma); gsl_vector_free (beta); - } - + } + // Calculate centered z_hat, and pve. if (a_mode==13) { time_start=clock(); @@ -929,28 +929,28 @@ void BSLMM::MCMC (const gsl_matrix *U, const gsl_matrix *UtX, } time_UtZ+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0); } - + // Start MCMC. int accept; size_t total_step=w_step+s_step; size_t w=0, w_col, pos; size_t repeat=0; - + for (size_t t=0; t<total_step; ++t) { if (t%d_pace==0 || t==total_step-1) { ProgressBar ("Running MCMC ", t, total_step-1, (double)n_accept/(double)(t*n_mh+1)); } - if (a_mode==13) { - SampleZ (y, z_hat, z); - mean_z=CenterVector (z); - + if (a_mode==13) { + SampleZ (y, z_hat, z); + mean_z=CenterVector (z); + time_start=clock(); gsl_blas_dgemv (CblasTrans, 1.0, U, z, 0.0, Utz); time_UtZ+=(clock()-time_start)/ (double(CLOCKS_PER_SEC)*60.0); - + // First proposal. if (cHyp_old.n_gamma==0 || cHyp_old.rho==0) { logPost_old= @@ -959,7 +959,7 @@ void BSLMM::MCMC (const gsl_matrix *U, const gsl_matrix *UtX, beta_old.clear(); for (size_t i=0; i<cHyp_old.n_gamma; ++i) { beta_old.push_back(0); - } + } } else { gsl_matrix *UtXgamma= @@ -971,7 +971,7 @@ void BSLMM::MCMC (const gsl_matrix *U, const gsl_matrix *UtX, CalcPosterior(UtXgamma, Utz, K_eval, UtXb_old, Utu_old, alpha_old, beta, cHyp_old); - + beta_old.clear(); for (size_t i=0; i<beta->size; ++i) { beta_old.push_back(gsl_vector_get(beta, i)); @@ -980,7 +980,7 @@ void BSLMM::MCMC (const gsl_matrix *U, const gsl_matrix *UtX, gsl_vector_free (beta); } } - + // M-H steps. for (size_t i=0; i<n_mh; ++i) { if (gsl_rng_uniform(gsl_r)<0.33) { @@ -989,20 +989,20 @@ void BSLMM::MCMC (const gsl_matrix *U, const gsl_matrix *UtX, else { repeat=1; } - + logMHratio=0.0; logMHratio+=ProposeHnRho(cHyp_old, cHyp_new, repeat); logMHratio+=ProposeGamma (rank_old, rank_new, p_gamma, cHyp_old, cHyp_new, repeat); logMHratio+=ProposePi(cHyp_old, cHyp_new, repeat); - + if (cHyp_new.n_gamma==0 || cHyp_new.rho==0) { logPost_new=CalcPosterior(Utz, K_eval, Utu_new, alpha_new, cHyp_new); beta_new.clear(); for (size_t i=0; i<cHyp_new.n_gamma; ++i) { beta_new.push_back(0); - } + } } else { gsl_matrix *UtXgamma= @@ -1020,17 +1020,17 @@ void BSLMM::MCMC (const gsl_matrix *U, const gsl_matrix *UtX, } gsl_matrix_free (UtXgamma); gsl_vector_free (beta); - } - - logMHratio+=logPost_new-logPost_old; - + } + + logMHratio+=logPost_new-logPost_old; + if (logMHratio>0 || log(gsl_rng_uniform(gsl_r))<logMHratio) { accept=1; n_accept++; } else {accept=0;} - if (accept==1) { + if (accept==1) { logPost_old=logPost_new; rank_old.clear(); beta_old.clear(); if (rank_new.size()!=0) { @@ -1045,8 +1045,8 @@ void BSLMM::MCMC (const gsl_matrix *U, const gsl_matrix *UtX, gsl_vector_memcpy (Utu_old, Utu_new); } else {cHyp_new=cHyp_old;} - } - + } + // Calculate z_hat, and pve. if (a_mode==13) { time_start=clock(); @@ -1057,21 +1057,21 @@ void BSLMM::MCMC (const gsl_matrix *U, const gsl_matrix *UtX, CalcCC_PVEnZ (U, UtXb_old, Utu_old, z_hat, cHyp_old); } - + // Sample mu and update z_hat. gsl_vector_sub (z, z_hat); mean_z+=CenterVector(z); mean_z+= - gsl_ran_gaussian(gsl_r, sqrt(1.0/(double) ni_test)); + gsl_ran_gaussian(gsl_r, sqrt(1.0/(double) ni_test)); gsl_vector_add_constant (z_hat, mean_z); - + time_UtZ+=(clock()-time_start)/ (double(CLOCKS_PER_SEC)*60.0); } - + // Save data. if (t<w_step) {continue;} - else { + else { if (t%r_pace==0) { w_col=w%w_pace; if (w_col==0) { @@ -1086,76 +1086,76 @@ void BSLMM::MCMC (const gsl_matrix *U, const gsl_matrix *UtX, gsl_matrix_set_zero (Result_gamma); } } - + gsl_matrix_set(Result_hyp,w_col,0,cHyp_old.h); gsl_matrix_set(Result_hyp,w_col,1,cHyp_old.pve); gsl_matrix_set(Result_hyp,w_col,2,cHyp_old.rho); gsl_matrix_set(Result_hyp,w_col,3,cHyp_old.pge); gsl_matrix_set(Result_hyp,w_col,4,cHyp_old.logp); gsl_matrix_set(Result_hyp,w_col,5,cHyp_old.n_gamma); - + for (size_t i=0; i<cHyp_old.n_gamma; ++i) { pos=mapRank2pos[rank_old[i]]+1; gsl_matrix_set(Result_gamma,w_col,i, pos); - + beta_g[pos-1].first+=beta_old[i]; - beta_g[pos-1].second+=1.0; + beta_g[pos-1].second+=1.0; } - + gsl_vector_add (alpha_prime, alpha_old); gsl_vector_add (Utu, Utu_old); - + if (a_mode==13) { pheno_mean+=mean_z; } - + w++; - + } - + } } cout<<endl; - + w_col=w%w_pace; - WriteResult (1, Result_hyp, Result_gamma, w_col); - + WriteResult (1, Result_hyp, Result_gamma, w_col); + gsl_matrix_free(Result_hyp); - gsl_matrix_free(Result_gamma); - + gsl_matrix_free(Result_gamma); + gsl_vector_free(z_hat); gsl_vector_free(z); - gsl_vector_free(Utz); - gsl_vector_free(UtXb_new); + gsl_vector_free(Utz); + gsl_vector_free(UtXb_new); gsl_vector_free(UtXb_old); - gsl_vector_free(alpha_new); + gsl_vector_free(alpha_new); gsl_vector_free(alpha_old); - gsl_vector_free(Utu_new); - gsl_vector_free(Utu_old); - - gsl_vector_scale (alpha_prime, 1.0/(double)w); - gsl_vector_scale (Utu, 1.0/(double)w); + gsl_vector_free(Utu_new); + gsl_vector_free(Utu_old); + + gsl_vector_scale (alpha_prime, 1.0/(double)w); + gsl_vector_scale (Utu, 1.0/(double)w); if (a_mode==13) { pheno_mean/=(double)w; } - + gsl_vector *alpha=gsl_vector_alloc (ns_test); gsl_blas_dgemv (CblasTrans, 1.0/(double)ns_test, UtX, - alpha_prime, 0.0, alpha); + alpha_prime, 0.0, alpha); WriteParam (beta_g, alpha, w); gsl_vector_free(alpha); - + gsl_blas_dgemv (CblasNoTrans, 1.0, U, Utu, 0.0, alpha_prime); - WriteBV(alpha_prime); - - gsl_vector_free(alpha_prime); - gsl_vector_free(Utu); - + WriteBV(alpha_prime); + + gsl_vector_free(alpha_prime); + gsl_vector_free(Utu); + delete [] p_gamma; beta_g.clear(); - + return; } @@ -1169,9 +1169,9 @@ void BSLMM::RidgeR(const gsl_matrix *U, const gsl_matrix *UtX, gsl_vector_memcpy (H_eval, eval); gsl_vector_scale (H_eval, lambda); gsl_vector_add_constant (H_eval, 1.0); - + gsl_vector_memcpy (bv, Uty); - gsl_vector_div (bv, H_eval); + gsl_vector_div (bv, H_eval); gsl_blas_dgemv (CblasTrans, lambda/(double)UtX->size2, UtX, bv, 0.0, beta); @@ -1181,18 +1181,18 @@ void BSLMM::RidgeR(const gsl_matrix *U, const gsl_matrix *UtX, WriteParam (beta); WriteBV(bv); - + gsl_vector_free (H_eval); gsl_vector_free (beta); gsl_vector_free (bv); - + return; } // Below fits MCMC for rho=1. void BSLMM::CalcXtX (const gsl_matrix *X, const gsl_vector *y, const size_t s_size, gsl_matrix *XtX, gsl_vector *Xty) { - time_t time_start=clock(); + time_t time_start=clock(); gsl_matrix_const_view X_sub=gsl_matrix_const_submatrix(X, 0, 0, X->size1, s_size); gsl_matrix_view XtX_sub=gsl_matrix_submatrix(XtX, 0, 0, s_size, s_size); @@ -1271,7 +1271,7 @@ void BSLMM::SetXgamma (const gsl_matrix *X, const gsl_matrix *X_old, for (size_t i=0; i<rank_union.size(); i++) { if (mapRank2in_remove.count(rank_old[i_old])!=0) {i_old++; continue;} - gsl_vector_view Xnew_col=gsl_matrix_column(X_new, i_new); + gsl_vector_view Xnew_col=gsl_matrix_column(X_new, i_new); gsl_vector_const_view Xcopy_col=gsl_matrix_const_column(X_old, i_old); gsl_vector_memcpy (&Xnew_col.vector, &Xcopy_col.vector); @@ -1290,7 +1290,7 @@ void BSLMM::SetXgamma (const gsl_matrix *X, const gsl_matrix *X_old, j_old++; j_new++; } i_old++; i_new++; - } + } } else { gsl_matrix *X_add=gsl_matrix_alloc(X_old->size1, rank_add.size() ); gsl_matrix *XtX_aa=gsl_matrix_alloc(X_add->size2, X_add->size2); @@ -1302,7 +1302,7 @@ void BSLMM::SetXgamma (const gsl_matrix *X, const gsl_matrix *X_old, // Get t(X_add)X_add and t(X_add)X_temp. clock_t time_start=clock(); - + // Somehow the lapack_dgemm does not work here. gsl_blas_dgemm (CblasTrans, CblasNoTrans, 1.0, X_add, X_add, 0.0, XtX_aa); @@ -1325,15 +1325,15 @@ void BSLMM::SetXgamma (const gsl_matrix *X, const gsl_matrix *X_old, i_flag=0; } - gsl_vector_view Xnew_col=gsl_matrix_column(X_new, i_new); + gsl_vector_view Xnew_col=gsl_matrix_column(X_new, i_new); if (i_flag==1) { gsl_vector_view Xcopy_col=gsl_matrix_column(X_add, i_add); gsl_vector_memcpy (&Xnew_col.vector, &Xcopy_col.vector); } else { gsl_vector_const_view Xcopy_col= - gsl_matrix_const_column(X_old, i_old); + gsl_matrix_const_column(X_old, i_old); gsl_vector_memcpy (&Xnew_col.vector, &Xcopy_col.vector); - } + } if (i_flag==1) { d=gsl_vector_get (Xty_add, i_add); @@ -1385,34 +1385,34 @@ void BSLMM::SetXgamma (const gsl_matrix *X, const gsl_matrix *X_old, rank_union.clear(); mapRank2in_remove.clear(); mapRank2in_add.clear(); - + return; } -double BSLMM::CalcPosterior (const double yty, class HYPBSLMM &cHyp) { +double BSLMM::CalcPosterior (const double yty, class HYPBSLMM &cHyp) { double logpost=0.0; - + // For quantitative traits, calculate pve and pge. // Pve and pge for case/control data are calculted in CalcCC_PVEnZ. if (a_mode==11) { cHyp.pve=0.0; - cHyp.pge=1.0; + cHyp.pge=1.0; } // Calculate likelihood. if (a_mode==11) {logpost-=0.5*(double)ni_test*log(yty);} else {logpost-=0.5*yty;} - + logpost+=((double)cHyp.n_gamma-1.0)*cHyp.logp+ ((double)ns_test-(double)cHyp.n_gamma)*log(1-exp(cHyp.logp)); - + return logpost; } double BSLMM::CalcPosterior (const gsl_matrix *Xgamma, const gsl_matrix *XtX, const gsl_vector *Xty, const double yty, const size_t s_size, gsl_vector *Xb, - gsl_vector *beta, class HYPBSLMM &cHyp) { + gsl_vector *beta, class HYPBSLMM &cHyp) { double sigma_a2=cHyp.h/( (1-cHyp.h)*exp(cHyp.logp)*(double)ns_test); double logpost=0.0; double d, P_yy=yty, logdet_O=0.0; @@ -1423,10 +1423,10 @@ double BSLMM::CalcPosterior (const gsl_matrix *Xgamma, const gsl_matrix *XtX, gsl_matrix_const_submatrix (XtX, 0, 0, s_size, s_size); gsl_vector_const_view Xty_sub= gsl_vector_const_subvector (Xty, 0, s_size); - + gsl_matrix *Omega=gsl_matrix_alloc (s_size, s_size); gsl_matrix *M_temp=gsl_matrix_alloc (s_size, s_size); - gsl_vector *beta_hat=gsl_vector_alloc (s_size); + gsl_vector *beta_hat=gsl_vector_alloc (s_size); gsl_vector *Xty_temp=gsl_vector_alloc (s_size); gsl_vector_memcpy (Xty_temp, &Xty_sub.vector); @@ -1436,9 +1436,9 @@ double BSLMM::CalcPosterior (const gsl_matrix *Xgamma, const gsl_matrix *XtX, gsl_matrix_scale (Omega, sigma_a2); gsl_matrix_set_identity (M_temp); gsl_matrix_add (Omega, M_temp); - + // Calculate beta_hat. - logdet_O=CholeskySolve(Omega, Xty_temp, beta_hat); + logdet_O=CholeskySolve(Omega, Xty_temp, beta_hat); gsl_vector_scale (beta_hat, sigma_a2); gsl_blas_ddot (Xty_temp, beta_hat, &d); @@ -1453,27 +1453,27 @@ double BSLMM::CalcPosterior (const gsl_matrix *Xgamma, const gsl_matrix *XtX, // Sample beta. for (size_t i=0; i<s_size; i++) { - d=gsl_ran_gaussian(gsl_r, 1); - gsl_vector_set(beta, i, d); + d=gsl_ran_gaussian(gsl_r, 1); + gsl_vector_set(beta, i, d); } gsl_vector_view beta_sub=gsl_vector_subvector(beta, 0, s_size); gsl_blas_dtrsv(CblasUpper, CblasNoTrans, CblasNonUnit, Omega, - &beta_sub.vector); - + &beta_sub.vector); + // This computes inv(L^T(Omega)) %*% beta. gsl_vector_scale(&beta_sub.vector, sqrt(sigma_a2/tau)); - gsl_vector_add(&beta_sub.vector, beta_hat); + gsl_vector_add(&beta_sub.vector, beta_hat); gsl_blas_dgemv (CblasNoTrans, 1.0, &Xgamma_sub.matrix, - &beta_sub.vector, 0.0, Xb); - + &beta_sub.vector, 0.0, Xb); + // For quantitative traits, calculate pve and pge. if (a_mode==11) { gsl_blas_ddot (Xb, Xb, &d); cHyp.pve=d/(double)ni_test; cHyp.pve/=cHyp.pve+1.0/tau; - cHyp.pge=1.0; - } - + cHyp.pge=1.0; + } + logpost=-0.5*logdet_O; if (a_mode==11) {logpost-=0.5*(double)ni_test*log(P_yy);} else {logpost-=0.5*P_yy;} @@ -1490,11 +1490,11 @@ double BSLMM::CalcPosterior (const gsl_matrix *Xgamma, const gsl_matrix *XtX, } // Calculate pve and pge, and calculate z_hat for case-control data. -void BSLMM::CalcCC_PVEnZ (gsl_vector *z_hat, class HYPBSLMM &cHyp) +void BSLMM::CalcCC_PVEnZ (gsl_vector *z_hat, class HYPBSLMM &cHyp) { gsl_vector_set_zero(z_hat); cHyp.pve=0.0; - cHyp.pge=1.0; + cHyp.pge=1.0; return; } @@ -1502,12 +1502,12 @@ void BSLMM::CalcCC_PVEnZ (gsl_vector *z_hat, class HYPBSLMM &cHyp) void BSLMM::CalcCC_PVEnZ (const gsl_vector *Xb, gsl_vector *z_hat, class HYPBSLMM &cHyp) { double d; - + gsl_blas_ddot (Xb, Xb, &d); cHyp.pve=d/(double)ni_test; cHyp.pve/=cHyp.pve+1.0; cHyp.pge=1.0; - + gsl_vector_memcpy (z_hat, Xb); return; @@ -1515,16 +1515,16 @@ void BSLMM::CalcCC_PVEnZ (const gsl_vector *Xb, gsl_vector *z_hat, // If a_mode==13, then run probit model. void BSLMM::MCMC (const gsl_matrix *X, const gsl_vector *y) { - clock_t time_start; + clock_t time_start; double time_set=0, time_post=0; class HYPBSLMM cHyp_old, cHyp_new; - + gsl_matrix *Result_hyp=gsl_matrix_alloc (w_pace, 6); - gsl_matrix *Result_gamma=gsl_matrix_alloc (w_pace, s_max); - + gsl_matrix *Result_gamma=gsl_matrix_alloc (w_pace, s_max); + gsl_vector *Xb_new=gsl_vector_alloc (ni_test); - gsl_vector *Xb_old=gsl_vector_alloc (ni_test); + gsl_vector *Xb_old=gsl_vector_alloc (ni_test); gsl_vector *z_hat=gsl_vector_alloc (ni_test); gsl_vector *z=gsl_vector_alloc (ni_test); @@ -1540,28 +1540,28 @@ void BSLMM::MCMC (const gsl_matrix *X, const gsl_vector *y) { double ztz=0.0; gsl_vector_memcpy (z, y); - + // For quantitative traits, y is centered already in // gemma.cpp, but just in case. - double mean_z=CenterVector (z); + double mean_z=CenterVector (z); gsl_blas_ddot(z, z, &ztz); double logPost_new, logPost_old; double logMHratio; - + gsl_matrix_set_zero (Result_gamma); if (a_mode==13) { pheno_mean=0.0; } - + vector<pair<double, double> > beta_g; for (size_t i=0; i<ns_test; i++) { beta_g.push_back(make_pair(0.0, 0.0)); } - + vector<size_t> rank_new, rank_old; vector<pair<size_t, double> > pos_loglr; - + time_start=clock(); MatrixCalcLmLR (X, z, pos_loglr); time_Proposal=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0); @@ -1570,44 +1570,44 @@ void BSLMM::MCMC (const gsl_matrix *X, const gsl_vector *y) { for (size_t i=0; i<ns_test; ++i) { mapRank2pos[i]=pos_loglr[i].first; } - + // Calculate proposal distribution for gamma (unnormalized), // and set up gsl_r and gsl_t. - gsl_rng_env_setup(); + gsl_rng_env_setup(); const gsl_rng_type * gslType; - gslType = gsl_rng_default; + gslType = gsl_rng_default; if (randseed<0) { time_t rawtime; time (&rawtime); tm * ptm = gmtime (&rawtime); - + randseed = (unsigned) (ptm->tm_hour%24*3600+ ptm->tm_min*60+ptm->tm_sec); } - gsl_r = gsl_rng_alloc(gslType); + gsl_r = gsl_rng_alloc(gslType); gsl_rng_set(gsl_r, randseed); - - double *p_gamma = new double[ns_test]; + + double *p_gamma = new double[ns_test]; CalcPgamma (p_gamma); - + gsl_t=gsl_ran_discrete_preproc (ns_test, p_gamma); - + // Initial parameters. InitialMCMC (X, z, rank_old, cHyp_old, pos_loglr); - + cHyp_initial=cHyp_old; - if (cHyp_old.n_gamma==0) { + if (cHyp_old.n_gamma==0) { logPost_old=CalcPosterior (ztz, cHyp_old); } - else { - SetXgamma (Xgamma_old, X, rank_old); + else { + SetXgamma (Xgamma_old, X, rank_old); CalcXtX (Xgamma_old, z, rank_old.size(), XtX_old, Xtz_old); logPost_old=CalcPosterior (Xgamma_old, XtX_old, Xtz_old, ztz, rank_old.size(), Xb_old, beta_old, cHyp_old); - } + } // Calculate centered z_hat, and pve. if (a_mode==13) { @@ -1618,28 +1618,28 @@ void BSLMM::MCMC (const gsl_matrix *X, const gsl_vector *y) { CalcCC_PVEnZ (Xb_old, z_hat, cHyp_old); } } - + // Start MCMC. int accept; size_t total_step=w_step+s_step; size_t w=0, w_col, pos; size_t repeat=0; - + for (size_t t=0; t<total_step; ++t) { if (t%d_pace==0 || t==total_step-1) { ProgressBar ("Running MCMC ", t, total_step-1, (double)n_accept/(double)(t*n_mh+1)); } - if (a_mode==13) { - SampleZ (y, z_hat, z); + if (a_mode==13) { + SampleZ (y, z_hat, z); mean_z=CenterVector (z); gsl_blas_ddot(z,z,&ztz); - + // First proposal. - if (cHyp_old.n_gamma==0) { + if (cHyp_old.n_gamma==0) { logPost_old=CalcPosterior (ztz, cHyp_old); - } else { + } else { gsl_matrix_view Xold_sub= gsl_matrix_submatrix(Xgamma_old, 0, 0, ni_test, rank_old.size()); @@ -1651,7 +1651,7 @@ void BSLMM::MCMC (const gsl_matrix *X, const gsl_vector *y) { CalcPosterior (Xgamma_old, XtX_old, Xtz_old, ztz, rank_old.size(), Xb_old, beta_old, cHyp_old); - } + } } // M-H steps. @@ -1663,23 +1663,23 @@ void BSLMM::MCMC (const gsl_matrix *X, const gsl_vector *y) { logMHratio=0.0; logMHratio+= - ProposeHnRho(cHyp_old, cHyp_new, repeat); + ProposeHnRho(cHyp_old, cHyp_new, repeat); logMHratio+= ProposeGamma (rank_old, rank_new, p_gamma, - cHyp_old, cHyp_new, repeat); + cHyp_old, cHyp_new, repeat); logMHratio+=ProposePi(cHyp_old, cHyp_new, repeat); - + if (cHyp_new.n_gamma==0) { logPost_new=CalcPosterior (ztz, cHyp_new); } else { - + // This makes sure that rank_old.size() == // rank_remove.size() does not happen. if (cHyp_new.n_gamma<=20 || cHyp_old.n_gamma<=20) { time_start=clock(); - SetXgamma (Xgamma_new, X, rank_new); + SetXgamma (Xgamma_new, X, rank_new); CalcXtX (Xgamma_new, z, rank_new.size(), - XtX_new, Xtz_new); + XtX_new, Xtz_new); time_set+=(clock()-time_start)/ (double(CLOCKS_PER_SEC)*60.0); } else { @@ -1697,17 +1697,17 @@ void BSLMM::MCMC (const gsl_matrix *X, const gsl_vector *y) { cHyp_new); time_post+=(clock()-time_start)/ (double(CLOCKS_PER_SEC)*60.0); - } - logMHratio+=logPost_new-logPost_old; - + } + logMHratio+=logPost_new-logPost_old; + if (logMHratio>0 || log(gsl_rng_uniform(gsl_r))<logMHratio) { accept=1; n_accept++; } else {accept=0;} - - if (accept==1) { + + if (accept==1) { logPost_old=logPost_new; cHyp_old=cHyp_new; gsl_vector_memcpy (Xb_old, Xb_new); @@ -1719,7 +1719,7 @@ void BSLMM::MCMC (const gsl_matrix *X, const gsl_vector *y) { ++i) { rank_old.push_back(rank_new[i]); } - + gsl_matrix_view Xold_sub=gsl_matrix_submatrix(Xgamma_old, 0, 0, ni_test, rank_new.size()); gsl_matrix_view XtXold_sub=gsl_matrix_submatrix(XtX_old, 0, 0, rank_new.size(), rank_new.size()); gsl_vector_view Xtzold_sub=gsl_vector_subvector(Xtz_old, 0, rank_new.size()); @@ -1742,8 +1742,8 @@ void BSLMM::MCMC (const gsl_matrix *X, const gsl_vector *y) { } else { cHyp_new=cHyp_old; } - - } + + } // Calculate z_hat, and pve. if (a_mode==13) { @@ -1753,19 +1753,19 @@ void BSLMM::MCMC (const gsl_matrix *X, const gsl_vector *y) { else { CalcCC_PVEnZ (Xb_old, z_hat, cHyp_old); } - + // Sample mu and update z_hat. gsl_vector_sub (z, z_hat); mean_z+=CenterVector(z); mean_z+=gsl_ran_gaussian(gsl_r, sqrt(1.0/(double) ni_test)); - + gsl_vector_add_constant (z_hat, mean_z); } - + // Save data. if (t<w_step) {continue;} - else { + else { if (t%r_pace==0) { w_col=w%w_pace; if (w_col==0) { @@ -1793,21 +1793,21 @@ void BSLMM::MCMC (const gsl_matrix *X, const gsl_vector *y) { cHyp_old.logp); gsl_matrix_set(Result_hyp,w_col,5, cHyp_old.n_gamma); - + for (size_t i=0; i<cHyp_old.n_gamma; ++i) { pos=mapRank2pos[rank_old[i]]+1; gsl_matrix_set(Result_gamma,w_col, i,pos); - + beta_g[pos-1].first+= gsl_vector_get(beta_old, i); - beta_g[pos-1].second+=1.0; + beta_g[pos-1].second+=1.0; } - + if (a_mode==13) { pheno_mean+=mean_z; } - + w++; } } @@ -1818,19 +1818,19 @@ void BSLMM::MCMC (const gsl_matrix *X, const gsl_vector *y) { cout<<"time on calculating posterior: "<<time_post<<endl; w_col=w%w_pace; - WriteResult (1, Result_hyp, Result_gamma, w_col); - + WriteResult (1, Result_hyp, Result_gamma, w_col); + gsl_vector *alpha=gsl_vector_alloc (ns_test); gsl_vector_set_zero (alpha); WriteParam (beta_g, alpha, w); gsl_vector_free(alpha); gsl_matrix_free(Result_hyp); - gsl_matrix_free(Result_gamma); - + gsl_matrix_free(Result_gamma); + gsl_vector_free(z_hat); gsl_vector_free(z); - gsl_vector_free(Xb_new); + gsl_vector_free(Xb_new); gsl_vector_free(Xb_old); gsl_matrix_free(Xgamma_old); @@ -1842,9 +1842,9 @@ void BSLMM::MCMC (const gsl_matrix *X, const gsl_vector *y) { gsl_matrix_free(XtX_new); gsl_vector_free(Xtz_new); gsl_vector_free(beta_new); - + delete [] p_gamma; beta_g.clear(); - + return; } |