aboutsummaryrefslogtreecommitdiff
path: root/src/bslmm.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/bslmm.cpp')
-rw-r--r--src/bslmm.cpp3331
1 files changed, 1689 insertions, 1642 deletions
diff --git a/src/bslmm.cpp b/src/bslmm.cpp
index d579802..3305639 100644
--- a/src/bslmm.cpp
+++ b/src/bslmm.cpp
@@ -16,1360 +16,1428 @@
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
-#include <iostream>
#include <fstream>
+#include <iostream>
#include <sstream>
-#include <iomanip>
+#include <algorithm>
#include <cmath>
+#include <cstring>
+#include <ctime>
+#include <iomanip>
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
-#include <ctime>
-#include <cstring>
-#include <algorithm>
-#include "gsl/gsl_vector.h"
-#include "gsl/gsl_matrix.h"
-#include "gsl/gsl_linalg.h"
#include "gsl/gsl_blas.h"
+#include "gsl/gsl_cdf.h"
#include "gsl/gsl_eigen.h"
+#include "gsl/gsl_linalg.h"
+#include "gsl/gsl_matrix.h"
#include "gsl/gsl_randist.h"
-#include "gsl/gsl_cdf.h"
#include "gsl/gsl_roots.h"
+#include "gsl/gsl_vector.h"
-#include "lapack.h"
-#include "param.h"
#include "bslmm.h"
-#include "lmm.h"
+#include "lapack.h"
#include "lm.h"
+#include "lmm.h"
#include "mathfunc.h"
+#include "param.h"
using namespace std;
-void BSLMM::CopyFromParam (PARAM &cPar) {
- a_mode=cPar.a_mode;
- d_pace=cPar.d_pace;
-
- file_bfile=cPar.file_bfile;
- file_geno=cPar.file_geno;
- file_out=cPar.file_out;
- path_out=cPar.path_out;
-
- l_min=cPar.h_min;
- l_max=cPar.h_max;
- n_region=cPar.n_region;
- pve_null=cPar.pve_null;
- pheno_mean=cPar.pheno_mean;
-
- time_UtZ=0.0;
- time_Omega=0.0;
- n_accept=0;
-
- h_min=cPar.h_min;
- h_max=cPar.h_max;
- h_scale=cPar.h_scale;
- rho_min=cPar.rho_min;
- rho_max=cPar.rho_max;
- rho_scale=cPar.rho_scale;
- logp_min=cPar.logp_min;
- logp_max=cPar.logp_max;
- logp_scale=cPar.logp_scale;
-
- s_min=cPar.s_min;
- s_max=cPar.s_max;
- w_step=cPar.w_step;
- s_step=cPar.s_step;
- r_pace=cPar.r_pace;
- w_pace=cPar.w_pace;
- n_mh=cPar.n_mh;
- geo_mean=cPar.geo_mean;
- randseed=cPar.randseed;
- trace_G=cPar.trace_G;
-
- ni_total=cPar.ni_total;
- ns_total=cPar.ns_total;
- ni_test=cPar.ni_test;
- ns_test=cPar.ns_test;
- n_cvt=cPar.n_cvt;
-
- indicator_idv=cPar.indicator_idv;
- indicator_snp=cPar.indicator_snp;
- snpInfo=cPar.snpInfo;
-
- return;
+void BSLMM::CopyFromParam(PARAM &cPar) {
+ a_mode = cPar.a_mode;
+ d_pace = cPar.d_pace;
+
+ file_bfile = cPar.file_bfile;
+ file_geno = cPar.file_geno;
+ file_out = cPar.file_out;
+ path_out = cPar.path_out;
+
+ l_min = cPar.h_min;
+ l_max = cPar.h_max;
+ n_region = cPar.n_region;
+ pve_null = cPar.pve_null;
+ pheno_mean = cPar.pheno_mean;
+
+ time_UtZ = 0.0;
+ time_Omega = 0.0;
+ n_accept = 0;
+
+ h_min = cPar.h_min;
+ h_max = cPar.h_max;
+ h_scale = cPar.h_scale;
+ rho_min = cPar.rho_min;
+ rho_max = cPar.rho_max;
+ rho_scale = cPar.rho_scale;
+ logp_min = cPar.logp_min;
+ logp_max = cPar.logp_max;
+ logp_scale = cPar.logp_scale;
+
+ s_min = cPar.s_min;
+ s_max = cPar.s_max;
+ w_step = cPar.w_step;
+ s_step = cPar.s_step;
+ r_pace = cPar.r_pace;
+ w_pace = cPar.w_pace;
+ n_mh = cPar.n_mh;
+ geo_mean = cPar.geo_mean;
+ randseed = cPar.randseed;
+ trace_G = cPar.trace_G;
+
+ ni_total = cPar.ni_total;
+ ns_total = cPar.ns_total;
+ ni_test = cPar.ni_test;
+ ns_test = cPar.ns_test;
+ n_cvt = cPar.n_cvt;
+
+ indicator_idv = cPar.indicator_idv;
+ indicator_snp = cPar.indicator_snp;
+ snpInfo = cPar.snpInfo;
+
+ return;
}
-void BSLMM::CopyToParam (PARAM &cPar) {
- cPar.time_UtZ=time_UtZ;
- cPar.time_Omega=time_Omega;
- cPar.time_Proposal=time_Proposal;
- cPar.cHyp_initial=cHyp_initial;
- cPar.n_accept=n_accept;
- cPar.pheno_mean=pheno_mean;
- cPar.randseed=randseed;
+void BSLMM::CopyToParam(PARAM &cPar) {
+ cPar.time_UtZ = time_UtZ;
+ cPar.time_Omega = time_Omega;
+ cPar.time_Proposal = time_Proposal;
+ cPar.cHyp_initial = cHyp_initial;
+ cPar.n_accept = n_accept;
+ cPar.pheno_mean = pheno_mean;
+ cPar.randseed = randseed;
- return;
+ return;
}
-void BSLMM::WriteBV (const gsl_vector *bv) {
- string file_str;
- file_str=path_out+"/"+file_out;
- file_str+=".bv.txt";
-
- ofstream outfile (file_str.c_str(), ofstream::out);
- if (!outfile) {
- cout<<"error writing file: "<<file_str.c_str()<<endl;
- return;
- }
-
- size_t t=0;
- for (size_t i=0; i<ni_total; ++i) {
- if (indicator_idv[i]==0) {
- outfile<<"NA"<<endl;
- }
- else {
- outfile<<scientific<<setprecision(6)<<
- gsl_vector_get(bv, t)<<endl;
- t++;
- }
- }
-
- outfile.clear();
- outfile.close();
- return;
+void BSLMM::WriteBV(const gsl_vector *bv) {
+ string file_str;
+ file_str = path_out + "/" + file_out;
+ file_str += ".bv.txt";
+
+ ofstream outfile(file_str.c_str(), ofstream::out);
+ if (!outfile) {
+ cout << "error writing file: " << file_str.c_str() << endl;
+ return;
+ }
+
+ size_t t = 0;
+ for (size_t i = 0; i < ni_total; ++i) {
+ if (indicator_idv[i] == 0) {
+ outfile << "NA" << endl;
+ } else {
+ outfile << scientific << setprecision(6) << gsl_vector_get(bv, t) << endl;
+ t++;
+ }
+ }
+
+ outfile.clear();
+ outfile.close();
+ return;
}
-void BSLMM::WriteParam (vector<pair<double, double> > &beta_g,
- const gsl_vector *alpha, const size_t w) {
- string file_str;
- file_str=path_out+"/"+file_out;
- file_str+=".param.txt";
-
- ofstream outfile (file_str.c_str(), ofstream::out);
- if (!outfile) {
- cout<<"error writing file: "<<file_str.c_str()<<endl;
- return;}
-
- outfile<<"chr"<<"\t"<<"rs"<<"\t"
- <<"ps"<<"\t"<<"n_miss"<<"\t"<<"alpha"<<"\t"
- <<"beta"<<"\t"<<"gamma"<<endl;
-
- size_t t=0;
- for (size_t i=0; i<ns_total; ++i) {
- if (indicator_snp[i]==0) {continue;}
-
- outfile<<snpInfo[i].chr<<"\t"<<snpInfo[i].rs_number<<"\t"
- <<snpInfo[i].base_position<<"\t"<<snpInfo[i].n_miss<<"\t";
-
- outfile<<scientific<<setprecision(6)<<
- gsl_vector_get(alpha, t)<<"\t";
- if (beta_g[t].second!=0) {
- outfile<<beta_g[t].first/beta_g[t].second<<
- "\t"<<beta_g[t].second/(double)w<<endl;
- }
- else {
- outfile<<0.0<<"\t"<<0.0<<endl;
- }
- t++;
- }
-
- outfile.clear();
- outfile.close();
- return;
+void BSLMM::WriteParam(vector<pair<double, double>> &beta_g,
+ const gsl_vector *alpha, const size_t w) {
+ string file_str;
+ file_str = path_out + "/" + file_out;
+ file_str += ".param.txt";
+
+ ofstream outfile(file_str.c_str(), ofstream::out);
+ if (!outfile) {
+ cout << "error writing file: " << file_str.c_str() << endl;
+ return;
+ }
+
+ outfile << "chr"
+ << "\t"
+ << "rs"
+ << "\t"
+ << "ps"
+ << "\t"
+ << "n_miss"
+ << "\t"
+ << "alpha"
+ << "\t"
+ << "beta"
+ << "\t"
+ << "gamma" << endl;
+
+ size_t t = 0;
+ for (size_t i = 0; i < ns_total; ++i) {
+ if (indicator_snp[i] == 0) {
+ continue;
+ }
+
+ outfile << snpInfo[i].chr << "\t" << snpInfo[i].rs_number << "\t"
+ << snpInfo[i].base_position << "\t" << snpInfo[i].n_miss << "\t";
+
+ outfile << scientific << setprecision(6) << gsl_vector_get(alpha, t)
+ << "\t";
+ if (beta_g[t].second != 0) {
+ outfile << beta_g[t].first / beta_g[t].second << "\t"
+ << beta_g[t].second / (double)w << endl;
+ } else {
+ outfile << 0.0 << "\t" << 0.0 << endl;
+ }
+ t++;
+ }
+
+ outfile.clear();
+ outfile.close();
+ return;
}
-void BSLMM::WriteParam (const gsl_vector *alpha) {
- string file_str;
- file_str=path_out+"/"+file_out;
- file_str+=".param.txt";
-
- ofstream outfile (file_str.c_str(), ofstream::out);
- if (!outfile) {
- cout<<"error writing file: "<<file_str.c_str()<<endl;
- return;
- }
-
- outfile<<"chr"<<"\t"<<"rs"<<"\t"
- <<"ps"<<"\t"<<"n_miss"<<"\t"<<"alpha"<<"\t"
- <<"beta"<<"\t"<<"gamma"<<endl;
-
- size_t t=0;
- for (size_t i=0; i<ns_total; ++i) {
- if (indicator_snp[i]==0) {continue;}
-
- outfile<<snpInfo[i].chr<<"\t"<<snpInfo[i].rs_number<<"\t"<<
- snpInfo[i].base_position<<"\t"<<snpInfo[i].n_miss<<"\t";
- outfile<<scientific<<setprecision(6)<<
- gsl_vector_get(alpha, t)<<"\t";
- outfile<<0.0<<"\t"<<0.0<<endl;
- t++;
- }
-
- outfile.clear();
- outfile.close();
- return;
+void BSLMM::WriteParam(const gsl_vector *alpha) {
+ string file_str;
+ file_str = path_out + "/" + file_out;
+ file_str += ".param.txt";
+
+ ofstream outfile(file_str.c_str(), ofstream::out);
+ if (!outfile) {
+ cout << "error writing file: " << file_str.c_str() << endl;
+ return;
+ }
+
+ outfile << "chr"
+ << "\t"
+ << "rs"
+ << "\t"
+ << "ps"
+ << "\t"
+ << "n_miss"
+ << "\t"
+ << "alpha"
+ << "\t"
+ << "beta"
+ << "\t"
+ << "gamma" << endl;
+
+ size_t t = 0;
+ for (size_t i = 0; i < ns_total; ++i) {
+ if (indicator_snp[i] == 0) {
+ continue;
+ }
+
+ outfile << snpInfo[i].chr << "\t" << snpInfo[i].rs_number << "\t"
+ << snpInfo[i].base_position << "\t" << snpInfo[i].n_miss << "\t";
+ outfile << scientific << setprecision(6) << gsl_vector_get(alpha, t)
+ << "\t";
+ outfile << 0.0 << "\t" << 0.0 << endl;
+ t++;
+ }
+
+ outfile.clear();
+ outfile.close();
+ return;
}
-void BSLMM::WriteResult (const int flag, const gsl_matrix *Result_hyp,
- const gsl_matrix *Result_gamma, const size_t w_col) {
- string file_gamma, file_hyp;
- file_gamma=path_out+"/"+file_out;
- file_gamma+=".gamma.txt";
- file_hyp=path_out+"/"+file_out;
- file_hyp+=".hyp.txt";
-
- ofstream outfile_gamma, outfile_hyp;
-
- if (flag==0) {
- outfile_gamma.open (file_gamma.c_str(), ofstream::out);
- outfile_hyp.open (file_hyp.c_str(), ofstream::out);
- if (!outfile_gamma) {
- cout<<"error writing file: "<<file_gamma<<endl;
- return;
- }
- if (!outfile_hyp) {
- cout<<"error writing file: "<<file_hyp<<endl;
- return;
- }
-
- outfile_hyp<<"h \t pve \t rho \t pge \t pi \t n_gamma"<<endl;
-
- for (size_t i=0; i<s_max; ++i) {
- outfile_gamma<<"s"<<i<<"\t";
- }
- outfile_gamma<<endl;
- }
- else {
- outfile_gamma.open (file_gamma.c_str(), ofstream::app);
- outfile_hyp.open (file_hyp.c_str(), ofstream::app);
- if (!outfile_gamma) {
- cout<<"error writing file: "<<file_gamma<<endl;
- return;
- }
- if (!outfile_hyp) {
- cout<<"error writing file: "<<file_hyp<<endl;
- return;
- }
-
- size_t w;
- if (w_col==0) {w=w_pace;}
- else {w=w_col;}
-
- for (size_t i=0; i<w; ++i) {
- outfile_hyp<<scientific;
- for (size_t j=0; j<4; ++j) {
- outfile_hyp<<setprecision(6)<<
- gsl_matrix_get (Result_hyp, i, j)<<"\t";
- }
- outfile_hyp<<setprecision(6)<<
- exp(gsl_matrix_get (Result_hyp, i, 4))<<"\t";
- outfile_hyp<<(int)gsl_matrix_get(Result_hyp,i,5)<<"\t";
- outfile_hyp<<endl;
- }
-
- for (size_t i=0; i<w; ++i) {
- for (size_t j=0; j<s_max; ++j) {
- outfile_gamma<<
- (int)gsl_matrix_get(Result_gamma,i,j)<<"\t";
- }
- outfile_gamma<<endl;
- }
-
- }
-
- outfile_hyp.close();
- outfile_hyp.clear();
- outfile_gamma.close();
- outfile_gamma.clear();
- return;
+void BSLMM::WriteResult(const int flag, const gsl_matrix *Result_hyp,
+ const gsl_matrix *Result_gamma, const size_t w_col) {
+ string file_gamma, file_hyp;
+ file_gamma = path_out + "/" + file_out;
+ file_gamma += ".gamma.txt";
+ file_hyp = path_out + "/" + file_out;
+ file_hyp += ".hyp.txt";
+
+ ofstream outfile_gamma, outfile_hyp;
+
+ if (flag == 0) {
+ outfile_gamma.open(file_gamma.c_str(), ofstream::out);
+ outfile_hyp.open(file_hyp.c_str(), ofstream::out);
+ if (!outfile_gamma) {
+ cout << "error writing file: " << file_gamma << endl;
+ return;
+ }
+ if (!outfile_hyp) {
+ cout << "error writing file: " << file_hyp << endl;
+ return;
+ }
+
+ outfile_hyp << "h \t pve \t rho \t pge \t pi \t n_gamma" << endl;
+
+ for (size_t i = 0; i < s_max; ++i) {
+ outfile_gamma << "s" << i << "\t";
+ }
+ outfile_gamma << endl;
+ } else {
+ outfile_gamma.open(file_gamma.c_str(), ofstream::app);
+ outfile_hyp.open(file_hyp.c_str(), ofstream::app);
+ if (!outfile_gamma) {
+ cout << "error writing file: " << file_gamma << endl;
+ return;
+ }
+ if (!outfile_hyp) {
+ cout << "error writing file: " << file_hyp << endl;
+ return;
+ }
+
+ size_t w;
+ if (w_col == 0) {
+ w = w_pace;
+ } else {
+ w = w_col;
+ }
+
+ for (size_t i = 0; i < w; ++i) {
+ outfile_hyp << scientific;
+ for (size_t j = 0; j < 4; ++j) {
+ outfile_hyp << setprecision(6) << gsl_matrix_get(Result_hyp, i, j)
+ << "\t";
+ }
+ outfile_hyp << setprecision(6) << exp(gsl_matrix_get(Result_hyp, i, 4))
+ << "\t";
+ outfile_hyp << (int)gsl_matrix_get(Result_hyp, i, 5) << "\t";
+ outfile_hyp << endl;
+ }
+
+ for (size_t i = 0; i < w; ++i) {
+ for (size_t j = 0; j < s_max; ++j) {
+ outfile_gamma << (int)gsl_matrix_get(Result_gamma, i, j) << "\t";
+ }
+ outfile_gamma << endl;
+ }
+ }
+
+ outfile_hyp.close();
+ outfile_hyp.clear();
+ outfile_gamma.close();
+ outfile_gamma.clear();
+ return;
}
-void BSLMM::CalcPgamma (double *p_gamma) {
- double p, s=0.0;
- for (size_t i=0; i<ns_test; ++i) {
- p=0.7*gsl_ran_geometric_pdf (i+1, 1.0/geo_mean)+0.3/
- (double)ns_test;
- p_gamma[i]=p;
- s+=p;
- }
- for (size_t i=0; i<ns_test; ++i) {
- p=p_gamma[i];
- p_gamma[i]=p/s;
- }
- return;
+void BSLMM::CalcPgamma(double *p_gamma) {
+ double p, s = 0.0;
+ for (size_t i = 0; i < ns_test; ++i) {
+ p = 0.7 * gsl_ran_geometric_pdf(i + 1, 1.0 / geo_mean) +
+ 0.3 / (double)ns_test;
+ p_gamma[i] = p;
+ s += p;
+ }
+ for (size_t i = 0; i < ns_test; ++i) {
+ p = p_gamma[i];
+ p_gamma[i] = p / s;
+ }
+ return;
}
-void BSLMM::SetXgamma (gsl_matrix *Xgamma, const gsl_matrix *X,
- vector<size_t> &rank) {
- size_t pos;
- for (size_t i=0; i<rank.size(); ++i) {
- pos=mapRank2pos[rank[i]];
- gsl_vector_view Xgamma_col=gsl_matrix_column (Xgamma, i);
- gsl_vector_const_view X_col=gsl_matrix_const_column (X, pos);
- gsl_vector_memcpy (&Xgamma_col.vector, &X_col.vector);
- }
-
- return;
+void BSLMM::SetXgamma(gsl_matrix *Xgamma, const gsl_matrix *X,
+ vector<size_t> &rank) {
+ size_t pos;
+ for (size_t i = 0; i < rank.size(); ++i) {
+ pos = mapRank2pos[rank[i]];
+ gsl_vector_view Xgamma_col = gsl_matrix_column(Xgamma, i);
+ gsl_vector_const_view X_col = gsl_matrix_const_column(X, pos);
+ gsl_vector_memcpy(&Xgamma_col.vector, &X_col.vector);
+ }
+
+ return;
}
-double BSLMM::CalcPveLM (const gsl_matrix *UtXgamma, const gsl_vector *Uty,
- const double sigma_a2) {
- double pve, var_y;
+double BSLMM::CalcPveLM(const gsl_matrix *UtXgamma, const gsl_vector *Uty,
+ const double sigma_a2) {
+ double pve, var_y;
- gsl_matrix *Omega=gsl_matrix_alloc (UtXgamma->size2, UtXgamma->size2);
- gsl_vector *Xty=gsl_vector_alloc (UtXgamma->size2);
- gsl_vector *OiXty=gsl_vector_alloc (UtXgamma->size2);
+ gsl_matrix *Omega = gsl_matrix_alloc(UtXgamma->size2, UtXgamma->size2);
+ gsl_vector *Xty = gsl_vector_alloc(UtXgamma->size2);
+ gsl_vector *OiXty = gsl_vector_alloc(UtXgamma->size2);
- gsl_matrix_set_identity (Omega);
- gsl_matrix_scale (Omega, 1.0/sigma_a2);
+ gsl_matrix_set_identity(Omega);
+ gsl_matrix_scale(Omega, 1.0 / sigma_a2);
- lapack_dgemm ((char *)"T", (char *)"N", 1.0, UtXgamma, UtXgamma,
- 1.0, Omega);
- gsl_blas_dgemv (CblasTrans, 1.0, UtXgamma, Uty, 0.0, Xty);
+ lapack_dgemm((char *)"T", (char *)"N", 1.0, UtXgamma, UtXgamma, 1.0, Omega);
+ gsl_blas_dgemv(CblasTrans, 1.0, UtXgamma, Uty, 0.0, Xty);
- CholeskySolve(Omega, Xty, OiXty);
+ CholeskySolve(Omega, Xty, OiXty);
- gsl_blas_ddot (Xty, OiXty, &pve);
- gsl_blas_ddot (Uty, Uty, &var_y);
+ gsl_blas_ddot(Xty, OiXty, &pve);
+ gsl_blas_ddot(Uty, Uty, &var_y);
- pve/=var_y;
+ pve /= var_y;
- gsl_matrix_free (Omega);
- gsl_vector_free (Xty);
- gsl_vector_free (OiXty);
+ gsl_matrix_free(Omega);
+ gsl_vector_free(Xty);
+ gsl_vector_free(OiXty);
- return pve;
+ return pve;
}
-void BSLMM::InitialMCMC (const gsl_matrix *UtX, const gsl_vector *Uty,
- vector<size_t> &rank, class HYPBSLMM &cHyp,
- vector<pair<size_t, double> > &pos_loglr) {
- double q_genome=gsl_cdf_chisq_Qinv(0.05/(double)ns_test, 1);
-
- cHyp.n_gamma=0;
- for (size_t i=0; i<pos_loglr.size(); ++i) {
- if (2.0*pos_loglr[i].second>q_genome) {cHyp.n_gamma++;}
- }
- if (cHyp.n_gamma<10) {cHyp.n_gamma=10;}
-
- if (cHyp.n_gamma>s_max) {cHyp.n_gamma=s_max;}
- if (cHyp.n_gamma<s_min) {cHyp.n_gamma=s_min;}
-
- rank.clear();
- for (size_t i=0; i<cHyp.n_gamma; ++i) {
- rank.push_back(i);
- }
-
- cHyp.logp=log((double)cHyp.n_gamma/(double)ns_test);
- cHyp.h=pve_null;
-
- if (cHyp.logp==0) {cHyp.logp=-0.000001;}
- if (cHyp.h==0) {cHyp.h=0.1;}
-
- gsl_matrix *UtXgamma=gsl_matrix_alloc (ni_test, cHyp.n_gamma);
- SetXgamma (UtXgamma, UtX, rank);
- double sigma_a2;
- if (trace_G!=0) {
- sigma_a2=cHyp.h*1.0/
- (trace_G*(1-cHyp.h)*exp(cHyp.logp)*(double)ns_test);
- } else {
- sigma_a2=cHyp.h*1.0/( (1-cHyp.h)*exp(cHyp.logp)*(double)ns_test);
- }
- if (sigma_a2==0) {sigma_a2=0.025;}
- cHyp.rho=CalcPveLM (UtXgamma, Uty, sigma_a2)/cHyp.h;
- gsl_matrix_free (UtXgamma);
-
- if (cHyp.rho>1.0) {cHyp.rho=1.0;}
-
- if (cHyp.h<h_min) {cHyp.h=h_min;}
- if (cHyp.h>h_max) {cHyp.h=h_max;}
- if (cHyp.rho<rho_min) {cHyp.rho=rho_min;}
- if (cHyp.rho>rho_max) {cHyp.rho=rho_max;}
- if (cHyp.logp<logp_min) {cHyp.logp=logp_min;}
- if (cHyp.logp>logp_max) {cHyp.logp=logp_max;}
-
- cout<<"initial value of h = "<<cHyp.h<<endl;
- cout<<"initial value of rho = "<<cHyp.rho<<endl;
- cout<<"initial value of pi = "<<exp(cHyp.logp)<<endl;
- cout<<"initial value of |gamma| = "<<cHyp.n_gamma<<endl;
-
- return;
+void BSLMM::InitialMCMC(const gsl_matrix *UtX, const gsl_vector *Uty,
+ vector<size_t> &rank, class HYPBSLMM &cHyp,
+ vector<pair<size_t, double>> &pos_loglr) {
+ double q_genome = gsl_cdf_chisq_Qinv(0.05 / (double)ns_test, 1);
+
+ cHyp.n_gamma = 0;
+ for (size_t i = 0; i < pos_loglr.size(); ++i) {
+ if (2.0 * pos_loglr[i].second > q_genome) {
+ cHyp.n_gamma++;
+ }
+ }
+ if (cHyp.n_gamma < 10) {
+ cHyp.n_gamma = 10;
+ }
+
+ if (cHyp.n_gamma > s_max) {
+ cHyp.n_gamma = s_max;
+ }
+ if (cHyp.n_gamma < s_min) {
+ cHyp.n_gamma = s_min;
+ }
+
+ rank.clear();
+ for (size_t i = 0; i < cHyp.n_gamma; ++i) {
+ rank.push_back(i);
+ }
+
+ cHyp.logp = log((double)cHyp.n_gamma / (double)ns_test);
+ cHyp.h = pve_null;
+
+ if (cHyp.logp == 0) {
+ cHyp.logp = -0.000001;
+ }
+ if (cHyp.h == 0) {
+ cHyp.h = 0.1;
+ }
+
+ gsl_matrix *UtXgamma = gsl_matrix_alloc(ni_test, cHyp.n_gamma);
+ SetXgamma(UtXgamma, UtX, rank);
+ double sigma_a2;
+ if (trace_G != 0) {
+ sigma_a2 = cHyp.h * 1.0 /
+ (trace_G * (1 - cHyp.h) * exp(cHyp.logp) * (double)ns_test);
+ } else {
+ sigma_a2 = cHyp.h * 1.0 / ((1 - cHyp.h) * exp(cHyp.logp) * (double)ns_test);
+ }
+ if (sigma_a2 == 0) {
+ sigma_a2 = 0.025;
+ }
+ cHyp.rho = CalcPveLM(UtXgamma, Uty, sigma_a2) / cHyp.h;
+ gsl_matrix_free(UtXgamma);
+
+ if (cHyp.rho > 1.0) {
+ cHyp.rho = 1.0;
+ }
+
+ if (cHyp.h < h_min) {
+ cHyp.h = h_min;
+ }
+ if (cHyp.h > h_max) {
+ cHyp.h = h_max;
+ }
+ if (cHyp.rho < rho_min) {
+ cHyp.rho = rho_min;
+ }
+ if (cHyp.rho > rho_max) {
+ cHyp.rho = rho_max;
+ }
+ if (cHyp.logp < logp_min) {
+ cHyp.logp = logp_min;
+ }
+ if (cHyp.logp > logp_max) {
+ cHyp.logp = logp_max;
+ }
+
+ cout << "initial value of h = " << cHyp.h << endl;
+ cout << "initial value of rho = " << cHyp.rho << endl;
+ cout << "initial value of pi = " << exp(cHyp.logp) << endl;
+ cout << "initial value of |gamma| = " << cHyp.n_gamma << endl;
+
+ return;
}
-double BSLMM::CalcPosterior (const gsl_vector *Uty, const gsl_vector *K_eval,
- gsl_vector *Utu, gsl_vector *alpha_prime,
- class HYPBSLMM &cHyp) {
- double sigma_b2=cHyp.h*(1.0-cHyp.rho)/(trace_G*(1-cHyp.h));
-
- gsl_vector *Utu_rand=gsl_vector_alloc (Uty->size);
- gsl_vector *weight_Hi=gsl_vector_alloc (Uty->size);
-
- double logpost=0.0;
- double d, ds, uy, Hi_yy=0, logdet_H=0.0;
- for (size_t i=0; i<ni_test; ++i) {
- d=gsl_vector_get (K_eval, i)*sigma_b2;
- ds=d/(d+1.0);
- d=1.0/(d+1.0);
- gsl_vector_set (weight_Hi, i, d);
-
- logdet_H-=log(d);
- uy=gsl_vector_get (Uty, i);
- Hi_yy+=d*uy*uy;
-
- gsl_vector_set (Utu_rand, i,
- gsl_ran_gaussian(gsl_r, 1)*sqrt(ds));
- }
-
- // Sample tau.
- double tau=1.0;
- if (a_mode==11) {
- tau = gsl_ran_gamma (gsl_r, (double)ni_test/2.0, 2.0/Hi_yy);
- }
-
- // Sample alpha.
- gsl_vector_memcpy (alpha_prime, Uty);
- gsl_vector_mul (alpha_prime, weight_Hi);
- gsl_vector_scale (alpha_prime, sigma_b2);
-
- // Sample u.
- gsl_vector_memcpy (Utu, alpha_prime);
- gsl_vector_mul (Utu, K_eval);
- if (a_mode==11) {gsl_vector_scale (Utu_rand, sqrt(1.0/tau));}
- gsl_vector_add (Utu, Utu_rand);
-
- // For quantitative traits, calculate pve and ppe.
- if (a_mode==11) {
- gsl_blas_ddot (Utu, Utu, &d);
- cHyp.pve=d/(double)ni_test;
- cHyp.pve/=cHyp.pve+1.0/tau;
- cHyp.pge=0.0;
- }
-
- // Calculate likelihood.
- logpost=-0.5*logdet_H;
- if (a_mode==11) {logpost-=0.5*(double)ni_test*log(Hi_yy);}
- else {logpost-=0.5*Hi_yy;}
-
- logpost+=((double)cHyp.n_gamma-1.0)*cHyp.logp+
- ((double)ns_test-(double)cHyp.n_gamma)*log(1-exp(cHyp.logp));
-
- gsl_vector_free (Utu_rand);
- gsl_vector_free (weight_Hi);
-
- return logpost;
+double BSLMM::CalcPosterior(const gsl_vector *Uty, const gsl_vector *K_eval,
+ gsl_vector *Utu, gsl_vector *alpha_prime,
+ class HYPBSLMM &cHyp) {
+ double sigma_b2 = cHyp.h * (1.0 - cHyp.rho) / (trace_G * (1 - cHyp.h));
+
+ gsl_vector *Utu_rand = gsl_vector_alloc(Uty->size);
+ gsl_vector *weight_Hi = gsl_vector_alloc(Uty->size);
+
+ double logpost = 0.0;
+ double d, ds, uy, Hi_yy = 0, logdet_H = 0.0;
+ for (size_t i = 0; i < ni_test; ++i) {
+ d = gsl_vector_get(K_eval, i) * sigma_b2;
+ ds = d / (d + 1.0);
+ d = 1.0 / (d + 1.0);
+ gsl_vector_set(weight_Hi, i, d);
+
+ logdet_H -= log(d);
+ uy = gsl_vector_get(Uty, i);
+ Hi_yy += d * uy * uy;
+
+ gsl_vector_set(Utu_rand, i, gsl_ran_gaussian(gsl_r, 1) * sqrt(ds));
+ }
+
+ // Sample tau.
+ double tau = 1.0;
+ if (a_mode == 11) {
+ tau = gsl_ran_gamma(gsl_r, (double)ni_test / 2.0, 2.0 / Hi_yy);
+ }
+
+ // Sample alpha.
+ gsl_vector_memcpy(alpha_prime, Uty);
+ gsl_vector_mul(alpha_prime, weight_Hi);
+ gsl_vector_scale(alpha_prime, sigma_b2);
+
+ // Sample u.
+ gsl_vector_memcpy(Utu, alpha_prime);
+ gsl_vector_mul(Utu, K_eval);
+ if (a_mode == 11) {
+ gsl_vector_scale(Utu_rand, sqrt(1.0 / tau));
+ }
+ gsl_vector_add(Utu, Utu_rand);
+
+ // For quantitative traits, calculate pve and ppe.
+ if (a_mode == 11) {
+ gsl_blas_ddot(Utu, Utu, &d);
+ cHyp.pve = d / (double)ni_test;
+ cHyp.pve /= cHyp.pve + 1.0 / tau;
+ cHyp.pge = 0.0;
+ }
+
+ // Calculate likelihood.
+ logpost = -0.5 * logdet_H;
+ if (a_mode == 11) {
+ logpost -= 0.5 * (double)ni_test * log(Hi_yy);
+ } else {
+ logpost -= 0.5 * Hi_yy;
+ }
+
+ logpost += ((double)cHyp.n_gamma - 1.0) * cHyp.logp +
+ ((double)ns_test - (double)cHyp.n_gamma) * log(1 - exp(cHyp.logp));
+
+ gsl_vector_free(Utu_rand);
+ gsl_vector_free(weight_Hi);
+
+ return logpost;
}
-double BSLMM::CalcPosterior (const gsl_matrix *UtXgamma,
- const gsl_vector *Uty, const gsl_vector *K_eval,
- gsl_vector *UtXb, gsl_vector *Utu,
- gsl_vector *alpha_prime, gsl_vector *beta,
- class HYPBSLMM &cHyp) {
- clock_t time_start;
-
- double sigma_a2=cHyp.h*cHyp.rho/
- (trace_G*(1-cHyp.h)*exp(cHyp.logp)*(double)ns_test);
- double sigma_b2=cHyp.h*(1.0-cHyp.rho)/(trace_G*(1-cHyp.h));
-
- double logpost=0.0;
- double d, ds, uy, P_yy=0, logdet_O=0.0, logdet_H=0.0;
-
- gsl_matrix *UtXgamma_eval=gsl_matrix_alloc (UtXgamma->size1,
- UtXgamma->size2);
- gsl_matrix *Omega=gsl_matrix_alloc (UtXgamma->size2, UtXgamma->size2);
- gsl_vector *XtHiy=gsl_vector_alloc (UtXgamma->size2);
- gsl_vector *beta_hat=gsl_vector_alloc (UtXgamma->size2);
- gsl_vector *Utu_rand=gsl_vector_alloc (UtXgamma->size1);
- gsl_vector *weight_Hi=gsl_vector_alloc (UtXgamma->size1);
-
- gsl_matrix_memcpy (UtXgamma_eval, UtXgamma);
-
- logdet_H=0.0; P_yy=0.0;
- for (size_t i=0; i<ni_test; ++i) {
- gsl_vector_view UtXgamma_row=
- gsl_matrix_row (UtXgamma_eval, i);
- d=gsl_vector_get (K_eval, i)*sigma_b2;
- ds=d/(d+1.0);
- d=1.0/(d+1.0);
- gsl_vector_set (weight_Hi, i, d);
-
- logdet_H-=log(d);
- uy=gsl_vector_get (Uty, i);
- P_yy+=d*uy*uy;
- gsl_vector_scale (&UtXgamma_row.vector, d);
-
- gsl_vector_set(Utu_rand,i,gsl_ran_gaussian(gsl_r,1)*sqrt(ds));
- }
-
- // Calculate Omega.
- gsl_matrix_set_identity (Omega);
-
- time_start=clock();
- lapack_dgemm ((char *)"T", (char *)"N", sigma_a2, UtXgamma_eval,
- UtXgamma, 1.0, Omega);
- time_Omega+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
-
-
- // Calculate beta_hat.
- gsl_blas_dgemv (CblasTrans, 1.0, UtXgamma_eval, Uty, 0.0, XtHiy);
-
- logdet_O=CholeskySolve(Omega, XtHiy, beta_hat);
-
- gsl_vector_scale (beta_hat, sigma_a2);
-
- gsl_blas_ddot (XtHiy, beta_hat, &d);
- P_yy-=d;
-
- // Sample tau.
- double tau=1.0;
- if (a_mode==11) {
- tau =gsl_ran_gamma (gsl_r, (double)ni_test/2.0, 2.0/P_yy);
- }
-
- // Sample beta.
- for (size_t i=0; i<beta->size; i++)
- {
- d=gsl_ran_gaussian(gsl_r, 1);
- gsl_vector_set(beta, i, d);
- }
- gsl_blas_dtrsv(CblasUpper, CblasNoTrans, CblasNonUnit, Omega, beta);
-
- // This computes inv(L^T(Omega)) %*% beta.
- gsl_vector_scale(beta, sqrt(sigma_a2/tau));
- gsl_vector_add(beta, beta_hat);
- gsl_blas_dgemv (CblasNoTrans, 1.0, UtXgamma, beta, 0.0, UtXb);
-
- // Sample alpha.
- gsl_vector_memcpy (alpha_prime, Uty);
- gsl_vector_sub (alpha_prime, UtXb);
- gsl_vector_mul (alpha_prime, weight_Hi);
- gsl_vector_scale (alpha_prime, sigma_b2);
-
- // Sample u.
- gsl_vector_memcpy (Utu, alpha_prime);
- gsl_vector_mul (Utu, K_eval);
-
- if (a_mode==11) {gsl_vector_scale (Utu_rand, sqrt(1.0/tau));}
- gsl_vector_add (Utu, Utu_rand);
-
- // For quantitative traits, calculate pve and pge.
- if (a_mode==11) {
- gsl_blas_ddot (UtXb, UtXb, &d);
- cHyp.pge=d/(double)ni_test;
-
- gsl_blas_ddot (Utu, Utu, &d);
- cHyp.pve=cHyp.pge+d/(double)ni_test;
-
- if (cHyp.pve==0) {cHyp.pge=0.0;}
- else {cHyp.pge/=cHyp.pve;}
- cHyp.pve/=cHyp.pve+1.0/tau;
- }
-
- gsl_matrix_free (UtXgamma_eval);
- gsl_matrix_free (Omega);
- gsl_vector_free (XtHiy);
- gsl_vector_free (beta_hat);
- gsl_vector_free (Utu_rand);
- gsl_vector_free (weight_Hi);
-
- logpost=-0.5*logdet_H-0.5*logdet_O;
- if (a_mode==11) {logpost-=0.5*(double)ni_test*log(P_yy);}
- else {logpost-=0.5*P_yy;}
- logpost+=((double)cHyp.n_gamma-1.0)*cHyp.logp+
- ((double)ns_test-(double)cHyp.n_gamma)*log(1.0-exp(cHyp.logp));
-
- return logpost;
+double BSLMM::CalcPosterior(const gsl_matrix *UtXgamma, const gsl_vector *Uty,
+ const gsl_vector *K_eval, gsl_vector *UtXb,
+ gsl_vector *Utu, gsl_vector *alpha_prime,
+ gsl_vector *beta, class HYPBSLMM &cHyp) {
+ clock_t time_start;
+
+ double sigma_a2 = cHyp.h * cHyp.rho /
+ (trace_G * (1 - cHyp.h) * exp(cHyp.logp) * (double)ns_test);
+ double sigma_b2 = cHyp.h * (1.0 - cHyp.rho) / (trace_G * (1 - cHyp.h));
+
+ double logpost = 0.0;
+ double d, ds, uy, P_yy = 0, logdet_O = 0.0, logdet_H = 0.0;
+
+ gsl_matrix *UtXgamma_eval =
+ gsl_matrix_alloc(UtXgamma->size1, UtXgamma->size2);
+ gsl_matrix *Omega = gsl_matrix_alloc(UtXgamma->size2, UtXgamma->size2);
+ gsl_vector *XtHiy = gsl_vector_alloc(UtXgamma->size2);
+ gsl_vector *beta_hat = gsl_vector_alloc(UtXgamma->size2);
+ gsl_vector *Utu_rand = gsl_vector_alloc(UtXgamma->size1);
+ gsl_vector *weight_Hi = gsl_vector_alloc(UtXgamma->size1);
+
+ gsl_matrix_memcpy(UtXgamma_eval, UtXgamma);
+
+ logdet_H = 0.0;
+ P_yy = 0.0;
+ for (size_t i = 0; i < ni_test; ++i) {
+ gsl_vector_view UtXgamma_row = gsl_matrix_row(UtXgamma_eval, i);
+ d = gsl_vector_get(K_eval, i) * sigma_b2;
+ ds = d / (d + 1.0);
+ d = 1.0 / (d + 1.0);
+ gsl_vector_set(weight_Hi, i, d);
+
+ logdet_H -= log(d);
+ uy = gsl_vector_get(Uty, i);
+ P_yy += d * uy * uy;
+ gsl_vector_scale(&UtXgamma_row.vector, d);
+
+ gsl_vector_set(Utu_rand, i, gsl_ran_gaussian(gsl_r, 1) * sqrt(ds));
+ }
+
+ // Calculate Omega.
+ gsl_matrix_set_identity(Omega);
+
+ time_start = clock();
+ lapack_dgemm((char *)"T", (char *)"N", sigma_a2, UtXgamma_eval, UtXgamma, 1.0,
+ Omega);
+ time_Omega += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
+
+ // Calculate beta_hat.
+ gsl_blas_dgemv(CblasTrans, 1.0, UtXgamma_eval, Uty, 0.0, XtHiy);
+
+ logdet_O = CholeskySolve(Omega, XtHiy, beta_hat);
+
+ gsl_vector_scale(beta_hat, sigma_a2);
+
+ gsl_blas_ddot(XtHiy, beta_hat, &d);
+ P_yy -= d;
+
+ // Sample tau.
+ double tau = 1.0;
+ if (a_mode == 11) {
+ tau = gsl_ran_gamma(gsl_r, (double)ni_test / 2.0, 2.0 / P_yy);
+ }
+
+ // Sample beta.
+ for (size_t i = 0; i < beta->size; i++) {
+ d = gsl_ran_gaussian(gsl_r, 1);
+ gsl_vector_set(beta, i, d);
+ }
+ gsl_blas_dtrsv(CblasUpper, CblasNoTrans, CblasNonUnit, Omega, beta);
+
+ // This computes inv(L^T(Omega)) %*% beta.
+ gsl_vector_scale(beta, sqrt(sigma_a2 / tau));
+ gsl_vector_add(beta, beta_hat);
+ gsl_blas_dgemv(CblasNoTrans, 1.0, UtXgamma, beta, 0.0, UtXb);
+
+ // Sample alpha.
+ gsl_vector_memcpy(alpha_prime, Uty);
+ gsl_vector_sub(alpha_prime, UtXb);
+ gsl_vector_mul(alpha_prime, weight_Hi);
+ gsl_vector_scale(alpha_prime, sigma_b2);
+
+ // Sample u.
+ gsl_vector_memcpy(Utu, alpha_prime);
+ gsl_vector_mul(Utu, K_eval);
+
+ if (a_mode == 11) {
+ gsl_vector_scale(Utu_rand, sqrt(1.0 / tau));
+ }
+ gsl_vector_add(Utu, Utu_rand);
+
+ // For quantitative traits, calculate pve and pge.
+ if (a_mode == 11) {
+ gsl_blas_ddot(UtXb, UtXb, &d);
+ cHyp.pge = d / (double)ni_test;
+
+ gsl_blas_ddot(Utu, Utu, &d);
+ cHyp.pve = cHyp.pge + d / (double)ni_test;
+
+ if (cHyp.pve == 0) {
+ cHyp.pge = 0.0;
+ } else {
+ cHyp.pge /= cHyp.pve;
+ }
+ cHyp.pve /= cHyp.pve + 1.0 / tau;
+ }
+
+ gsl_matrix_free(UtXgamma_eval);
+ gsl_matrix_free(Omega);
+ gsl_vector_free(XtHiy);
+ gsl_vector_free(beta_hat);
+ gsl_vector_free(Utu_rand);
+ gsl_vector_free(weight_Hi);
+
+ logpost = -0.5 * logdet_H - 0.5 * logdet_O;
+ if (a_mode == 11) {
+ logpost -= 0.5 * (double)ni_test * log(P_yy);
+ } else {
+ logpost -= 0.5 * P_yy;
+ }
+ logpost +=
+ ((double)cHyp.n_gamma - 1.0) * cHyp.logp +
+ ((double)ns_test - (double)cHyp.n_gamma) * log(1.0 - exp(cHyp.logp));
+
+ return logpost;
}
// Calculate pve and pge, and calculate z_hat for case-control data.
-void BSLMM::CalcCC_PVEnZ (const gsl_matrix *U, const gsl_vector *Utu,
- gsl_vector *z_hat, class HYPBSLMM &cHyp) {
- double d;
+void BSLMM::CalcCC_PVEnZ(const gsl_matrix *U, const gsl_vector *Utu,
+ gsl_vector *z_hat, class HYPBSLMM &cHyp) {
+ double d;
- gsl_blas_ddot (Utu, Utu, &d);
- cHyp.pve=d/(double)ni_test;
+ gsl_blas_ddot(Utu, Utu, &d);
+ cHyp.pve = d / (double)ni_test;
- gsl_blas_dgemv (CblasNoTrans, 1.0, U, Utu, 0.0, z_hat);
+ gsl_blas_dgemv(CblasNoTrans, 1.0, U, Utu, 0.0, z_hat);
- cHyp.pve/=cHyp.pve+1.0;
- cHyp.pge=0.0;
+ cHyp.pve /= cHyp.pve + 1.0;
+ cHyp.pge = 0.0;
- return;
+ return;
}
// Calculate pve and pge, and calculate z_hat for case-control data.
-void BSLMM::CalcCC_PVEnZ (const gsl_matrix *U, const gsl_vector *UtXb,
- const gsl_vector *Utu, gsl_vector *z_hat,
- class HYPBSLMM &cHyp) {
- double d;
- gsl_vector *UtXbU=gsl_vector_alloc (Utu->size);
+void BSLMM::CalcCC_PVEnZ(const gsl_matrix *U, const gsl_vector *UtXb,
+ const gsl_vector *Utu, gsl_vector *z_hat,
+ class HYPBSLMM &cHyp) {
+ double d;
+ gsl_vector *UtXbU = gsl_vector_alloc(Utu->size);
- gsl_blas_ddot (UtXb, UtXb, &d);
- cHyp.pge=d/(double)ni_test;
+ gsl_blas_ddot(UtXb, UtXb, &d);
+ cHyp.pge = d / (double)ni_test;
- gsl_blas_ddot (Utu, Utu, &d);
- cHyp.pve=cHyp.pge+d/(double)ni_test;
+ gsl_blas_ddot(Utu, Utu, &d);
+ cHyp.pve = cHyp.pge + d / (double)ni_test;
- gsl_vector_memcpy (UtXbU, Utu);
- gsl_vector_add (UtXbU, UtXb);
- gsl_blas_dgemv (CblasNoTrans, 1.0, U, UtXbU, 0.0, z_hat);
+ gsl_vector_memcpy(UtXbU, Utu);
+ gsl_vector_add(UtXbU, UtXb);
+ gsl_blas_dgemv(CblasNoTrans, 1.0, U, UtXbU, 0.0, z_hat);
- if (cHyp.pve==0) {cHyp.pge=0.0;}
- else {cHyp.pge/=cHyp.pve;}
+ if (cHyp.pve == 0) {
+ cHyp.pge = 0.0;
+ } else {
+ cHyp.pge /= cHyp.pve;
+ }
- cHyp.pve/=cHyp.pve+1.0;
+ cHyp.pve /= cHyp.pve + 1.0;
- gsl_vector_free(UtXbU);
- return;
+ gsl_vector_free(UtXbU);
+ return;
}
-void BSLMM::SampleZ (const gsl_vector *y, const gsl_vector *z_hat,
- gsl_vector *z) {
- double d1, d2, z_rand=0.0;
- for (size_t i=0; i<z->size; ++i) {
- d1=gsl_vector_get (y, i);
- d2=gsl_vector_get (z_hat, i);
-
- // y is centered for case control studies.
- if (d1<=0.0) {
-
- // Control, right truncated.
- do {
- z_rand=d2+gsl_ran_gaussian(gsl_r, 1.0);
- } while (z_rand>0.0);
- }
- else {
- do {
- z_rand=d2+gsl_ran_gaussian(gsl_r, 1.0);
- } while (z_rand<0.0);
- }
-
- gsl_vector_set (z, i, z_rand);
- }
-
- return;
+void BSLMM::SampleZ(const gsl_vector *y, const gsl_vector *z_hat,
+ gsl_vector *z) {
+ double d1, d2, z_rand = 0.0;
+ for (size_t i = 0; i < z->size; ++i) {
+ d1 = gsl_vector_get(y, i);
+ d2 = gsl_vector_get(z_hat, i);
+
+ // y is centered for case control studies.
+ if (d1 <= 0.0) {
+
+ // Control, right truncated.
+ do {
+ z_rand = d2 + gsl_ran_gaussian(gsl_r, 1.0);
+ } while (z_rand > 0.0);
+ } else {
+ do {
+ z_rand = d2 + gsl_ran_gaussian(gsl_r, 1.0);
+ } while (z_rand < 0.0);
+ }
+
+ gsl_vector_set(z, i, z_rand);
+ }
+
+ return;
}
-double BSLMM::ProposeHnRho (const class HYPBSLMM &cHyp_old,
- class HYPBSLMM &cHyp_new, const size_t &repeat) {
+double BSLMM::ProposeHnRho(const class HYPBSLMM &cHyp_old,
+ class HYPBSLMM &cHyp_new, const size_t &repeat) {
- double h=cHyp_old.h, rho=cHyp_old.rho;
+ double h = cHyp_old.h, rho = cHyp_old.rho;
- double d_h=(h_max-h_min)*h_scale, d_rho=(rho_max-rho_min)*rho_scale;
+ double d_h = (h_max - h_min) * h_scale,
+ d_rho = (rho_max - rho_min) * rho_scale;
- for (size_t i=0; i<repeat; ++i) {
- h=h+(gsl_rng_uniform(gsl_r)-0.5)*d_h;
- if (h<h_min) {h=2*h_min-h;}
- if (h>h_max) {h=2*h_max-h;}
+ for (size_t i = 0; i < repeat; ++i) {
+ h = h + (gsl_rng_uniform(gsl_r) - 0.5) * d_h;
+ if (h < h_min) {
+ h = 2 * h_min - h;
+ }
+ if (h > h_max) {
+ h = 2 * h_max - h;
+ }
- rho=rho+(gsl_rng_uniform(gsl_r)-0.5)*d_rho;
- if (rho<rho_min) {rho=2*rho_min-rho;}
- if (rho>rho_max) {rho=2*rho_max-rho;}
- }
- cHyp_new.h=h;
- cHyp_new.rho=rho;
- return 0.0;
+ rho = rho + (gsl_rng_uniform(gsl_r) - 0.5) * d_rho;
+ if (rho < rho_min) {
+ rho = 2 * rho_min - rho;
+ }
+ if (rho > rho_max) {
+ rho = 2 * rho_max - rho;
+ }
+ }
+ cHyp_new.h = h;
+ cHyp_new.rho = rho;
+ return 0.0;
}
-double BSLMM::ProposePi (const class HYPBSLMM &cHyp_old,
- class HYPBSLMM &cHyp_new, const size_t &repeat) {
- double logp_old=cHyp_old.logp, logp_new=cHyp_old.logp;
- double log_ratio=0.0;
+double BSLMM::ProposePi(const class HYPBSLMM &cHyp_old,
+ class HYPBSLMM &cHyp_new, const size_t &repeat) {
+ double logp_old = cHyp_old.logp, logp_new = cHyp_old.logp;
+ double log_ratio = 0.0;
- double d_logp=min(0.1, (logp_max-logp_min)*logp_scale);
+ double d_logp = min(0.1, (logp_max - logp_min) * logp_scale);
- for (size_t i=0; i<repeat; ++i) {
- logp_new=logp_old+(gsl_rng_uniform(gsl_r)-0.5)*d_logp;
- if (logp_new<logp_min) {logp_new=2*logp_min-logp_new;}
- if (logp_new>logp_max) {logp_new=2*logp_max-logp_new;}
- log_ratio+=logp_new-logp_old;
- logp_old=logp_new;
- }
- cHyp_new.logp=logp_new;
+ for (size_t i = 0; i < repeat; ++i) {
+ logp_new = logp_old + (gsl_rng_uniform(gsl_r) - 0.5) * d_logp;
+ if (logp_new < logp_min) {
+ logp_new = 2 * logp_min - logp_new;
+ }
+ if (logp_new > logp_max) {
+ logp_new = 2 * logp_max - logp_new;
+ }
+ log_ratio += logp_new - logp_old;
+ logp_old = logp_new;
+ }
+ cHyp_new.logp = logp_new;
- return log_ratio;
+ return log_ratio;
}
-bool comp_vec (size_t a, size_t b) {
- return (a < b);
-}
+bool comp_vec(size_t a, size_t b) { return (a < b); }
+
+double BSLMM::ProposeGamma(const vector<size_t> &rank_old,
+ vector<size_t> &rank_new, const double *p_gamma,
+ const class HYPBSLMM &cHyp_old,
+ class HYPBSLMM &cHyp_new, const size_t &repeat) {
+ map<size_t, int> mapRank2in;
+ size_t r;
+ double unif, logp = 0.0;
+ int flag_gamma;
+ size_t r_add, r_remove, col_id;
+
+ rank_new.clear();
+ if (cHyp_old.n_gamma != rank_old.size()) {
+ cout << "size wrong" << endl;
+ }
+
+ if (cHyp_old.n_gamma != 0) {
+ for (size_t i = 0; i < rank_old.size(); ++i) {
+ r = rank_old[i];
+ rank_new.push_back(r);
+ mapRank2in[r] = 1;
+ }
+ }
+ cHyp_new.n_gamma = cHyp_old.n_gamma;
+
+ for (size_t i = 0; i < repeat; ++i) {
+ unif = gsl_rng_uniform(gsl_r);
+
+ if (unif < 0.40 && cHyp_new.n_gamma < s_max) {
+ flag_gamma = 1;
+ } else if (unif >= 0.40 && unif < 0.80 && cHyp_new.n_gamma > s_min) {
+ flag_gamma = 2;
+ } else if (unif >= 0.80 && cHyp_new.n_gamma > 0 &&
+ cHyp_new.n_gamma < ns_test) {
+ flag_gamma = 3;
+ } else {
+ flag_gamma = 4;
+ }
+
+ if (flag_gamma == 1) {
+
+ // Add a SNP.
+ do {
+ r_add = gsl_ran_discrete(gsl_r, gsl_t);
+ } while (mapRank2in.count(r_add) != 0);
+
+ double prob_total = 1.0;
+ for (size_t i = 0; i < cHyp_new.n_gamma; ++i) {
+ r = rank_new[i];
+ prob_total -= p_gamma[r];
+ }
+
+ mapRank2in[r_add] = 1;
+ rank_new.push_back(r_add);
+ cHyp_new.n_gamma++;
+ logp += -log(p_gamma[r_add] / prob_total) - log((double)cHyp_new.n_gamma);
+ } else if (flag_gamma == 2) {
+
+ // Delete a SNP.
+ col_id = gsl_rng_uniform_int(gsl_r, cHyp_new.n_gamma);
+ r_remove = rank_new[col_id];
+
+ double prob_total = 1.0;
+ for (size_t i = 0; i < cHyp_new.n_gamma; ++i) {
+ r = rank_new[i];
+ prob_total -= p_gamma[r];
+ }
+ prob_total += p_gamma[r_remove];
+
+ mapRank2in.erase(r_remove);
+ rank_new.erase(rank_new.begin() + col_id);
+ logp +=
+ log(p_gamma[r_remove] / prob_total) + log((double)cHyp_new.n_gamma);
+ cHyp_new.n_gamma--;
+ } else if (flag_gamma == 3) {
+
+ // Switch a SNP.
+ col_id = gsl_rng_uniform_int(gsl_r, cHyp_new.n_gamma);
+ r_remove = rank_new[col_id];
+
+ // Be careful with the proposal.
+ do {
+ r_add = gsl_ran_discrete(gsl_r, gsl_t);
+ } while (mapRank2in.count(r_add) != 0);
+
+ double prob_total = 1.0;
+ for (size_t i = 0; i < cHyp_new.n_gamma; ++i) {
+ r = rank_new[i];
+ prob_total -= p_gamma[r];
+ }
+
+ logp += log(p_gamma[r_remove] /
+ (prob_total + p_gamma[r_remove] - p_gamma[r_add]));
+ logp -= log(p_gamma[r_add] / prob_total);
+
+ mapRank2in.erase(r_remove);
+ mapRank2in[r_add] = 1;
+ rank_new.erase(rank_new.begin() + col_id);
+ rank_new.push_back(r_add);
+ } else {
+ logp += 0;
+ } // Do not change.
+ }
+
+ stable_sort(rank_new.begin(), rank_new.end(), comp_vec);
-double BSLMM::ProposeGamma (const vector<size_t> &rank_old,
- vector<size_t> &rank_new,
- const double *p_gamma,
- const class HYPBSLMM &cHyp_old,
- class HYPBSLMM &cHyp_new,
- const size_t &repeat) {
- map<size_t, int> mapRank2in;
- size_t r;
- double unif, logp=0.0;
- int flag_gamma;
- size_t r_add, r_remove, col_id;
-
- rank_new.clear();
- if (cHyp_old.n_gamma!=rank_old.size()) {cout<<"size wrong"<<endl;}
-
- if (cHyp_old.n_gamma!=0) {
- for (size_t i=0; i<rank_old.size(); ++i) {
- r=rank_old[i];
- rank_new.push_back(r);
- mapRank2in[r]=1;
- }
- }
- cHyp_new.n_gamma=cHyp_old.n_gamma;
-
- for (size_t i=0; i<repeat; ++i) {
- unif=gsl_rng_uniform(gsl_r);
-
- if (unif < 0.40 && cHyp_new.n_gamma<s_max) {flag_gamma=1;}
- else if (unif>=0.40 && unif < 0.80 &&
- cHyp_new.n_gamma>s_min) {
- flag_gamma=2;
- }
- else if (unif>=0.80 && cHyp_new.n_gamma>0 &&
- cHyp_new.n_gamma<ns_test) {
- flag_gamma=3;
- }
- else {flag_gamma=4;}
-
- if(flag_gamma==1) {
-
- // Add a SNP.
- do {
- r_add=gsl_ran_discrete (gsl_r, gsl_t);
- } while (mapRank2in.count(r_add)!=0);
-
- double prob_total=1.0;
- for (size_t i=0; i<cHyp_new.n_gamma; ++i) {
- r=rank_new[i];
- prob_total-=p_gamma[r];
- }
-
- mapRank2in[r_add]=1;
- rank_new.push_back(r_add);
- cHyp_new.n_gamma++;
- logp+=-log(p_gamma[r_add]/prob_total)-
- log((double)cHyp_new.n_gamma);
- }
- else if (flag_gamma==2) {
-
- // Delete a SNP.
- col_id=gsl_rng_uniform_int(gsl_r, cHyp_new.n_gamma);
- r_remove=rank_new[col_id];
-
- double prob_total=1.0;
- for (size_t i=0; i<cHyp_new.n_gamma; ++i) {
- r=rank_new[i];
- prob_total-=p_gamma[r];
- }
- prob_total+=p_gamma[r_remove];
-
- mapRank2in.erase(r_remove);
- rank_new.erase(rank_new.begin()+col_id);
- logp+=log(p_gamma[r_remove]/prob_total)+
- log((double)cHyp_new.n_gamma);
- cHyp_new.n_gamma--;
- }
- else if (flag_gamma==3) {
-
- // Switch a SNP.
- col_id=gsl_rng_uniform_int(gsl_r, cHyp_new.n_gamma);
- r_remove=rank_new[col_id];
-
- // Be careful with the proposal.
- do {
- r_add=gsl_ran_discrete (gsl_r, gsl_t);
- } while (mapRank2in.count(r_add)!=0);
-
- double prob_total=1.0;
- for (size_t i=0; i<cHyp_new.n_gamma; ++i) {
- r=rank_new[i];
- prob_total-=p_gamma[r];
- }
-
- logp+=log(p_gamma[r_remove]/
- (prob_total+p_gamma[r_remove]-p_gamma[r_add]));
- logp-=log(p_gamma[r_add]/prob_total);
-
- mapRank2in.erase(r_remove);
- mapRank2in[r_add]=1;
- rank_new.erase(rank_new.begin()+col_id);
- rank_new.push_back(r_add);
- }
- else {logp+=0;} // Do not change.
- }
-
- stable_sort (rank_new.begin(), rank_new.end(), comp_vec);
-
- mapRank2in.clear();
- return logp;
+ mapRank2in.clear();
+ return logp;
}
-bool comp_lr (pair<size_t, double> a, pair<size_t, double> b) {
- return (a.second > b.second);
+bool comp_lr(pair<size_t, double> a, pair<size_t, double> b) {
+ return (a.second > b.second);
}
// If a_mode==13 then Uty==y.
-void BSLMM::MCMC (const gsl_matrix *U, const gsl_matrix *UtX,
- const gsl_vector *Uty, const gsl_vector *K_eval,
- const gsl_vector *y) {
- clock_t time_start;
-
- class HYPBSLMM cHyp_old, cHyp_new;
-
- gsl_matrix *Result_hyp=gsl_matrix_alloc (w_pace, 6);
- gsl_matrix *Result_gamma=gsl_matrix_alloc (w_pace, s_max);
-
- gsl_vector *alpha_prime=gsl_vector_alloc (ni_test);
- gsl_vector *alpha_new=gsl_vector_alloc (ni_test);
- gsl_vector *alpha_old=gsl_vector_alloc (ni_test);
- gsl_vector *Utu=gsl_vector_alloc (ni_test);
- gsl_vector *Utu_new=gsl_vector_alloc (ni_test);
- gsl_vector *Utu_old=gsl_vector_alloc (ni_test);
-
- gsl_vector *UtXb_new=gsl_vector_alloc (ni_test);
- gsl_vector *UtXb_old=gsl_vector_alloc (ni_test);
-
- gsl_vector *z_hat=gsl_vector_alloc (ni_test);
- gsl_vector *z=gsl_vector_alloc (ni_test);
- gsl_vector *Utz=gsl_vector_alloc (ni_test);
-
- gsl_vector_memcpy (Utz, Uty);
-
- double logPost_new, logPost_old;
- double logMHratio;
- double mean_z=0.0;
-
- gsl_matrix_set_zero (Result_gamma);
- gsl_vector_set_zero (Utu);
- gsl_vector_set_zero (alpha_prime);
- if (a_mode==13) {
- pheno_mean=0.0;
- }
-
- vector<pair<double, double> > beta_g;
- for (size_t i=0; i<ns_test; i++) {
- beta_g.push_back(make_pair(0.0, 0.0));
- }
-
- vector<size_t> rank_new, rank_old;
- vector<double> beta_new, beta_old;
-
- vector<pair<size_t, double> > pos_loglr;
-
- time_start=clock();
- MatrixCalcLR (U, UtX, Utz, K_eval, l_min, l_max, n_region, pos_loglr);
- time_Proposal=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
-
- stable_sort (pos_loglr.begin(), pos_loglr.end(), comp_lr);
- for (size_t i=0; i<ns_test; ++i) {
- mapRank2pos[i]=pos_loglr[i].first;
- }
-
- // Calculate proposal distribution for gamma (unnormalized),
- // and set up gsl_r and gsl_t.
- gsl_rng_env_setup();
- const gsl_rng_type * gslType;
- gslType = gsl_rng_default;
- if (randseed<0)
- {
- time_t rawtime;
- time (&rawtime);
- tm * ptm = gmtime (&rawtime);
-
- randseed = (unsigned) (ptm->tm_hour%24*3600+
- ptm->tm_min*60+ptm->tm_sec);
- }
- gsl_r = gsl_rng_alloc(gslType);
- gsl_rng_set(gsl_r, randseed);
-
- double *p_gamma = new double[ns_test];
- CalcPgamma (p_gamma);
-
- gsl_t=gsl_ran_discrete_preproc (ns_test, p_gamma);
-
- // Initial parameters.
- InitialMCMC (UtX, Utz, rank_old, cHyp_old, pos_loglr);
-
- cHyp_initial=cHyp_old;
-
- if (cHyp_old.n_gamma==0 || cHyp_old.rho==0) {
- logPost_old=CalcPosterior(Utz, K_eval, Utu_old, alpha_old,
- cHyp_old);
-
- beta_old.clear();
- for (size_t i=0; i<cHyp_old.n_gamma; ++i) {
- beta_old.push_back(0);
- }
- }
- else {
- gsl_matrix *UtXgamma=gsl_matrix_alloc (ni_test,
- cHyp_old.n_gamma);
- gsl_vector *beta=gsl_vector_alloc (cHyp_old.n_gamma);
- SetXgamma (UtXgamma, UtX, rank_old);
- logPost_old=CalcPosterior(UtXgamma, Utz, K_eval, UtXb_old,
- Utu_old, alpha_old, beta, cHyp_old);
-
- beta_old.clear();
- for (size_t i=0; i<beta->size; ++i) {
- beta_old.push_back(gsl_vector_get(beta, i));
- }
- gsl_matrix_free (UtXgamma);
- gsl_vector_free (beta);
- }
-
- // Calculate centered z_hat, and pve.
- if (a_mode==13) {
- time_start=clock();
- if (cHyp_old.n_gamma==0 || cHyp_old.rho==0) {
- CalcCC_PVEnZ (U, Utu_old, z_hat, cHyp_old);
- }
- else {
- CalcCC_PVEnZ (U, UtXb_old, Utu_old, z_hat, cHyp_old);
- }
- time_UtZ+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
- }
-
- // Start MCMC.
- int accept;
- size_t total_step=w_step+s_step;
- size_t w=0, w_col, pos;
- size_t repeat=0;
-
- for (size_t t=0; t<total_step; ++t) {
- if (t%d_pace==0 || t==total_step-1) {
- ProgressBar ("Running MCMC ", t, total_step-1,
- (double)n_accept/(double)(t*n_mh+1));
- }
-
- if (a_mode==13) {
- SampleZ (y, z_hat, z);
- mean_z=CenterVector (z);
-
- time_start=clock();
- gsl_blas_dgemv (CblasTrans, 1.0, U, z, 0.0, Utz);
- time_UtZ+=(clock()-time_start)/
- (double(CLOCKS_PER_SEC)*60.0);
-
- // First proposal.
- if (cHyp_old.n_gamma==0 || cHyp_old.rho==0) {
- logPost_old=
- CalcPosterior(Utz, K_eval, Utu_old,
- alpha_old, cHyp_old);
- beta_old.clear();
- for (size_t i=0; i<cHyp_old.n_gamma; ++i) {
- beta_old.push_back(0);
- }
- }
- else {
- gsl_matrix *UtXgamma=
- gsl_matrix_alloc (ni_test, cHyp_old.n_gamma);
- gsl_vector *beta=
- gsl_vector_alloc (cHyp_old.n_gamma);
- SetXgamma (UtXgamma, UtX, rank_old);
- logPost_old=
- CalcPosterior(UtXgamma, Utz, K_eval,
- UtXb_old, Utu_old, alpha_old,
- beta, cHyp_old);
-
- beta_old.clear();
- for (size_t i=0; i<beta->size; ++i) {
- beta_old.push_back(gsl_vector_get(beta, i));
- }
- gsl_matrix_free (UtXgamma);
- gsl_vector_free (beta);
- }
- }
-
- // M-H steps.
- for (size_t i=0; i<n_mh; ++i) {
- if (gsl_rng_uniform(gsl_r)<0.33) {
- repeat = 1+gsl_rng_uniform_int(gsl_r, 20);
- }
- else {
- repeat=1;
- }
-
- logMHratio=0.0;
- logMHratio+=ProposeHnRho(cHyp_old, cHyp_new, repeat);
- logMHratio+=ProposeGamma (rank_old, rank_new, p_gamma,
- cHyp_old, cHyp_new, repeat);
- logMHratio+=ProposePi(cHyp_old, cHyp_new, repeat);
-
- if (cHyp_new.n_gamma==0 || cHyp_new.rho==0) {
- logPost_new=CalcPosterior(Utz, K_eval, Utu_new,
- alpha_new, cHyp_new);
- beta_new.clear();
- for (size_t i=0; i<cHyp_new.n_gamma; ++i) {
- beta_new.push_back(0);
- }
- }
- else {
- gsl_matrix *UtXgamma=
- gsl_matrix_alloc (ni_test, cHyp_new.n_gamma);
- gsl_vector *beta=
- gsl_vector_alloc (cHyp_new.n_gamma);
- SetXgamma (UtXgamma, UtX, rank_new);
- logPost_new=
- CalcPosterior(UtXgamma, Utz, K_eval,
- UtXb_new, Utu_new, alpha_new,
- beta, cHyp_new);
- beta_new.clear();
- for (size_t i=0; i<beta->size; ++i) {
- beta_new.push_back(gsl_vector_get(beta, i));
- }
- gsl_matrix_free (UtXgamma);
- gsl_vector_free (beta);
- }
-
- logMHratio+=logPost_new-logPost_old;
-
- if (logMHratio>0 ||
- log(gsl_rng_uniform(gsl_r))<logMHratio) {
- accept=1; n_accept++;
- }
- else {accept=0;}
-
- if (accept==1) {
- logPost_old=logPost_new;
- rank_old.clear(); beta_old.clear();
- if (rank_new.size()!=0) {
- for (size_t i=0; i<rank_new.size(); ++i) {
- rank_old.push_back(rank_new[i]);
- beta_old.push_back(beta_new[i]);
- }
- }
- cHyp_old=cHyp_new;
- gsl_vector_memcpy (alpha_old, alpha_new);
- gsl_vector_memcpy (UtXb_old, UtXb_new);
- gsl_vector_memcpy (Utu_old, Utu_new);
- }
- else {cHyp_new=cHyp_old;}
- }
-
- // Calculate z_hat, and pve.
- if (a_mode==13) {
- time_start=clock();
- if (cHyp_old.n_gamma==0 || cHyp_old.rho==0) {
- CalcCC_PVEnZ (U, Utu_old, z_hat, cHyp_old);
- }
- else {
- CalcCC_PVEnZ (U, UtXb_old, Utu_old,
- z_hat, cHyp_old);
- }
-
- // Sample mu and update z_hat.
- gsl_vector_sub (z, z_hat);
- mean_z+=CenterVector(z);
- mean_z+=
- gsl_ran_gaussian(gsl_r, sqrt(1.0/(double) ni_test));
- gsl_vector_add_constant (z_hat, mean_z);
-
- time_UtZ+=(clock()-time_start)/
- (double(CLOCKS_PER_SEC)*60.0);
- }
-
- // Save data.
- if (t<w_step) {continue;}
- else {
- if (t%r_pace==0) {
- w_col=w%w_pace;
- if (w_col==0) {
- if (w==0) {
- WriteResult (0, Result_hyp,
- Result_gamma, w_col);
- }
- else {
- WriteResult (1, Result_hyp,
- Result_gamma, w_col);
- gsl_matrix_set_zero (Result_hyp);
- gsl_matrix_set_zero (Result_gamma);
- }
- }
-
- gsl_matrix_set(Result_hyp,w_col,0,cHyp_old.h);
- gsl_matrix_set(Result_hyp,w_col,1,cHyp_old.pve);
- gsl_matrix_set(Result_hyp,w_col,2,cHyp_old.rho);
- gsl_matrix_set(Result_hyp,w_col,3,cHyp_old.pge);
- gsl_matrix_set(Result_hyp,w_col,4,cHyp_old.logp);
- gsl_matrix_set(Result_hyp,w_col,5,cHyp_old.n_gamma);
-
- for (size_t i=0; i<cHyp_old.n_gamma; ++i) {
- pos=mapRank2pos[rank_old[i]]+1;
-
- gsl_matrix_set(Result_gamma,w_col,i,
- pos);
-
- beta_g[pos-1].first+=beta_old[i];
- beta_g[pos-1].second+=1.0;
- }
-
- gsl_vector_add (alpha_prime, alpha_old);
- gsl_vector_add (Utu, Utu_old);
-
- if (a_mode==13) {
- pheno_mean+=mean_z;
- }
-
- w++;
-
- }
-
- }
- }
- cout<<endl;
-
- w_col=w%w_pace;
- WriteResult (1, Result_hyp, Result_gamma, w_col);
-
- gsl_matrix_free(Result_hyp);
- gsl_matrix_free(Result_gamma);
-
- gsl_vector_free(z_hat);
- gsl_vector_free(z);
- gsl_vector_free(Utz);
- gsl_vector_free(UtXb_new);
- gsl_vector_free(UtXb_old);
- gsl_vector_free(alpha_new);
- gsl_vector_free(alpha_old);
- gsl_vector_free(Utu_new);
- gsl_vector_free(Utu_old);
-
- gsl_vector_scale (alpha_prime, 1.0/(double)w);
- gsl_vector_scale (Utu, 1.0/(double)w);
- if (a_mode==13) {
- pheno_mean/=(double)w;
- }
-
- gsl_vector *alpha=gsl_vector_alloc (ns_test);
- gsl_blas_dgemv (CblasTrans, 1.0/(double)ns_test, UtX,
- alpha_prime, 0.0, alpha);
- WriteParam (beta_g, alpha, w);
- gsl_vector_free(alpha);
-
- gsl_blas_dgemv (CblasNoTrans, 1.0, U, Utu, 0.0, alpha_prime);
- WriteBV(alpha_prime);
-
- gsl_vector_free(alpha_prime);
- gsl_vector_free(Utu);
-
- delete [] p_gamma;
- beta_g.clear();
-
- return;
+void BSLMM::MCMC(const gsl_matrix *U, const gsl_matrix *UtX,
+ const gsl_vector *Uty, const gsl_vector *K_eval,
+ const gsl_vector *y) {
+ clock_t time_start;
+
+ class HYPBSLMM cHyp_old, cHyp_new;
+
+ gsl_matrix *Result_hyp = gsl_matrix_alloc(w_pace, 6);
+ gsl_matrix *Result_gamma = gsl_matrix_alloc(w_pace, s_max);
+
+ gsl_vector *alpha_prime = gsl_vector_alloc(ni_test);
+ gsl_vector *alpha_new = gsl_vector_alloc(ni_test);
+ gsl_vector *alpha_old = gsl_vector_alloc(ni_test);
+ gsl_vector *Utu = gsl_vector_alloc(ni_test);
+ gsl_vector *Utu_new = gsl_vector_alloc(ni_test);
+ gsl_vector *Utu_old = gsl_vector_alloc(ni_test);
+
+ gsl_vector *UtXb_new = gsl_vector_alloc(ni_test);
+ gsl_vector *UtXb_old = gsl_vector_alloc(ni_test);
+
+ gsl_vector *z_hat = gsl_vector_alloc(ni_test);
+ gsl_vector *z = gsl_vector_alloc(ni_test);
+ gsl_vector *Utz = gsl_vector_alloc(ni_test);
+
+ gsl_vector_memcpy(Utz, Uty);
+
+ double logPost_new, logPost_old;
+ double logMHratio;
+ double mean_z = 0.0;
+
+ gsl_matrix_set_zero(Result_gamma);
+ gsl_vector_set_zero(Utu);
+ gsl_vector_set_zero(alpha_prime);
+ if (a_mode == 13) {
+ pheno_mean = 0.0;
+ }
+
+ vector<pair<double, double>> beta_g;
+ for (size_t i = 0; i < ns_test; i++) {
+ beta_g.push_back(make_pair(0.0, 0.0));
+ }
+
+ vector<size_t> rank_new, rank_old;
+ vector<double> beta_new, beta_old;
+
+ vector<pair<size_t, double>> pos_loglr;
+
+ time_start = clock();
+ MatrixCalcLR(U, UtX, Utz, K_eval, l_min, l_max, n_region, pos_loglr);
+ time_Proposal = (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
+
+ stable_sort(pos_loglr.begin(), pos_loglr.end(), comp_lr);
+ for (size_t i = 0; i < ns_test; ++i) {
+ mapRank2pos[i] = pos_loglr[i].first;
+ }
+
+ // Calculate proposal distribution for gamma (unnormalized),
+ // and set up gsl_r and gsl_t.
+ gsl_rng_env_setup();
+ const gsl_rng_type *gslType;
+ gslType = gsl_rng_default;
+ if (randseed < 0) {
+ time_t rawtime;
+ time(&rawtime);
+ tm *ptm = gmtime(&rawtime);
+
+ randseed =
+ (unsigned)(ptm->tm_hour % 24 * 3600 + ptm->tm_min * 60 + ptm->tm_sec);
+ }
+ gsl_r = gsl_rng_alloc(gslType);
+ gsl_rng_set(gsl_r, randseed);
+
+ double *p_gamma = new double[ns_test];
+ CalcPgamma(p_gamma);
+
+ gsl_t = gsl_ran_discrete_preproc(ns_test, p_gamma);
+
+ // Initial parameters.
+ InitialMCMC(UtX, Utz, rank_old, cHyp_old, pos_loglr);
+
+ cHyp_initial = cHyp_old;
+
+ if (cHyp_old.n_gamma == 0 || cHyp_old.rho == 0) {
+ logPost_old = CalcPosterior(Utz, K_eval, Utu_old, alpha_old, cHyp_old);
+
+ beta_old.clear();
+ for (size_t i = 0; i < cHyp_old.n_gamma; ++i) {
+ beta_old.push_back(0);
+ }
+ } else {
+ gsl_matrix *UtXgamma = gsl_matrix_alloc(ni_test, cHyp_old.n_gamma);
+ gsl_vector *beta = gsl_vector_alloc(cHyp_old.n_gamma);
+ SetXgamma(UtXgamma, UtX, rank_old);
+ logPost_old = CalcPosterior(UtXgamma, Utz, K_eval, UtXb_old, Utu_old,
+ alpha_old, beta, cHyp_old);
+
+ beta_old.clear();
+ for (size_t i = 0; i < beta->size; ++i) {
+ beta_old.push_back(gsl_vector_get(beta, i));
+ }
+ gsl_matrix_free(UtXgamma);
+ gsl_vector_free(beta);
+ }
+
+ // Calculate centered z_hat, and pve.
+ if (a_mode == 13) {
+ time_start = clock();
+ if (cHyp_old.n_gamma == 0 || cHyp_old.rho == 0) {
+ CalcCC_PVEnZ(U, Utu_old, z_hat, cHyp_old);
+ } else {
+ CalcCC_PVEnZ(U, UtXb_old, Utu_old, z_hat, cHyp_old);
+ }
+ time_UtZ += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
+ }
+
+ // Start MCMC.
+ int accept;
+ size_t total_step = w_step + s_step;
+ size_t w = 0, w_col, pos;
+ size_t repeat = 0;
+
+ for (size_t t = 0; t < total_step; ++t) {
+ if (t % d_pace == 0 || t == total_step - 1) {
+ ProgressBar("Running MCMC ", t, total_step - 1,
+ (double)n_accept / (double)(t * n_mh + 1));
+ }
+
+ if (a_mode == 13) {
+ SampleZ(y, z_hat, z);
+ mean_z = CenterVector(z);
+
+ time_start = clock();
+ gsl_blas_dgemv(CblasTrans, 1.0, U, z, 0.0, Utz);
+ time_UtZ += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
+
+ // First proposal.
+ if (cHyp_old.n_gamma == 0 || cHyp_old.rho == 0) {
+ logPost_old = CalcPosterior(Utz, K_eval, Utu_old, alpha_old, cHyp_old);
+ beta_old.clear();
+ for (size_t i = 0; i < cHyp_old.n_gamma; ++i) {
+ beta_old.push_back(0);
+ }
+ } else {
+ gsl_matrix *UtXgamma = gsl_matrix_alloc(ni_test, cHyp_old.n_gamma);
+ gsl_vector *beta = gsl_vector_alloc(cHyp_old.n_gamma);
+ SetXgamma(UtXgamma, UtX, rank_old);
+ logPost_old = CalcPosterior(UtXgamma, Utz, K_eval, UtXb_old, Utu_old,
+ alpha_old, beta, cHyp_old);
+
+ beta_old.clear();
+ for (size_t i = 0; i < beta->size; ++i) {
+ beta_old.push_back(gsl_vector_get(beta, i));
+ }
+ gsl_matrix_free(UtXgamma);
+ gsl_vector_free(beta);
+ }
+ }
+
+ // M-H steps.
+ for (size_t i = 0; i < n_mh; ++i) {
+ if (gsl_rng_uniform(gsl_r) < 0.33) {
+ repeat = 1 + gsl_rng_uniform_int(gsl_r, 20);
+ } else {
+ repeat = 1;
+ }
+
+ logMHratio = 0.0;
+ logMHratio += ProposeHnRho(cHyp_old, cHyp_new, repeat);
+ logMHratio +=
+ ProposeGamma(rank_old, rank_new, p_gamma, cHyp_old, cHyp_new, repeat);
+ logMHratio += ProposePi(cHyp_old, cHyp_new, repeat);
+
+ if (cHyp_new.n_gamma == 0 || cHyp_new.rho == 0) {
+ logPost_new = CalcPosterior(Utz, K_eval, Utu_new, alpha_new, cHyp_new);
+ beta_new.clear();
+ for (size_t i = 0; i < cHyp_new.n_gamma; ++i) {
+ beta_new.push_back(0);
+ }
+ } else {
+ gsl_matrix *UtXgamma = gsl_matrix_alloc(ni_test, cHyp_new.n_gamma);
+ gsl_vector *beta = gsl_vector_alloc(cHyp_new.n_gamma);
+ SetXgamma(UtXgamma, UtX, rank_new);
+ logPost_new = CalcPosterior(UtXgamma, Utz, K_eval, UtXb_new, Utu_new,
+ alpha_new, beta, cHyp_new);
+ beta_new.clear();
+ for (size_t i = 0; i < beta->size; ++i) {
+ beta_new.push_back(gsl_vector_get(beta, i));
+ }
+ gsl_matrix_free(UtXgamma);
+ gsl_vector_free(beta);
+ }
+
+ logMHratio += logPost_new - logPost_old;
+
+ if (logMHratio > 0 || log(gsl_rng_uniform(gsl_r)) < logMHratio) {
+ accept = 1;
+ n_accept++;
+ } else {
+ accept = 0;
+ }
+
+ if (accept == 1) {
+ logPost_old = logPost_new;
+ rank_old.clear();
+ beta_old.clear();
+ if (rank_new.size() != 0) {
+ for (size_t i = 0; i < rank_new.size(); ++i) {
+ rank_old.push_back(rank_new[i]);
+ beta_old.push_back(beta_new[i]);
+ }
+ }
+ cHyp_old = cHyp_new;
+ gsl_vector_memcpy(alpha_old, alpha_new);
+ gsl_vector_memcpy(UtXb_old, UtXb_new);
+ gsl_vector_memcpy(Utu_old, Utu_new);
+ } else {
+ cHyp_new = cHyp_old;
+ }
+ }
+
+ // Calculate z_hat, and pve.
+ if (a_mode == 13) {
+ time_start = clock();
+ if (cHyp_old.n_gamma == 0 || cHyp_old.rho == 0) {
+ CalcCC_PVEnZ(U, Utu_old, z_hat, cHyp_old);
+ } else {
+ CalcCC_PVEnZ(U, UtXb_old, Utu_old, z_hat, cHyp_old);
+ }
+
+ // Sample mu and update z_hat.
+ gsl_vector_sub(z, z_hat);
+ mean_z += CenterVector(z);
+ mean_z += gsl_ran_gaussian(gsl_r, sqrt(1.0 / (double)ni_test));
+ gsl_vector_add_constant(z_hat, mean_z);
+
+ time_UtZ += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
+ }
+
+ // Save data.
+ if (t < w_step) {
+ continue;
+ } else {
+ if (t % r_pace == 0) {
+ w_col = w % w_pace;
+ if (w_col == 0) {
+ if (w == 0) {
+ WriteResult(0, Result_hyp, Result_gamma, w_col);
+ } else {
+ WriteResult(1, Result_hyp, Result_gamma, w_col);
+ gsl_matrix_set_zero(Result_hyp);
+ gsl_matrix_set_zero(Result_gamma);
+ }
+ }
+
+ gsl_matrix_set(Result_hyp, w_col, 0, cHyp_old.h);
+ gsl_matrix_set(Result_hyp, w_col, 1, cHyp_old.pve);
+ gsl_matrix_set(Result_hyp, w_col, 2, cHyp_old.rho);
+ gsl_matrix_set(Result_hyp, w_col, 3, cHyp_old.pge);
+ gsl_matrix_set(Result_hyp, w_col, 4, cHyp_old.logp);
+ gsl_matrix_set(Result_hyp, w_col, 5, cHyp_old.n_gamma);
+
+ for (size_t i = 0; i < cHyp_old.n_gamma; ++i) {
+ pos = mapRank2pos[rank_old[i]] + 1;
+
+ gsl_matrix_set(Result_gamma, w_col, i, pos);
+
+ beta_g[pos - 1].first += beta_old[i];
+ beta_g[pos - 1].second += 1.0;
+ }
+
+ gsl_vector_add(alpha_prime, alpha_old);
+ gsl_vector_add(Utu, Utu_old);
+
+ if (a_mode == 13) {
+ pheno_mean += mean_z;
+ }
+
+ w++;
+ }
+ }
+ }
+ cout << endl;
+
+ w_col = w % w_pace;
+ WriteResult(1, Result_hyp, Result_gamma, w_col);
+
+ gsl_matrix_free(Result_hyp);
+ gsl_matrix_free(Result_gamma);
+
+ gsl_vector_free(z_hat);
+ gsl_vector_free(z);
+ gsl_vector_free(Utz);
+ gsl_vector_free(UtXb_new);
+ gsl_vector_free(UtXb_old);
+ gsl_vector_free(alpha_new);
+ gsl_vector_free(alpha_old);
+ gsl_vector_free(Utu_new);
+ gsl_vector_free(Utu_old);
+
+ gsl_vector_scale(alpha_prime, 1.0 / (double)w);
+ gsl_vector_scale(Utu, 1.0 / (double)w);
+ if (a_mode == 13) {
+ pheno_mean /= (double)w;
+ }
+
+ gsl_vector *alpha = gsl_vector_alloc(ns_test);
+ gsl_blas_dgemv(CblasTrans, 1.0 / (double)ns_test, UtX, alpha_prime, 0.0,
+ alpha);
+ WriteParam(beta_g, alpha, w);
+ gsl_vector_free(alpha);
+
+ gsl_blas_dgemv(CblasNoTrans, 1.0, U, Utu, 0.0, alpha_prime);
+ WriteBV(alpha_prime);
+
+ gsl_vector_free(alpha_prime);
+ gsl_vector_free(Utu);
+
+ delete[] p_gamma;
+ beta_g.clear();
+
+ return;
}
void BSLMM::RidgeR(const gsl_matrix *U, const gsl_matrix *UtX,
- const gsl_vector *Uty, const gsl_vector *eval,
- const double lambda) {
- gsl_vector *beta=gsl_vector_alloc (UtX->size2);
- gsl_vector *H_eval=gsl_vector_alloc (Uty->size);
- gsl_vector *bv=gsl_vector_alloc (Uty->size);
+ const gsl_vector *Uty, const gsl_vector *eval,
+ const double lambda) {
+ gsl_vector *beta = gsl_vector_alloc(UtX->size2);
+ gsl_vector *H_eval = gsl_vector_alloc(Uty->size);
+ gsl_vector *bv = gsl_vector_alloc(Uty->size);
- gsl_vector_memcpy (H_eval, eval);
- gsl_vector_scale (H_eval, lambda);
- gsl_vector_add_constant (H_eval, 1.0);
+ gsl_vector_memcpy(H_eval, eval);
+ gsl_vector_scale(H_eval, lambda);
+ gsl_vector_add_constant(H_eval, 1.0);
- gsl_vector_memcpy (bv, Uty);
- gsl_vector_div (bv, H_eval);
+ gsl_vector_memcpy(bv, Uty);
+ gsl_vector_div(bv, H_eval);
- gsl_blas_dgemv (CblasTrans, lambda/(double)UtX->size2,
- UtX, bv, 0.0, beta);
- gsl_vector_add_constant (H_eval, -1.0);
- gsl_vector_mul (H_eval, bv);
- gsl_blas_dgemv (CblasNoTrans, 1.0, U, H_eval, 0.0, bv);
+ gsl_blas_dgemv(CblasTrans, lambda / (double)UtX->size2, UtX, bv, 0.0, beta);
+ gsl_vector_add_constant(H_eval, -1.0);
+ gsl_vector_mul(H_eval, bv);
+ gsl_blas_dgemv(CblasNoTrans, 1.0, U, H_eval, 0.0, bv);
- WriteParam (beta);
- WriteBV(bv);
+ WriteParam(beta);
+ WriteBV(bv);
- gsl_vector_free (H_eval);
- gsl_vector_free (beta);
- gsl_vector_free (bv);
+ gsl_vector_free(H_eval);
+ gsl_vector_free(beta);
+ gsl_vector_free(bv);
- return;
+ return;
}
// Below fits MCMC for rho=1.
-void BSLMM::CalcXtX (const gsl_matrix *X, const gsl_vector *y,
- const size_t s_size, gsl_matrix *XtX, gsl_vector *Xty) {
- time_t time_start=clock();
- gsl_matrix_const_view X_sub=gsl_matrix_const_submatrix(X, 0, 0, X->size1,
- s_size);
- gsl_matrix_view XtX_sub=gsl_matrix_submatrix(XtX, 0, 0, s_size, s_size);
- gsl_vector_view Xty_sub=gsl_vector_subvector(Xty, 0, s_size);
-
- lapack_dgemm ((char *)"T", (char *)"N", 1.0, &X_sub.matrix,
- &X_sub.matrix, 0.0, &XtX_sub.matrix);
+void BSLMM::CalcXtX(const gsl_matrix *X, const gsl_vector *y,
+ const size_t s_size, gsl_matrix *XtX, gsl_vector *Xty) {
+ time_t time_start = clock();
+ gsl_matrix_const_view X_sub =
+ gsl_matrix_const_submatrix(X, 0, 0, X->size1, s_size);
+ gsl_matrix_view XtX_sub = gsl_matrix_submatrix(XtX, 0, 0, s_size, s_size);
+ gsl_vector_view Xty_sub = gsl_vector_subvector(Xty, 0, s_size);
+
+ lapack_dgemm((char *)"T", (char *)"N", 1.0, &X_sub.matrix, &X_sub.matrix, 0.0,
+ &XtX_sub.matrix);
gsl_blas_dgemv(CblasTrans, 1.0, &X_sub.matrix, y, 0.0, &Xty_sub.vector);
- time_Omega+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
+ time_Omega += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
return;
}
-void BSLMM::SetXgamma (const gsl_matrix *X, const gsl_matrix *X_old,
- const gsl_matrix *XtX_old, const gsl_vector *Xty_old,
- const gsl_vector *y, const vector<size_t> &rank_old,
- const vector<size_t> &rank_new, gsl_matrix *X_new,
- gsl_matrix *XtX_new, gsl_vector *Xty_new) {
+void BSLMM::SetXgamma(const gsl_matrix *X, const gsl_matrix *X_old,
+ const gsl_matrix *XtX_old, const gsl_vector *Xty_old,
+ const gsl_vector *y, const vector<size_t> &rank_old,
+ const vector<size_t> &rank_new, gsl_matrix *X_new,
+ gsl_matrix *XtX_new, gsl_vector *Xty_new) {
double d;
// rank_old and rank_new are sorted already inside PorposeGamma
// calculate vectors rank_remove and rank_add.
// make sure that v_size is larger than repeat.
- size_t v_size=20;
+ size_t v_size = 20;
vector<size_t> rank_remove(v_size), rank_add(v_size),
- rank_union(s_max+v_size);
+ rank_union(s_max + v_size);
vector<size_t>::iterator it;
- it=set_difference(rank_old.begin(), rank_old.end(), rank_new.begin(),
- rank_new.end(), rank_remove.begin());
- rank_remove.resize(it-rank_remove.begin());
+ it = set_difference(rank_old.begin(), rank_old.end(), rank_new.begin(),
+ rank_new.end(), rank_remove.begin());
+ rank_remove.resize(it - rank_remove.begin());
- it=set_difference (rank_new.begin(), rank_new.end(), rank_old.begin(),
- rank_old.end(), rank_add.begin());
- rank_add.resize(it-rank_add.begin());
+ it = set_difference(rank_new.begin(), rank_new.end(), rank_old.begin(),
+ rank_old.end(), rank_add.begin());
+ rank_add.resize(it - rank_add.begin());
- it=set_union (rank_new.begin(), rank_new.end(), rank_old.begin(),
- rank_old.end(), rank_union.begin());
- rank_union.resize(it-rank_union.begin());
+ it = set_union(rank_new.begin(), rank_new.end(), rank_old.begin(),
+ rank_old.end(), rank_union.begin());
+ rank_union.resize(it - rank_union.begin());
// Map rank_remove and rank_add.
map<size_t, int> mapRank2in_remove, mapRank2in_add;
- for (size_t i=0; i<rank_remove.size(); i++) {
- mapRank2in_remove[rank_remove[i]]=1;
+ for (size_t i = 0; i < rank_remove.size(); i++) {
+ mapRank2in_remove[rank_remove[i]] = 1;
}
- for (size_t i=0; i<rank_add.size(); i++) {
- mapRank2in_add[rank_add[i]]=1;
+ for (size_t i = 0; i < rank_add.size(); i++) {
+ mapRank2in_add[rank_add[i]] = 1;
}
// Obtain the subset of matrix/vector.
- gsl_matrix_const_view Xold_sub=
- gsl_matrix_const_submatrix(X_old, 0, 0, X_old->size1, rank_old.size());
- gsl_matrix_const_view XtXold_sub=
- gsl_matrix_const_submatrix(XtX_old, 0, 0, rank_old.size(),
- rank_old.size());
- gsl_vector_const_view Xtyold_sub=
- gsl_vector_const_subvector(Xty_old, 0, rank_old.size());
-
- gsl_matrix_view Xnew_sub=
- gsl_matrix_submatrix(X_new, 0, 0, X_new->size1, rank_new.size());
- gsl_matrix_view XtXnew_sub=
- gsl_matrix_submatrix(XtX_new, 0, 0, rank_new.size(), rank_new.size());
- gsl_vector_view Xtynew_sub=
- gsl_vector_subvector(Xty_new, 0, rank_new.size());
+ gsl_matrix_const_view Xold_sub =
+ gsl_matrix_const_submatrix(X_old, 0, 0, X_old->size1, rank_old.size());
+ gsl_matrix_const_view XtXold_sub = gsl_matrix_const_submatrix(
+ XtX_old, 0, 0, rank_old.size(), rank_old.size());
+ gsl_vector_const_view Xtyold_sub =
+ gsl_vector_const_subvector(Xty_old, 0, rank_old.size());
+
+ gsl_matrix_view Xnew_sub =
+ gsl_matrix_submatrix(X_new, 0, 0, X_new->size1, rank_new.size());
+ gsl_matrix_view XtXnew_sub =
+ gsl_matrix_submatrix(XtX_new, 0, 0, rank_new.size(), rank_new.size());
+ gsl_vector_view Xtynew_sub =
+ gsl_vector_subvector(Xty_new, 0, rank_new.size());
// Get X_new and calculate XtX_new.
- if (rank_remove.size()==0 && rank_add.size()==0) {
+ if (rank_remove.size() == 0 && rank_add.size() == 0) {
gsl_matrix_memcpy(&Xnew_sub.matrix, &Xold_sub.matrix);
gsl_matrix_memcpy(&XtXnew_sub.matrix, &XtXold_sub.matrix);
gsl_vector_memcpy(&Xtynew_sub.vector, &Xtyold_sub.vector);
} else {
size_t i_old, j_old, i_new, j_new, i_add, j_add, i_flag, j_flag;
- if (rank_add.size()==0) {
- i_old=0; i_new=0;
- for (size_t i=0; i<rank_union.size(); i++) {
- if (mapRank2in_remove.count(rank_old[i_old])!=0) {i_old++; continue;}
+ if (rank_add.size() == 0) {
+ i_old = 0;
+ i_new = 0;
+ for (size_t i = 0; i < rank_union.size(); i++) {
+ if (mapRank2in_remove.count(rank_old[i_old]) != 0) {
+ i_old++;
+ continue;
+ }
- gsl_vector_view Xnew_col=gsl_matrix_column(X_new, i_new);
- gsl_vector_const_view Xcopy_col=gsl_matrix_const_column(X_old, i_old);
- gsl_vector_memcpy (&Xnew_col.vector, &Xcopy_col.vector);
+ gsl_vector_view Xnew_col = gsl_matrix_column(X_new, i_new);
+ gsl_vector_const_view Xcopy_col = gsl_matrix_const_column(X_old, i_old);
+ gsl_vector_memcpy(&Xnew_col.vector, &Xcopy_col.vector);
- d=gsl_vector_get (Xty_old, i_old);
- gsl_vector_set (Xty_new, i_new, d);
+ d = gsl_vector_get(Xty_old, i_old);
+ gsl_vector_set(Xty_new, i_new, d);
- j_old=i_old; j_new=i_new;
- for (size_t j=i; j<rank_union.size(); j++) {
- if (mapRank2in_remove.count(rank_old[j_old])!=0) {j_old++; continue;}
+ j_old = i_old;
+ j_new = i_new;
+ for (size_t j = i; j < rank_union.size(); j++) {
+ if (mapRank2in_remove.count(rank_old[j_old]) != 0) {
+ j_old++;
+ continue;
+ }
- d=gsl_matrix_get(XtX_old, i_old, j_old);
+ d = gsl_matrix_get(XtX_old, i_old, j_old);
- gsl_matrix_set (XtX_new, i_new, j_new, d);
- if (i_new!=j_new) {gsl_matrix_set (XtX_new, j_new, i_new, d);}
+ gsl_matrix_set(XtX_new, i_new, j_new, d);
+ if (i_new != j_new) {
+ gsl_matrix_set(XtX_new, j_new, i_new, d);
+ }
- j_old++; j_new++;
+ j_old++;
+ j_new++;
}
- i_old++; i_new++;
+ i_old++;
+ i_new++;
}
} else {
- gsl_matrix *X_add=gsl_matrix_alloc(X_old->size1, rank_add.size() );
- gsl_matrix *XtX_aa=gsl_matrix_alloc(X_add->size2, X_add->size2);
- gsl_matrix *XtX_ao=gsl_matrix_alloc(X_add->size2, X_old->size2);
- gsl_vector *Xty_add=gsl_vector_alloc(X_add->size2);
+ gsl_matrix *X_add = gsl_matrix_alloc(X_old->size1, rank_add.size());
+ gsl_matrix *XtX_aa = gsl_matrix_alloc(X_add->size2, X_add->size2);
+ gsl_matrix *XtX_ao = gsl_matrix_alloc(X_add->size2, X_old->size2);
+ gsl_vector *Xty_add = gsl_vector_alloc(X_add->size2);
// Get X_add.
- SetXgamma (X_add, X, rank_add);
+ SetXgamma(X_add, X, rank_add);
// Get t(X_add)X_add and t(X_add)X_temp.
- clock_t time_start=clock();
+ clock_t time_start = clock();
// Somehow the lapack_dgemm does not work here.
- gsl_blas_dgemm (CblasTrans, CblasNoTrans, 1.0, X_add, X_add,
- 0.0, XtX_aa);
- gsl_blas_dgemm (CblasTrans, CblasNoTrans, 1.0, X_add, X_old,
- 0.0, XtX_ao);
+ gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, X_add, X_add, 0.0, XtX_aa);
+ gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, X_add, X_old, 0.0, XtX_ao);
gsl_blas_dgemv(CblasTrans, 1.0, X_add, y, 0.0, Xty_add);
- time_Omega+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
+ time_Omega += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
// Save to X_new, XtX_new and Xty_new.
- i_old=0; i_new=0; i_add=0;
- for (size_t i=0; i<rank_union.size(); i++) {
- if (mapRank2in_remove.count(rank_old[i_old])!=0) {
- i_old++;
- continue;
- }
- if (mapRank2in_add.count(rank_new[i_new])!=0) {
- i_flag=1;
- } else {
- i_flag=0;
- }
-
- gsl_vector_view Xnew_col=gsl_matrix_column(X_new, i_new);
- if (i_flag==1) {
- gsl_vector_view Xcopy_col=gsl_matrix_column(X_add, i_add);
- gsl_vector_memcpy (&Xnew_col.vector, &Xcopy_col.vector);
- } else {
- gsl_vector_const_view Xcopy_col=
- gsl_matrix_const_column(X_old, i_old);
- gsl_vector_memcpy (&Xnew_col.vector, &Xcopy_col.vector);
- }
-
- if (i_flag==1) {
- d=gsl_vector_get (Xty_add, i_add);
+ i_old = 0;
+ i_new = 0;
+ i_add = 0;
+ for (size_t i = 0; i < rank_union.size(); i++) {
+ if (mapRank2in_remove.count(rank_old[i_old]) != 0) {
+ i_old++;
+ continue;
+ }
+ if (mapRank2in_add.count(rank_new[i_new]) != 0) {
+ i_flag = 1;
+ } else {
+ i_flag = 0;
+ }
+
+ gsl_vector_view Xnew_col = gsl_matrix_column(X_new, i_new);
+ if (i_flag == 1) {
+ gsl_vector_view Xcopy_col = gsl_matrix_column(X_add, i_add);
+ gsl_vector_memcpy(&Xnew_col.vector, &Xcopy_col.vector);
+ } else {
+ gsl_vector_const_view Xcopy_col =
+ gsl_matrix_const_column(X_old, i_old);
+ gsl_vector_memcpy(&Xnew_col.vector, &Xcopy_col.vector);
+ }
+
+ if (i_flag == 1) {
+ d = gsl_vector_get(Xty_add, i_add);
} else {
- d=gsl_vector_get (Xty_old, i_old);
+ d = gsl_vector_get(Xty_old, i_old);
+ }
+ gsl_vector_set(Xty_new, i_new, d);
+
+ j_old = i_old;
+ j_new = i_new;
+ j_add = i_add;
+ for (size_t j = i; j < rank_union.size(); j++) {
+ if (mapRank2in_remove.count(rank_old[j_old]) != 0) {
+ j_old++;
+ continue;
+ }
+ if (mapRank2in_add.count(rank_new[j_new]) != 0) {
+ j_flag = 1;
+ } else {
+ j_flag = 0;
+ }
+
+ if (i_flag == 1 && j_flag == 1) {
+ d = gsl_matrix_get(XtX_aa, i_add, j_add);
+ } else if (i_flag == 1) {
+ d = gsl_matrix_get(XtX_ao, i_add, j_old);
+ } else if (j_flag == 1) {
+ d = gsl_matrix_get(XtX_ao, j_add, i_old);
+ } else {
+ d = gsl_matrix_get(XtX_old, i_old, j_old);
+ }
+
+ gsl_matrix_set(XtX_new, i_new, j_new, d);
+ if (i_new != j_new) {
+ gsl_matrix_set(XtX_new, j_new, i_new, d);
+ }
+
+ j_new++;
+ if (j_flag == 1) {
+ j_add++;
+ } else {
+ j_old++;
+ }
}
- gsl_vector_set (Xty_new, i_new, d);
-
- j_old=i_old; j_new=i_new; j_add=i_add;
- for (size_t j=i; j<rank_union.size(); j++) {
- if (mapRank2in_remove.count(rank_old[j_old])!=0) {
- j_old++;
- continue;
- }
- if (mapRank2in_add.count(rank_new[j_new])!=0) {
- j_flag=1;
- } else {
- j_flag=0;
- }
-
- if (i_flag==1 && j_flag==1) {
- d=gsl_matrix_get(XtX_aa, i_add, j_add);
- } else if (i_flag==1) {
- d=gsl_matrix_get(XtX_ao, i_add, j_old);
- } else if (j_flag==1) {
- d=gsl_matrix_get(XtX_ao, j_add, i_old);
- } else {
- d=gsl_matrix_get(XtX_old, i_old, j_old);
- }
-
- gsl_matrix_set (XtX_new, i_new, j_new, d);
- if (i_new!=j_new) {gsl_matrix_set (XtX_new, j_new, i_new, d);}
-
- j_new++; if (j_flag==1) {j_add++;} else {j_old++;}
+ i_new++;
+ if (i_flag == 1) {
+ i_add++;
+ } else {
+ i_old++;
}
- i_new++; if (i_flag==1) {i_add++;} else {i_old++;}
}
gsl_matrix_free(X_add);
@@ -1377,7 +1445,6 @@ void BSLMM::SetXgamma (const gsl_matrix *X, const gsl_matrix *X_old,
gsl_matrix_free(XtX_ao);
gsl_vector_free(Xty_add);
}
-
}
rank_remove.clear();
@@ -1389,462 +1456,442 @@ void BSLMM::SetXgamma (const gsl_matrix *X, const gsl_matrix *X_old,
return;
}
-double BSLMM::CalcPosterior (const double yty, class HYPBSLMM &cHyp) {
- double logpost=0.0;
+double BSLMM::CalcPosterior(const double yty, class HYPBSLMM &cHyp) {
+ double logpost = 0.0;
- // For quantitative traits, calculate pve and pge.
- // Pve and pge for case/control data are calculted in CalcCC_PVEnZ.
- if (a_mode==11) {
- cHyp.pve=0.0;
- cHyp.pge=1.0;
- }
+ // For quantitative traits, calculate pve and pge.
+ // Pve and pge for case/control data are calculted in CalcCC_PVEnZ.
+ if (a_mode == 11) {
+ cHyp.pve = 0.0;
+ cHyp.pge = 1.0;
+ }
- // Calculate likelihood.
- if (a_mode==11) {logpost-=0.5*(double)ni_test*log(yty);}
- else {logpost-=0.5*yty;}
+ // Calculate likelihood.
+ if (a_mode == 11) {
+ logpost -= 0.5 * (double)ni_test * log(yty);
+ } else {
+ logpost -= 0.5 * yty;
+ }
- logpost+=((double)cHyp.n_gamma-1.0)*cHyp.logp+
- ((double)ns_test-(double)cHyp.n_gamma)*log(1-exp(cHyp.logp));
+ logpost += ((double)cHyp.n_gamma - 1.0) * cHyp.logp +
+ ((double)ns_test - (double)cHyp.n_gamma) * log(1 - exp(cHyp.logp));
- return logpost;
+ return logpost;
}
-double BSLMM::CalcPosterior (const gsl_matrix *Xgamma, const gsl_matrix *XtX,
- const gsl_vector *Xty, const double yty,
- const size_t s_size, gsl_vector *Xb,
- gsl_vector *beta, class HYPBSLMM &cHyp) {
- double sigma_a2=cHyp.h/( (1-cHyp.h)*exp(cHyp.logp)*(double)ns_test);
- double logpost=0.0;
- double d, P_yy=yty, logdet_O=0.0;
-
- gsl_matrix_const_view Xgamma_sub=
- gsl_matrix_const_submatrix (Xgamma, 0, 0, Xgamma->size1, s_size);
- gsl_matrix_const_view XtX_sub=
- gsl_matrix_const_submatrix (XtX, 0, 0, s_size, s_size);
- gsl_vector_const_view Xty_sub=
- gsl_vector_const_subvector (Xty, 0, s_size);
-
- gsl_matrix *Omega=gsl_matrix_alloc (s_size, s_size);
- gsl_matrix *M_temp=gsl_matrix_alloc (s_size, s_size);
- gsl_vector *beta_hat=gsl_vector_alloc (s_size);
- gsl_vector *Xty_temp=gsl_vector_alloc (s_size);
-
- gsl_vector_memcpy (Xty_temp, &Xty_sub.vector);
-
- // Calculate Omega.
- gsl_matrix_memcpy (Omega, &XtX_sub.matrix);
- gsl_matrix_scale (Omega, sigma_a2);
- gsl_matrix_set_identity (M_temp);
- gsl_matrix_add (Omega, M_temp);
-
- // Calculate beta_hat.
- logdet_O=CholeskySolve(Omega, Xty_temp, beta_hat);
- gsl_vector_scale (beta_hat, sigma_a2);
-
- gsl_blas_ddot (Xty_temp, beta_hat, &d);
- P_yy-=d;
-
- // Sample tau.
- double tau=1.0;
- if (a_mode==11) {
- tau = gsl_ran_gamma (gsl_r, (double)ni_test/2.0, 2.0/P_yy);
- }
-
- // Sample beta.
- for (size_t i=0; i<s_size; i++)
- {
- d=gsl_ran_gaussian(gsl_r, 1);
- gsl_vector_set(beta, i, d);
- }
- gsl_vector_view beta_sub=gsl_vector_subvector(beta, 0, s_size);
- gsl_blas_dtrsv(CblasUpper, CblasNoTrans, CblasNonUnit, Omega,
- &beta_sub.vector);
-
- // This computes inv(L^T(Omega)) %*% beta.
- gsl_vector_scale(&beta_sub.vector, sqrt(sigma_a2/tau));
- gsl_vector_add(&beta_sub.vector, beta_hat);
- gsl_blas_dgemv (CblasNoTrans, 1.0, &Xgamma_sub.matrix,
- &beta_sub.vector, 0.0, Xb);
-
- // For quantitative traits, calculate pve and pge.
- if (a_mode==11) {
- gsl_blas_ddot (Xb, Xb, &d);
- cHyp.pve=d/(double)ni_test;
- cHyp.pve/=cHyp.pve+1.0/tau;
- cHyp.pge=1.0;
- }
-
- logpost=-0.5*logdet_O;
- if (a_mode==11) {logpost-=0.5*(double)ni_test*log(P_yy);}
- else {logpost-=0.5*P_yy;}
-
- logpost+=((double)cHyp.n_gamma-1.0)*cHyp.logp+
- ((double)ns_test-(double)cHyp.n_gamma)*log(1.0-exp(cHyp.logp));
-
- gsl_matrix_free (Omega);
- gsl_matrix_free (M_temp);
- gsl_vector_free (beta_hat);
- gsl_vector_free (Xty_temp);
-
- return logpost;
+double BSLMM::CalcPosterior(const gsl_matrix *Xgamma, const gsl_matrix *XtX,
+ const gsl_vector *Xty, const double yty,
+ const size_t s_size, gsl_vector *Xb,
+ gsl_vector *beta, class HYPBSLMM &cHyp) {
+ double sigma_a2 = cHyp.h / ((1 - cHyp.h) * exp(cHyp.logp) * (double)ns_test);
+ double logpost = 0.0;
+ double d, P_yy = yty, logdet_O = 0.0;
+
+ gsl_matrix_const_view Xgamma_sub =
+ gsl_matrix_const_submatrix(Xgamma, 0, 0, Xgamma->size1, s_size);
+ gsl_matrix_const_view XtX_sub =
+ gsl_matrix_const_submatrix(XtX, 0, 0, s_size, s_size);
+ gsl_vector_const_view Xty_sub = gsl_vector_const_subvector(Xty, 0, s_size);
+
+ gsl_matrix *Omega = gsl_matrix_alloc(s_size, s_size);
+ gsl_matrix *M_temp = gsl_matrix_alloc(s_size, s_size);
+ gsl_vector *beta_hat = gsl_vector_alloc(s_size);
+ gsl_vector *Xty_temp = gsl_vector_alloc(s_size);
+
+ gsl_vector_memcpy(Xty_temp, &Xty_sub.vector);
+
+ // Calculate Omega.
+ gsl_matrix_memcpy(Omega, &XtX_sub.matrix);
+ gsl_matrix_scale(Omega, sigma_a2);
+ gsl_matrix_set_identity(M_temp);
+ gsl_matrix_add(Omega, M_temp);
+
+ // Calculate beta_hat.
+ logdet_O = CholeskySolve(Omega, Xty_temp, beta_hat);
+ gsl_vector_scale(beta_hat, sigma_a2);
+
+ gsl_blas_ddot(Xty_temp, beta_hat, &d);
+ P_yy -= d;
+
+ // Sample tau.
+ double tau = 1.0;
+ if (a_mode == 11) {
+ tau = gsl_ran_gamma(gsl_r, (double)ni_test / 2.0, 2.0 / P_yy);
+ }
+
+ // Sample beta.
+ for (size_t i = 0; i < s_size; i++) {
+ d = gsl_ran_gaussian(gsl_r, 1);
+ gsl_vector_set(beta, i, d);
+ }
+ gsl_vector_view beta_sub = gsl_vector_subvector(beta, 0, s_size);
+ gsl_blas_dtrsv(CblasUpper, CblasNoTrans, CblasNonUnit, Omega,
+ &beta_sub.vector);
+
+ // This computes inv(L^T(Omega)) %*% beta.
+ gsl_vector_scale(&beta_sub.vector, sqrt(sigma_a2 / tau));
+ gsl_vector_add(&beta_sub.vector, beta_hat);
+ gsl_blas_dgemv(CblasNoTrans, 1.0, &Xgamma_sub.matrix, &beta_sub.vector, 0.0,
+ Xb);
+
+ // For quantitative traits, calculate pve and pge.
+ if (a_mode == 11) {
+ gsl_blas_ddot(Xb, Xb, &d);
+ cHyp.pve = d / (double)ni_test;
+ cHyp.pve /= cHyp.pve + 1.0 / tau;
+ cHyp.pge = 1.0;
+ }
+
+ logpost = -0.5 * logdet_O;
+ if (a_mode == 11) {
+ logpost -= 0.5 * (double)ni_test * log(P_yy);
+ } else {
+ logpost -= 0.5 * P_yy;
+ }
+
+ logpost +=
+ ((double)cHyp.n_gamma - 1.0) * cHyp.logp +
+ ((double)ns_test - (double)cHyp.n_gamma) * log(1.0 - exp(cHyp.logp));
+
+ gsl_matrix_free(Omega);
+ gsl_matrix_free(M_temp);
+ gsl_vector_free(beta_hat);
+ gsl_vector_free(Xty_temp);
+
+ return logpost;
}
// Calculate pve and pge, and calculate z_hat for case-control data.
-void BSLMM::CalcCC_PVEnZ (gsl_vector *z_hat, class HYPBSLMM &cHyp)
-{
+void BSLMM::CalcCC_PVEnZ(gsl_vector *z_hat, class HYPBSLMM &cHyp) {
gsl_vector_set_zero(z_hat);
- cHyp.pve=0.0;
- cHyp.pge=1.0;
+ cHyp.pve = 0.0;
+ cHyp.pge = 1.0;
return;
}
// Calculate pve and pge, and calculate z_hat for case-control data.
-void BSLMM::CalcCC_PVEnZ (const gsl_vector *Xb, gsl_vector *z_hat,
- class HYPBSLMM &cHyp) {
- double d;
+void BSLMM::CalcCC_PVEnZ(const gsl_vector *Xb, gsl_vector *z_hat,
+ class HYPBSLMM &cHyp) {
+ double d;
- gsl_blas_ddot (Xb, Xb, &d);
- cHyp.pve=d/(double)ni_test;
- cHyp.pve/=cHyp.pve+1.0;
- cHyp.pge=1.0;
+ gsl_blas_ddot(Xb, Xb, &d);
+ cHyp.pve = d / (double)ni_test;
+ cHyp.pve /= cHyp.pve + 1.0;
+ cHyp.pge = 1.0;
- gsl_vector_memcpy (z_hat, Xb);
+ gsl_vector_memcpy(z_hat, Xb);
- return;
+ return;
}
// If a_mode==13, then run probit model.
-void BSLMM::MCMC (const gsl_matrix *X, const gsl_vector *y) {
- clock_t time_start;
- double time_set=0, time_post=0;
-
- class HYPBSLMM cHyp_old, cHyp_new;
-
- gsl_matrix *Result_hyp=gsl_matrix_alloc (w_pace, 6);
- gsl_matrix *Result_gamma=gsl_matrix_alloc (w_pace, s_max);
-
- gsl_vector *Xb_new=gsl_vector_alloc (ni_test);
- gsl_vector *Xb_old=gsl_vector_alloc (ni_test);
- gsl_vector *z_hat=gsl_vector_alloc (ni_test);
- gsl_vector *z=gsl_vector_alloc (ni_test);
-
- gsl_matrix *Xgamma_old=gsl_matrix_alloc (ni_test, s_max);
- gsl_matrix *XtX_old=gsl_matrix_alloc (s_max, s_max);
- gsl_vector *Xtz_old=gsl_vector_alloc (s_max);
- gsl_vector *beta_old=gsl_vector_alloc (s_max);
-
- gsl_matrix *Xgamma_new=gsl_matrix_alloc (ni_test, s_max);
- gsl_matrix *XtX_new=gsl_matrix_alloc (s_max, s_max);
- gsl_vector *Xtz_new=gsl_vector_alloc (s_max);
- gsl_vector *beta_new=gsl_vector_alloc (s_max);
-
- double ztz=0.0;
- gsl_vector_memcpy (z, y);
-
- // For quantitative traits, y is centered already in
- // gemma.cpp, but just in case.
- double mean_z=CenterVector (z);
- gsl_blas_ddot(z, z, &ztz);
-
- double logPost_new, logPost_old;
- double logMHratio;
-
- gsl_matrix_set_zero (Result_gamma);
- if (a_mode==13) {
- pheno_mean=0.0;
- }
-
- vector<pair<double, double> > beta_g;
- for (size_t i=0; i<ns_test; i++) {
- beta_g.push_back(make_pair(0.0, 0.0));
- }
-
- vector<size_t> rank_new, rank_old;
- vector<pair<size_t, double> > pos_loglr;
-
- time_start=clock();
- MatrixCalcLmLR (X, z, pos_loglr);
- time_Proposal=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
-
- stable_sort (pos_loglr.begin(), pos_loglr.end(), comp_lr);
- for (size_t i=0; i<ns_test; ++i) {
- mapRank2pos[i]=pos_loglr[i].first;
- }
-
- // Calculate proposal distribution for gamma (unnormalized),
- // and set up gsl_r and gsl_t.
- gsl_rng_env_setup();
- const gsl_rng_type * gslType;
- gslType = gsl_rng_default;
- if (randseed<0)
- {
- time_t rawtime;
- time (&rawtime);
- tm * ptm = gmtime (&rawtime);
-
- randseed = (unsigned) (ptm->tm_hour%24*3600+
- ptm->tm_min*60+ptm->tm_sec);
- }
- gsl_r = gsl_rng_alloc(gslType);
- gsl_rng_set(gsl_r, randseed);
-
- double *p_gamma = new double[ns_test];
- CalcPgamma (p_gamma);
-
- gsl_t=gsl_ran_discrete_preproc (ns_test, p_gamma);
-
- // Initial parameters.
- InitialMCMC (X, z, rank_old, cHyp_old, pos_loglr);
-
- cHyp_initial=cHyp_old;
-
- if (cHyp_old.n_gamma==0) {
- logPost_old=CalcPosterior (ztz, cHyp_old);
- }
- else {
- SetXgamma (Xgamma_old, X, rank_old);
- CalcXtX (Xgamma_old, z, rank_old.size(), XtX_old, Xtz_old);
- logPost_old=CalcPosterior (Xgamma_old, XtX_old, Xtz_old, ztz,
- rank_old.size(), Xb_old, beta_old,
- cHyp_old);
- }
-
- // Calculate centered z_hat, and pve.
- if (a_mode==13) {
- if (cHyp_old.n_gamma==0) {
- CalcCC_PVEnZ (z_hat, cHyp_old);
- }
- else {
- CalcCC_PVEnZ (Xb_old, z_hat, cHyp_old);
- }
- }
-
- // Start MCMC.
- int accept;
- size_t total_step=w_step+s_step;
- size_t w=0, w_col, pos;
- size_t repeat=0;
-
- for (size_t t=0; t<total_step; ++t) {
- if (t%d_pace==0 || t==total_step-1) {
- ProgressBar ("Running MCMC ", t, total_step-1,
- (double)n_accept/(double)(t*n_mh+1));
- }
-
- if (a_mode==13) {
- SampleZ (y, z_hat, z);
- mean_z=CenterVector (z);
- gsl_blas_ddot(z,z,&ztz);
-
- // First proposal.
- if (cHyp_old.n_gamma==0) {
- logPost_old=CalcPosterior (ztz, cHyp_old);
- } else {
- gsl_matrix_view Xold_sub=
- gsl_matrix_submatrix(Xgamma_old, 0, 0, ni_test,
- rank_old.size());
- gsl_vector_view Xtz_sub=
- gsl_vector_subvector(Xtz_old, 0, rank_old.size());
- gsl_blas_dgemv (CblasTrans, 1.0, &Xold_sub.matrix,
- z, 0.0, &Xtz_sub.vector);
- logPost_old=
- CalcPosterior (Xgamma_old, XtX_old, Xtz_old, ztz,
- rank_old.size(), Xb_old, beta_old,
- cHyp_old);
- }
- }
-
- // M-H steps.
- for (size_t i=0; i<n_mh; ++i) {
- if (gsl_rng_uniform(gsl_r)<0.33) {
- repeat = 1+gsl_rng_uniform_int(gsl_r, 20);
- }
- else {repeat=1;}
-
- logMHratio=0.0;
- logMHratio+=
- ProposeHnRho(cHyp_old, cHyp_new, repeat);
- logMHratio+=
- ProposeGamma (rank_old, rank_new, p_gamma,
- cHyp_old, cHyp_new, repeat);
- logMHratio+=ProposePi(cHyp_old, cHyp_new, repeat);
-
- if (cHyp_new.n_gamma==0) {
- logPost_new=CalcPosterior (ztz, cHyp_new);
- } else {
-
- // This makes sure that rank_old.size() ==
- // rank_remove.size() does not happen.
- if (cHyp_new.n_gamma<=20 || cHyp_old.n_gamma<=20) {
- time_start=clock();
- SetXgamma (Xgamma_new, X, rank_new);
- CalcXtX (Xgamma_new, z, rank_new.size(),
- XtX_new, Xtz_new);
- time_set+=(clock()-time_start)/
- (double(CLOCKS_PER_SEC)*60.0);
- } else {
- time_start=clock();
- SetXgamma (X, Xgamma_old, XtX_old, Xtz_old, z,
- rank_old, rank_new, Xgamma_new,
- XtX_new, Xtz_new);
- time_set+=(clock()-time_start)/
- (double(CLOCKS_PER_SEC)*60.0);
- }
- time_start=clock();
- logPost_new=
- CalcPosterior (Xgamma_new, XtX_new, Xtz_new, ztz,
- rank_new.size(), Xb_new, beta_new,
- cHyp_new);
- time_post+=(clock()-time_start)/
- (double(CLOCKS_PER_SEC)*60.0);
- }
- logMHratio+=logPost_new-logPost_old;
-
- if (logMHratio>0 ||
- log(gsl_rng_uniform(gsl_r))<logMHratio) {
- accept=1;
- n_accept++;
- }
- else {accept=0;}
-
- if (accept==1) {
- logPost_old=logPost_new;
- cHyp_old=cHyp_new;
- gsl_vector_memcpy (Xb_old, Xb_new);
-
- rank_old.clear();
- if (rank_new.size()!=0) {
- for (size_t i=0;
- i<rank_new.size();
- ++i) {
- rank_old.push_back(rank_new[i]);
- }
-
- gsl_matrix_view Xold_sub=gsl_matrix_submatrix(Xgamma_old, 0, 0, ni_test, rank_new.size());
- gsl_matrix_view XtXold_sub=gsl_matrix_submatrix(XtX_old, 0, 0, rank_new.size(), rank_new.size());
- gsl_vector_view Xtzold_sub=gsl_vector_subvector(Xtz_old, 0, rank_new.size());
- gsl_vector_view betaold_sub=gsl_vector_subvector(beta_old, 0, rank_new.size());
-
- gsl_matrix_view Xnew_sub=gsl_matrix_submatrix(Xgamma_new, 0, 0, ni_test, rank_new.size());
- gsl_matrix_view XtXnew_sub=gsl_matrix_submatrix(XtX_new, 0, 0, rank_new.size(), rank_new.size());
- gsl_vector_view Xtznew_sub=gsl_vector_subvector(Xtz_new, 0, rank_new.size());
- gsl_vector_view betanew_sub=gsl_vector_subvector(beta_new, 0, rank_new.size());
-
- gsl_matrix_memcpy(&Xold_sub.matrix,
- &Xnew_sub.matrix);
- gsl_matrix_memcpy(&XtXold_sub.matrix,
- &XtXnew_sub.matrix);
- gsl_vector_memcpy(&Xtzold_sub.vector,
- &Xtznew_sub.vector);
- gsl_vector_memcpy(&betaold_sub.vector,
- &betanew_sub.vector);
- }
- } else {
- cHyp_new=cHyp_old;
- }
-
- }
-
- // Calculate z_hat, and pve.
- if (a_mode==13) {
- if (cHyp_old.n_gamma==0) {
- CalcCC_PVEnZ (z_hat, cHyp_old);
- }
- else {
- CalcCC_PVEnZ (Xb_old, z_hat, cHyp_old);
- }
-
- // Sample mu and update z_hat.
- gsl_vector_sub (z, z_hat);
- mean_z+=CenterVector(z);
- mean_z+=gsl_ran_gaussian(gsl_r,
- sqrt(1.0/(double) ni_test));
-
- gsl_vector_add_constant (z_hat, mean_z);
- }
-
- // Save data.
- if (t<w_step) {continue;}
- else {
- if (t%r_pace==0) {
- w_col=w%w_pace;
- if (w_col==0) {
- if (w==0) {
- WriteResult(0,Result_hyp,
- Result_gamma,w_col);
- }
- else {
- WriteResult(1,Result_hyp,
- Result_gamma,w_col);
- gsl_matrix_set_zero (Result_hyp);
- gsl_matrix_set_zero (Result_gamma);
- }
- }
-
- gsl_matrix_set(Result_hyp,w_col,0,
- cHyp_old.h);
- gsl_matrix_set(Result_hyp,w_col,1,
- cHyp_old.pve);
- gsl_matrix_set(Result_hyp,w_col,2,
- cHyp_old.rho);
- gsl_matrix_set(Result_hyp,w_col,3,
- cHyp_old.pge);
- gsl_matrix_set(Result_hyp,w_col,4,
- cHyp_old.logp);
- gsl_matrix_set(Result_hyp,w_col,5,
- cHyp_old.n_gamma);
-
- for (size_t i=0; i<cHyp_old.n_gamma; ++i) {
- pos=mapRank2pos[rank_old[i]]+1;
- gsl_matrix_set(Result_gamma,w_col,
- i,pos);
-
- beta_g[pos-1].first+=
- gsl_vector_get(beta_old, i);
- beta_g[pos-1].second+=1.0;
- }
-
- if (a_mode==13) {
- pheno_mean+=mean_z;
- }
-
- w++;
- }
- }
- }
- cout<<endl;
-
- cout<<"time on selecting Xgamma: "<<time_set<<endl;
- cout<<"time on calculating posterior: "<<time_post<<endl;
-
- w_col=w%w_pace;
- WriteResult (1, Result_hyp, Result_gamma, w_col);
-
- gsl_vector *alpha=gsl_vector_alloc (ns_test);
- gsl_vector_set_zero (alpha);
- WriteParam (beta_g, alpha, w);
- gsl_vector_free(alpha);
-
- gsl_matrix_free(Result_hyp);
- gsl_matrix_free(Result_gamma);
-
- gsl_vector_free(z_hat);
- gsl_vector_free(z);
- gsl_vector_free(Xb_new);
- gsl_vector_free(Xb_old);
-
- gsl_matrix_free(Xgamma_old);
- gsl_matrix_free(XtX_old);
- gsl_vector_free(Xtz_old);
- gsl_vector_free(beta_old);
-
- gsl_matrix_free(Xgamma_new);
- gsl_matrix_free(XtX_new);
- gsl_vector_free(Xtz_new);
- gsl_vector_free(beta_new);
-
- delete [] p_gamma;
- beta_g.clear();
-
- return;
+void BSLMM::MCMC(const gsl_matrix *X, const gsl_vector *y) {
+ clock_t time_start;
+ double time_set = 0, time_post = 0;
+
+ class HYPBSLMM cHyp_old, cHyp_new;
+
+ gsl_matrix *Result_hyp = gsl_matrix_alloc(w_pace, 6);
+ gsl_matrix *Result_gamma = gsl_matrix_alloc(w_pace, s_max);
+
+ gsl_vector *Xb_new = gsl_vector_alloc(ni_test);
+ gsl_vector *Xb_old = gsl_vector_alloc(ni_test);
+ gsl_vector *z_hat = gsl_vector_alloc(ni_test);
+ gsl_vector *z = gsl_vector_alloc(ni_test);
+
+ gsl_matrix *Xgamma_old = gsl_matrix_alloc(ni_test, s_max);
+ gsl_matrix *XtX_old = gsl_matrix_alloc(s_max, s_max);
+ gsl_vector *Xtz_old = gsl_vector_alloc(s_max);
+ gsl_vector *beta_old = gsl_vector_alloc(s_max);
+
+ gsl_matrix *Xgamma_new = gsl_matrix_alloc(ni_test, s_max);
+ gsl_matrix *XtX_new = gsl_matrix_alloc(s_max, s_max);
+ gsl_vector *Xtz_new = gsl_vector_alloc(s_max);
+ gsl_vector *beta_new = gsl_vector_alloc(s_max);
+
+ double ztz = 0.0;
+ gsl_vector_memcpy(z, y);
+
+ // For quantitative traits, y is centered already in
+ // gemma.cpp, but just in case.
+ double mean_z = CenterVector(z);
+ gsl_blas_ddot(z, z, &ztz);
+
+ double logPost_new, logPost_old;
+ double logMHratio;
+
+ gsl_matrix_set_zero(Result_gamma);
+ if (a_mode == 13) {
+ pheno_mean = 0.0;
+ }
+
+ vector<pair<double, double>> beta_g;
+ for (size_t i = 0; i < ns_test; i++) {
+ beta_g.push_back(make_pair(0.0, 0.0));
+ }
+
+ vector<size_t> rank_new, rank_old;
+ vector<pair<size_t, double>> pos_loglr;
+
+ time_start = clock();
+ MatrixCalcLmLR(X, z, pos_loglr);
+ time_Proposal = (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
+
+ stable_sort(pos_loglr.begin(), pos_loglr.end(), comp_lr);
+ for (size_t i = 0; i < ns_test; ++i) {
+ mapRank2pos[i] = pos_loglr[i].first;
+ }
+
+ // Calculate proposal distribution for gamma (unnormalized),
+ // and set up gsl_r and gsl_t.
+ gsl_rng_env_setup();
+ const gsl_rng_type *gslType;
+ gslType = gsl_rng_default;
+ if (randseed < 0) {
+ time_t rawtime;
+ time(&rawtime);
+ tm *ptm = gmtime(&rawtime);
+
+ randseed =
+ (unsigned)(ptm->tm_hour % 24 * 3600 + ptm->tm_min * 60 + ptm->tm_sec);
+ }
+ gsl_r = gsl_rng_alloc(gslType);
+ gsl_rng_set(gsl_r, randseed);
+
+ double *p_gamma = new double[ns_test];
+ CalcPgamma(p_gamma);
+
+ gsl_t = gsl_ran_discrete_preproc(ns_test, p_gamma);
+
+ // Initial parameters.
+ InitialMCMC(X, z, rank_old, cHyp_old, pos_loglr);
+
+ cHyp_initial = cHyp_old;
+
+ if (cHyp_old.n_gamma == 0) {
+ logPost_old = CalcPosterior(ztz, cHyp_old);
+ } else {
+ SetXgamma(Xgamma_old, X, rank_old);
+ CalcXtX(Xgamma_old, z, rank_old.size(), XtX_old, Xtz_old);
+ logPost_old = CalcPosterior(Xgamma_old, XtX_old, Xtz_old, ztz,
+ rank_old.size(), Xb_old, beta_old, cHyp_old);
+ }
+
+ // Calculate centered z_hat, and pve.
+ if (a_mode == 13) {
+ if (cHyp_old.n_gamma == 0) {
+ CalcCC_PVEnZ(z_hat, cHyp_old);
+ } else {
+ CalcCC_PVEnZ(Xb_old, z_hat, cHyp_old);
+ }
+ }
+
+ // Start MCMC.
+ int accept;
+ size_t total_step = w_step + s_step;
+ size_t w = 0, w_col, pos;
+ size_t repeat = 0;
+
+ for (size_t t = 0; t < total_step; ++t) {
+ if (t % d_pace == 0 || t == total_step - 1) {
+ ProgressBar("Running MCMC ", t, total_step - 1,
+ (double)n_accept / (double)(t * n_mh + 1));
+ }
+
+ if (a_mode == 13) {
+ SampleZ(y, z_hat, z);
+ mean_z = CenterVector(z);
+ gsl_blas_ddot(z, z, &ztz);
+
+ // First proposal.
+ if (cHyp_old.n_gamma == 0) {
+ logPost_old = CalcPosterior(ztz, cHyp_old);
+ } else {
+ gsl_matrix_view Xold_sub =
+ gsl_matrix_submatrix(Xgamma_old, 0, 0, ni_test, rank_old.size());
+ gsl_vector_view Xtz_sub =
+ gsl_vector_subvector(Xtz_old, 0, rank_old.size());
+ gsl_blas_dgemv(CblasTrans, 1.0, &Xold_sub.matrix, z, 0.0,
+ &Xtz_sub.vector);
+ logPost_old =
+ CalcPosterior(Xgamma_old, XtX_old, Xtz_old, ztz, rank_old.size(),
+ Xb_old, beta_old, cHyp_old);
+ }
+ }
+
+ // M-H steps.
+ for (size_t i = 0; i < n_mh; ++i) {
+ if (gsl_rng_uniform(gsl_r) < 0.33) {
+ repeat = 1 + gsl_rng_uniform_int(gsl_r, 20);
+ } else {
+ repeat = 1;
+ }
+
+ logMHratio = 0.0;
+ logMHratio += ProposeHnRho(cHyp_old, cHyp_new, repeat);
+ logMHratio +=
+ ProposeGamma(rank_old, rank_new, p_gamma, cHyp_old, cHyp_new, repeat);
+ logMHratio += ProposePi(cHyp_old, cHyp_new, repeat);
+
+ if (cHyp_new.n_gamma == 0) {
+ logPost_new = CalcPosterior(ztz, cHyp_new);
+ } else {
+
+ // This makes sure that rank_old.size() ==
+ // rank_remove.size() does not happen.
+ if (cHyp_new.n_gamma <= 20 || cHyp_old.n_gamma <= 20) {
+ time_start = clock();
+ SetXgamma(Xgamma_new, X, rank_new);
+ CalcXtX(Xgamma_new, z, rank_new.size(), XtX_new, Xtz_new);
+ time_set += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
+ } else {
+ time_start = clock();
+ SetXgamma(X, Xgamma_old, XtX_old, Xtz_old, z, rank_old, rank_new,
+ Xgamma_new, XtX_new, Xtz_new);
+ time_set += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
+ }
+ time_start = clock();
+ logPost_new =
+ CalcPosterior(Xgamma_new, XtX_new, Xtz_new, ztz, rank_new.size(),
+ Xb_new, beta_new, cHyp_new);
+ time_post += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
+ }
+ logMHratio += logPost_new - logPost_old;
+
+ if (logMHratio > 0 || log(gsl_rng_uniform(gsl_r)) < logMHratio) {
+ accept = 1;
+ n_accept++;
+ } else {
+ accept = 0;
+ }
+
+ if (accept == 1) {
+ logPost_old = logPost_new;
+ cHyp_old = cHyp_new;
+ gsl_vector_memcpy(Xb_old, Xb_new);
+
+ rank_old.clear();
+ if (rank_new.size() != 0) {
+ for (size_t i = 0; i < rank_new.size(); ++i) {
+ rank_old.push_back(rank_new[i]);
+ }
+
+ gsl_matrix_view Xold_sub =
+ gsl_matrix_submatrix(Xgamma_old, 0, 0, ni_test, rank_new.size());
+ gsl_matrix_view XtXold_sub = gsl_matrix_submatrix(
+ XtX_old, 0, 0, rank_new.size(), rank_new.size());
+ gsl_vector_view Xtzold_sub =
+ gsl_vector_subvector(Xtz_old, 0, rank_new.size());
+ gsl_vector_view betaold_sub =
+ gsl_vector_subvector(beta_old, 0, rank_new.size());
+
+ gsl_matrix_view Xnew_sub =
+ gsl_matrix_submatrix(Xgamma_new, 0, 0, ni_test, rank_new.size());
+ gsl_matrix_view XtXnew_sub = gsl_matrix_submatrix(
+ XtX_new, 0, 0, rank_new.size(), rank_new.size());
+ gsl_vector_view Xtznew_sub =
+ gsl_vector_subvector(Xtz_new, 0, rank_new.size());
+ gsl_vector_view betanew_sub =
+ gsl_vector_subvector(beta_new, 0, rank_new.size());
+
+ gsl_matrix_memcpy(&Xold_sub.matrix, &Xnew_sub.matrix);
+ gsl_matrix_memcpy(&XtXold_sub.matrix, &XtXnew_sub.matrix);
+ gsl_vector_memcpy(&Xtzold_sub.vector, &Xtznew_sub.vector);
+ gsl_vector_memcpy(&betaold_sub.vector, &betanew_sub.vector);
+ }
+ } else {
+ cHyp_new = cHyp_old;
+ }
+ }
+
+ // Calculate z_hat, and pve.
+ if (a_mode == 13) {
+ if (cHyp_old.n_gamma == 0) {
+ CalcCC_PVEnZ(z_hat, cHyp_old);
+ } else {
+ CalcCC_PVEnZ(Xb_old, z_hat, cHyp_old);
+ }
+
+ // Sample mu and update z_hat.
+ gsl_vector_sub(z, z_hat);
+ mean_z += CenterVector(z);
+ mean_z += gsl_ran_gaussian(gsl_r, sqrt(1.0 / (double)ni_test));
+
+ gsl_vector_add_constant(z_hat, mean_z);
+ }
+
+ // Save data.
+ if (t < w_step) {
+ continue;
+ } else {
+ if (t % r_pace == 0) {
+ w_col = w % w_pace;
+ if (w_col == 0) {
+ if (w == 0) {
+ WriteResult(0, Result_hyp, Result_gamma, w_col);
+ } else {
+ WriteResult(1, Result_hyp, Result_gamma, w_col);
+ gsl_matrix_set_zero(Result_hyp);
+ gsl_matrix_set_zero(Result_gamma);
+ }
+ }
+
+ gsl_matrix_set(Result_hyp, w_col, 0, cHyp_old.h);
+ gsl_matrix_set(Result_hyp, w_col, 1, cHyp_old.pve);
+ gsl_matrix_set(Result_hyp, w_col, 2, cHyp_old.rho);
+ gsl_matrix_set(Result_hyp, w_col, 3, cHyp_old.pge);
+ gsl_matrix_set(Result_hyp, w_col, 4, cHyp_old.logp);
+ gsl_matrix_set(Result_hyp, w_col, 5, cHyp_old.n_gamma);
+
+ for (size_t i = 0; i < cHyp_old.n_gamma; ++i) {
+ pos = mapRank2pos[rank_old[i]] + 1;
+ gsl_matrix_set(Result_gamma, w_col, i, pos);
+
+ beta_g[pos - 1].first += gsl_vector_get(beta_old, i);
+ beta_g[pos - 1].second += 1.0;
+ }
+
+ if (a_mode == 13) {
+ pheno_mean += mean_z;
+ }
+
+ w++;
+ }
+ }
+ }
+ cout << endl;
+
+ cout << "time on selecting Xgamma: " << time_set << endl;
+ cout << "time on calculating posterior: " << time_post << endl;
+
+ w_col = w % w_pace;
+ WriteResult(1, Result_hyp, Result_gamma, w_col);
+
+ gsl_vector *alpha = gsl_vector_alloc(ns_test);
+ gsl_vector_set_zero(alpha);
+ WriteParam(beta_g, alpha, w);
+ gsl_vector_free(alpha);
+
+ gsl_matrix_free(Result_hyp);
+ gsl_matrix_free(Result_gamma);
+
+ gsl_vector_free(z_hat);
+ gsl_vector_free(z);
+ gsl_vector_free(Xb_new);
+ gsl_vector_free(Xb_old);
+
+ gsl_matrix_free(Xgamma_old);
+ gsl_matrix_free(XtX_old);
+ gsl_vector_free(Xtz_old);
+ gsl_vector_free(beta_old);
+
+ gsl_matrix_free(Xgamma_new);
+ gsl_matrix_free(XtX_new);
+ gsl_vector_free(Xtz_new);
+ gsl_vector_free(beta_new);
+
+ delete[] p_gamma;
+ beta_g.clear();
+
+ return;
}