about summary refs log tree commit diff
path: root/src/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h')
-rw-r--r--src/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h341
1 files changed, 341 insertions, 0 deletions
diff --git a/src/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h b/src/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h
new file mode 100644
index 0000000..dc240e1
--- /dev/null
+++ b/src/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h
@@ -0,0 +1,341 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_GENERALIZEDEIGENSOLVER_H
+#define EIGEN_GENERALIZEDEIGENSOLVER_H
+
+#include "./RealQZ.h"
+
+namespace Eigen { 
+
+/** \eigenvalues_module \ingroup Eigenvalues_Module
+  *
+  *
+  * \class GeneralizedEigenSolver
+  *
+  * \brief Computes the generalized eigenvalues and eigenvectors of a pair of general matrices
+  *
+  * \tparam _MatrixType the type of the matrices of which we are computing the
+  * eigen-decomposition; this is expected to be an instantiation of the Matrix
+  * class template. Currently, only real matrices are supported.
+  *
+  * The generalized eigenvalues and eigenvectors of a matrix pair \f$ A \f$ and \f$ B \f$ are scalars
+  * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda Bv \f$.  If
+  * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and
+  * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V =
+  * B V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we
+  * have \f$ A = B V D V^{-1} \f$. This is called the generalized eigen-decomposition.
+  *
+  * The generalized eigenvalues and eigenvectors of a matrix pair may be complex, even when the
+  * matrices are real. Moreover, the generalized eigenvalue might be infinite if the matrix B is
+  * singular. To workaround this difficulty, the eigenvalues are provided as a pair of complex \f$ \alpha \f$
+  * and real \f$ \beta \f$ such that: \f$ \lambda_i = \alpha_i / \beta_i \f$. If \f$ \beta_i \f$ is (nearly) zero,
+  * then one can consider the well defined left eigenvalue \f$ \mu = \beta_i / \alpha_i\f$ such that:
+  * \f$ \mu_i A v_i = B v_i \f$, or even \f$ \mu_i u_i^T A  = u_i^T B \f$ where \f$ u_i \f$ is
+  * called the left eigenvector.
+  *
+  * Call the function compute() to compute the generalized eigenvalues and eigenvectors of
+  * a given matrix pair. Alternatively, you can use the
+  * GeneralizedEigenSolver(const MatrixType&, const MatrixType&, bool) constructor which computes the
+  * eigenvalues and eigenvectors at construction time. Once the eigenvalue and
+  * eigenvectors are computed, they can be retrieved with the eigenvalues() and
+  * eigenvectors() functions.
+  *
+  * Here is an usage example of this class:
+  * Example: \include GeneralizedEigenSolver.cpp
+  * Output: \verbinclude GeneralizedEigenSolver.out
+  *
+  * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
+  */
+template<typename _MatrixType> class GeneralizedEigenSolver
+{
+  public:
+
+    /** \brief Synonym for the template parameter \p _MatrixType. */
+    typedef _MatrixType MatrixType;
+
+    enum {
+      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+      Options = MatrixType::Options,
+      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+    };
+
+    /** \brief Scalar type for matrices of type #MatrixType. */
+    typedef typename MatrixType::Scalar Scalar;
+    typedef typename NumTraits<Scalar>::Real RealScalar;
+    typedef typename MatrixType::Index Index;
+
+    /** \brief Complex scalar type for #MatrixType. 
+      *
+      * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
+      * \c float or \c double) and just \c Scalar if #Scalar is
+      * complex.
+      */
+    typedef std::complex<RealScalar> ComplexScalar;
+
+    /** \brief Type for vector of real scalar values eigenvalues as returned by betas().
+      *
+      * This is a column vector with entries of type #Scalar.
+      * The length of the vector is the size of #MatrixType.
+      */
+    typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> VectorType;
+
+    /** \brief Type for vector of complex scalar values eigenvalues as returned by betas().
+      *
+      * This is a column vector with entries of type #ComplexScalar.
+      * The length of the vector is the size of #MatrixType.
+      */
+    typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ComplexVectorType;
+
+    /** \brief Expression type for the eigenvalues as returned by eigenvalues().
+      */
+    typedef CwiseBinaryOp<internal::scalar_quotient_op<ComplexScalar,Scalar>,ComplexVectorType,VectorType> EigenvalueType;
+
+    /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). 
+      *
+      * This is a square matrix with entries of type #ComplexScalar. 
+      * The size is the same as the size of #MatrixType.
+      */
+    typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType;
+
+    /** \brief Default constructor.
+      *
+      * The default constructor is useful in cases in which the user intends to
+      * perform decompositions via EigenSolver::compute(const MatrixType&, bool).
+      *
+      * \sa compute() for an example.
+      */
+    GeneralizedEigenSolver() : m_eivec(), m_alphas(), m_betas(), m_isInitialized(false), m_realQZ(), m_matS(), m_tmp() {}
+
+    /** \brief Default constructor with memory preallocation
+      *
+      * Like the default constructor but with preallocation of the internal data
+      * according to the specified problem \a size.
+      * \sa GeneralizedEigenSolver()
+      */
+    GeneralizedEigenSolver(Index size)
+      : m_eivec(size, size),
+        m_alphas(size),
+        m_betas(size),
+        m_isInitialized(false),
+        m_eigenvectorsOk(false),
+        m_realQZ(size),
+        m_matS(size, size),
+        m_tmp(size)
+    {}
+
+    /** \brief Constructor; computes the generalized eigendecomposition of given matrix pair.
+      * 
+      * \param[in]  A  Square matrix whose eigendecomposition is to be computed.
+      * \param[in]  B  Square matrix whose eigendecomposition is to be computed.
+      * \param[in]  computeEigenvectors  If true, both the eigenvectors and the
+      *    eigenvalues are computed; if false, only the eigenvalues are computed.
+      *
+      * This constructor calls compute() to compute the generalized eigenvalues
+      * and eigenvectors.
+      *
+      * \sa compute()
+      */
+    GeneralizedEigenSolver(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true)
+      : m_eivec(A.rows(), A.cols()),
+        m_alphas(A.cols()),
+        m_betas(A.cols()),
+        m_isInitialized(false),
+        m_eigenvectorsOk(false),
+        m_realQZ(A.cols()),
+        m_matS(A.rows(), A.cols()),
+        m_tmp(A.cols())
+    {
+      compute(A, B, computeEigenvectors);
+    }
+
+    /* \brief Returns the computed generalized eigenvectors.
+      *
+      * \returns  %Matrix whose columns are the (possibly complex) eigenvectors.
+      *
+      * \pre Either the constructor 
+      * GeneralizedEigenSolver(const MatrixType&,const MatrixType&, bool) or the member function
+      * compute(const MatrixType&, const MatrixType& bool) has been called before, and
+      * \p computeEigenvectors was set to true (the default).
+      *
+      * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
+      * to eigenvalue number \f$ k \f$ as returned by eigenvalues().  The
+      * eigenvectors are normalized to have (Euclidean) norm equal to one. The
+      * matrix returned by this function is the matrix \f$ V \f$ in the
+      * generalized eigendecomposition \f$ A = B V D V^{-1} \f$, if it exists.
+      *
+      * \sa eigenvalues()
+      */
+//    EigenvectorsType eigenvectors() const;
+
+    /** \brief Returns an expression of the computed generalized eigenvalues.
+      *
+      * \returns An expression of the column vector containing the eigenvalues.
+      *
+      * It is a shortcut for \code this->alphas().cwiseQuotient(this->betas()); \endcode
+      * Not that betas might contain zeros. It is therefore not recommended to use this function,
+      * but rather directly deal with the alphas and betas vectors.
+      *
+      * \pre Either the constructor 
+      * GeneralizedEigenSolver(const MatrixType&,const MatrixType&,bool) or the member function
+      * compute(const MatrixType&,const MatrixType&,bool) has been called before.
+      *
+      * The eigenvalues are repeated according to their algebraic multiplicity,
+      * so there are as many eigenvalues as rows in the matrix. The eigenvalues 
+      * are not sorted in any particular order.
+      *
+      * \sa alphas(), betas(), eigenvectors()
+      */
+    EigenvalueType eigenvalues() const
+    {
+      eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
+      return EigenvalueType(m_alphas,m_betas);
+    }
+
+    /** \returns A const reference to the vectors containing the alpha values
+      *
+      * This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
+      *
+      * \sa betas(), eigenvalues() */
+    ComplexVectorType alphas() const
+    {
+      eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
+      return m_alphas;
+    }
+
+    /** \returns A const reference to the vectors containing the beta values
+      *
+      * This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
+      *
+      * \sa alphas(), eigenvalues() */
+    VectorType betas() const
+    {
+      eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
+      return m_betas;
+    }
+
+    /** \brief Computes generalized eigendecomposition of given matrix.
+      * 
+      * \param[in]  A  Square matrix whose eigendecomposition is to be computed.
+      * \param[in]  B  Square matrix whose eigendecomposition is to be computed.
+      * \param[in]  computeEigenvectors  If true, both the eigenvectors and the
+      *    eigenvalues are computed; if false, only the eigenvalues are
+      *    computed. 
+      * \returns    Reference to \c *this
+      *
+      * This function computes the eigenvalues of the real matrix \p matrix.
+      * The eigenvalues() function can be used to retrieve them.  If 
+      * \p computeEigenvectors is true, then the eigenvectors are also computed
+      * and can be retrieved by calling eigenvectors().
+      *
+      * The matrix is first reduced to real generalized Schur form using the RealQZ
+      * class. The generalized Schur decomposition is then used to compute the eigenvalues
+      * and eigenvectors.
+      *
+      * The cost of the computation is dominated by the cost of the
+      * generalized Schur decomposition.
+      *
+      * This method reuses of the allocated data in the GeneralizedEigenSolver object.
+      */
+    GeneralizedEigenSolver& compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true);
+
+    ComputationInfo info() const
+    {
+      eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
+      return m_realQZ.info();
+    }
+
+    /** Sets the maximal number of iterations allowed.
+    */
+    GeneralizedEigenSolver& setMaxIterations(Index maxIters)
+    {
+      m_realQZ.setMaxIterations(maxIters);
+      return *this;
+    }
+
+  protected:
+    MatrixType m_eivec;
+    ComplexVectorType m_alphas;
+    VectorType m_betas;
+    bool m_isInitialized;
+    bool m_eigenvectorsOk;
+    RealQZ<MatrixType> m_realQZ;
+    MatrixType m_matS;
+
+    typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
+    ColumnVectorType m_tmp;
+};
+
+//template<typename MatrixType>
+//typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType GeneralizedEigenSolver<MatrixType>::eigenvectors() const
+//{
+//  eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
+//  eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
+//  Index n = m_eivec.cols();
+//  EigenvectorsType matV(n,n);
+//  // TODO
+//  return matV;
+//}
+
+template<typename MatrixType>
+GeneralizedEigenSolver<MatrixType>&
+GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors)
+{
+  using std::sqrt;
+  using std::abs;
+  eigen_assert(A.cols() == A.rows() && B.cols() == A.rows() && B.cols() == B.rows());
+
+  // Reduce to generalized real Schur form:
+  // A = Q S Z and B = Q T Z
+  m_realQZ.compute(A, B, computeEigenvectors);
+
+  if (m_realQZ.info() == Success)
+  {
+    m_matS = m_realQZ.matrixS();
+    if (computeEigenvectors)
+      m_eivec = m_realQZ.matrixZ().transpose();
+  
+    // Compute eigenvalues from matS
+    m_alphas.resize(A.cols());
+    m_betas.resize(A.cols());
+    Index i = 0;
+    while (i < A.cols())
+    {
+      if (i == A.cols() - 1 || m_matS.coeff(i+1, i) == Scalar(0))
+      {
+        m_alphas.coeffRef(i) = m_matS.coeff(i, i);
+        m_betas.coeffRef(i)  = m_realQZ.matrixT().coeff(i,i);
+        ++i;
+      }
+      else
+      {
+        Scalar p = Scalar(0.5) * (m_matS.coeff(i, i) - m_matS.coeff(i+1, i+1));
+        Scalar z = sqrt(abs(p * p + m_matS.coeff(i+1, i) * m_matS.coeff(i, i+1)));
+        m_alphas.coeffRef(i)   = ComplexScalar(m_matS.coeff(i+1, i+1) + p, z);
+        m_alphas.coeffRef(i+1) = ComplexScalar(m_matS.coeff(i+1, i+1) + p, -z);
+
+        m_betas.coeffRef(i)   = m_realQZ.matrixT().coeff(i,i);
+        m_betas.coeffRef(i+1) = m_realQZ.matrixT().coeff(i,i);
+        i += 2;
+      }
+    }
+  }
+
+  m_isInitialized = true;
+  m_eigenvectorsOk = false;//computeEigenvectors;
+
+  return *this;
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_GENERALIZEDEIGENSOLVER_H