aboutsummaryrefslogtreecommitdiff
path: root/src/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h')
-rw-r--r--src/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h341
1 files changed, 341 insertions, 0 deletions
diff --git a/src/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h b/src/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h
new file mode 100644
index 0000000..dc240e1
--- /dev/null
+++ b/src/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h
@@ -0,0 +1,341 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_GENERALIZEDEIGENSOLVER_H
+#define EIGEN_GENERALIZEDEIGENSOLVER_H
+
+#include "./RealQZ.h"
+
+namespace Eigen {
+
+/** \eigenvalues_module \ingroup Eigenvalues_Module
+ *
+ *
+ * \class GeneralizedEigenSolver
+ *
+ * \brief Computes the generalized eigenvalues and eigenvectors of a pair of general matrices
+ *
+ * \tparam _MatrixType the type of the matrices of which we are computing the
+ * eigen-decomposition; this is expected to be an instantiation of the Matrix
+ * class template. Currently, only real matrices are supported.
+ *
+ * The generalized eigenvalues and eigenvectors of a matrix pair \f$ A \f$ and \f$ B \f$ are scalars
+ * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda Bv \f$. If
+ * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and
+ * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V =
+ * B V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we
+ * have \f$ A = B V D V^{-1} \f$. This is called the generalized eigen-decomposition.
+ *
+ * The generalized eigenvalues and eigenvectors of a matrix pair may be complex, even when the
+ * matrices are real. Moreover, the generalized eigenvalue might be infinite if the matrix B is
+ * singular. To workaround this difficulty, the eigenvalues are provided as a pair of complex \f$ \alpha \f$
+ * and real \f$ \beta \f$ such that: \f$ \lambda_i = \alpha_i / \beta_i \f$. If \f$ \beta_i \f$ is (nearly) zero,
+ * then one can consider the well defined left eigenvalue \f$ \mu = \beta_i / \alpha_i\f$ such that:
+ * \f$ \mu_i A v_i = B v_i \f$, or even \f$ \mu_i u_i^T A = u_i^T B \f$ where \f$ u_i \f$ is
+ * called the left eigenvector.
+ *
+ * Call the function compute() to compute the generalized eigenvalues and eigenvectors of
+ * a given matrix pair. Alternatively, you can use the
+ * GeneralizedEigenSolver(const MatrixType&, const MatrixType&, bool) constructor which computes the
+ * eigenvalues and eigenvectors at construction time. Once the eigenvalue and
+ * eigenvectors are computed, they can be retrieved with the eigenvalues() and
+ * eigenvectors() functions.
+ *
+ * Here is an usage example of this class:
+ * Example: \include GeneralizedEigenSolver.cpp
+ * Output: \verbinclude GeneralizedEigenSolver.out
+ *
+ * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
+ */
+template<typename _MatrixType> class GeneralizedEigenSolver
+{
+ public:
+
+ /** \brief Synonym for the template parameter \p _MatrixType. */
+ typedef _MatrixType MatrixType;
+
+ enum {
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+ Options = MatrixType::Options,
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+ };
+
+ /** \brief Scalar type for matrices of type #MatrixType. */
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef typename MatrixType::Index Index;
+
+ /** \brief Complex scalar type for #MatrixType.
+ *
+ * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
+ * \c float or \c double) and just \c Scalar if #Scalar is
+ * complex.
+ */
+ typedef std::complex<RealScalar> ComplexScalar;
+
+ /** \brief Type for vector of real scalar values eigenvalues as returned by betas().
+ *
+ * This is a column vector with entries of type #Scalar.
+ * The length of the vector is the size of #MatrixType.
+ */
+ typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> VectorType;
+
+ /** \brief Type for vector of complex scalar values eigenvalues as returned by betas().
+ *
+ * This is a column vector with entries of type #ComplexScalar.
+ * The length of the vector is the size of #MatrixType.
+ */
+ typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ComplexVectorType;
+
+ /** \brief Expression type for the eigenvalues as returned by eigenvalues().
+ */
+ typedef CwiseBinaryOp<internal::scalar_quotient_op<ComplexScalar,Scalar>,ComplexVectorType,VectorType> EigenvalueType;
+
+ /** \brief Type for matrix of eigenvectors as returned by eigenvectors().
+ *
+ * This is a square matrix with entries of type #ComplexScalar.
+ * The size is the same as the size of #MatrixType.
+ */
+ typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType;
+
+ /** \brief Default constructor.
+ *
+ * The default constructor is useful in cases in which the user intends to
+ * perform decompositions via EigenSolver::compute(const MatrixType&, bool).
+ *
+ * \sa compute() for an example.
+ */
+ GeneralizedEigenSolver() : m_eivec(), m_alphas(), m_betas(), m_isInitialized(false), m_realQZ(), m_matS(), m_tmp() {}
+
+ /** \brief Default constructor with memory preallocation
+ *
+ * Like the default constructor but with preallocation of the internal data
+ * according to the specified problem \a size.
+ * \sa GeneralizedEigenSolver()
+ */
+ GeneralizedEigenSolver(Index size)
+ : m_eivec(size, size),
+ m_alphas(size),
+ m_betas(size),
+ m_isInitialized(false),
+ m_eigenvectorsOk(false),
+ m_realQZ(size),
+ m_matS(size, size),
+ m_tmp(size)
+ {}
+
+ /** \brief Constructor; computes the generalized eigendecomposition of given matrix pair.
+ *
+ * \param[in] A Square matrix whose eigendecomposition is to be computed.
+ * \param[in] B Square matrix whose eigendecomposition is to be computed.
+ * \param[in] computeEigenvectors If true, both the eigenvectors and the
+ * eigenvalues are computed; if false, only the eigenvalues are computed.
+ *
+ * This constructor calls compute() to compute the generalized eigenvalues
+ * and eigenvectors.
+ *
+ * \sa compute()
+ */
+ GeneralizedEigenSolver(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true)
+ : m_eivec(A.rows(), A.cols()),
+ m_alphas(A.cols()),
+ m_betas(A.cols()),
+ m_isInitialized(false),
+ m_eigenvectorsOk(false),
+ m_realQZ(A.cols()),
+ m_matS(A.rows(), A.cols()),
+ m_tmp(A.cols())
+ {
+ compute(A, B, computeEigenvectors);
+ }
+
+ /* \brief Returns the computed generalized eigenvectors.
+ *
+ * \returns %Matrix whose columns are the (possibly complex) eigenvectors.
+ *
+ * \pre Either the constructor
+ * GeneralizedEigenSolver(const MatrixType&,const MatrixType&, bool) or the member function
+ * compute(const MatrixType&, const MatrixType& bool) has been called before, and
+ * \p computeEigenvectors was set to true (the default).
+ *
+ * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
+ * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
+ * eigenvectors are normalized to have (Euclidean) norm equal to one. The
+ * matrix returned by this function is the matrix \f$ V \f$ in the
+ * generalized eigendecomposition \f$ A = B V D V^{-1} \f$, if it exists.
+ *
+ * \sa eigenvalues()
+ */
+// EigenvectorsType eigenvectors() const;
+
+ /** \brief Returns an expression of the computed generalized eigenvalues.
+ *
+ * \returns An expression of the column vector containing the eigenvalues.
+ *
+ * It is a shortcut for \code this->alphas().cwiseQuotient(this->betas()); \endcode
+ * Not that betas might contain zeros. It is therefore not recommended to use this function,
+ * but rather directly deal with the alphas and betas vectors.
+ *
+ * \pre Either the constructor
+ * GeneralizedEigenSolver(const MatrixType&,const MatrixType&,bool) or the member function
+ * compute(const MatrixType&,const MatrixType&,bool) has been called before.
+ *
+ * The eigenvalues are repeated according to their algebraic multiplicity,
+ * so there are as many eigenvalues as rows in the matrix. The eigenvalues
+ * are not sorted in any particular order.
+ *
+ * \sa alphas(), betas(), eigenvectors()
+ */
+ EigenvalueType eigenvalues() const
+ {
+ eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
+ return EigenvalueType(m_alphas,m_betas);
+ }
+
+ /** \returns A const reference to the vectors containing the alpha values
+ *
+ * This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
+ *
+ * \sa betas(), eigenvalues() */
+ ComplexVectorType alphas() const
+ {
+ eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
+ return m_alphas;
+ }
+
+ /** \returns A const reference to the vectors containing the beta values
+ *
+ * This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
+ *
+ * \sa alphas(), eigenvalues() */
+ VectorType betas() const
+ {
+ eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
+ return m_betas;
+ }
+
+ /** \brief Computes generalized eigendecomposition of given matrix.
+ *
+ * \param[in] A Square matrix whose eigendecomposition is to be computed.
+ * \param[in] B Square matrix whose eigendecomposition is to be computed.
+ * \param[in] computeEigenvectors If true, both the eigenvectors and the
+ * eigenvalues are computed; if false, only the eigenvalues are
+ * computed.
+ * \returns Reference to \c *this
+ *
+ * This function computes the eigenvalues of the real matrix \p matrix.
+ * The eigenvalues() function can be used to retrieve them. If
+ * \p computeEigenvectors is true, then the eigenvectors are also computed
+ * and can be retrieved by calling eigenvectors().
+ *
+ * The matrix is first reduced to real generalized Schur form using the RealQZ
+ * class. The generalized Schur decomposition is then used to compute the eigenvalues
+ * and eigenvectors.
+ *
+ * The cost of the computation is dominated by the cost of the
+ * generalized Schur decomposition.
+ *
+ * This method reuses of the allocated data in the GeneralizedEigenSolver object.
+ */
+ GeneralizedEigenSolver& compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true);
+
+ ComputationInfo info() const
+ {
+ eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
+ return m_realQZ.info();
+ }
+
+ /** Sets the maximal number of iterations allowed.
+ */
+ GeneralizedEigenSolver& setMaxIterations(Index maxIters)
+ {
+ m_realQZ.setMaxIterations(maxIters);
+ return *this;
+ }
+
+ protected:
+ MatrixType m_eivec;
+ ComplexVectorType m_alphas;
+ VectorType m_betas;
+ bool m_isInitialized;
+ bool m_eigenvectorsOk;
+ RealQZ<MatrixType> m_realQZ;
+ MatrixType m_matS;
+
+ typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
+ ColumnVectorType m_tmp;
+};
+
+//template<typename MatrixType>
+//typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType GeneralizedEigenSolver<MatrixType>::eigenvectors() const
+//{
+// eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
+// eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
+// Index n = m_eivec.cols();
+// EigenvectorsType matV(n,n);
+// // TODO
+// return matV;
+//}
+
+template<typename MatrixType>
+GeneralizedEigenSolver<MatrixType>&
+GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors)
+{
+ using std::sqrt;
+ using std::abs;
+ eigen_assert(A.cols() == A.rows() && B.cols() == A.rows() && B.cols() == B.rows());
+
+ // Reduce to generalized real Schur form:
+ // A = Q S Z and B = Q T Z
+ m_realQZ.compute(A, B, computeEigenvectors);
+
+ if (m_realQZ.info() == Success)
+ {
+ m_matS = m_realQZ.matrixS();
+ if (computeEigenvectors)
+ m_eivec = m_realQZ.matrixZ().transpose();
+
+ // Compute eigenvalues from matS
+ m_alphas.resize(A.cols());
+ m_betas.resize(A.cols());
+ Index i = 0;
+ while (i < A.cols())
+ {
+ if (i == A.cols() - 1 || m_matS.coeff(i+1, i) == Scalar(0))
+ {
+ m_alphas.coeffRef(i) = m_matS.coeff(i, i);
+ m_betas.coeffRef(i) = m_realQZ.matrixT().coeff(i,i);
+ ++i;
+ }
+ else
+ {
+ Scalar p = Scalar(0.5) * (m_matS.coeff(i, i) - m_matS.coeff(i+1, i+1));
+ Scalar z = sqrt(abs(p * p + m_matS.coeff(i+1, i) * m_matS.coeff(i, i+1)));
+ m_alphas.coeffRef(i) = ComplexScalar(m_matS.coeff(i+1, i+1) + p, z);
+ m_alphas.coeffRef(i+1) = ComplexScalar(m_matS.coeff(i+1, i+1) + p, -z);
+
+ m_betas.coeffRef(i) = m_realQZ.matrixT().coeff(i,i);
+ m_betas.coeffRef(i+1) = m_realQZ.matrixT().coeff(i,i);
+ i += 2;
+ }
+ }
+ }
+
+ m_isInitialized = true;
+ m_eigenvectorsOk = false;//computeEigenvectors;
+
+ return *this;
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_GENERALIZEDEIGENSOLVER_H