about summary refs log tree commit diff
path: root/src/Eigen/src/Core/Transpositions.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/Eigen/src/Core/Transpositions.h')
-rw-r--r--src/Eigen/src/Core/Transpositions.h436
1 files changed, 436 insertions, 0 deletions
diff --git a/src/Eigen/src/Core/Transpositions.h b/src/Eigen/src/Core/Transpositions.h
new file mode 100644
index 0000000..e4ba075
--- /dev/null
+++ b/src/Eigen/src/Core/Transpositions.h
@@ -0,0 +1,436 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2010-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_TRANSPOSITIONS_H
+#define EIGEN_TRANSPOSITIONS_H
+
+namespace Eigen { 
+
+/** \class Transpositions
+  * \ingroup Core_Module
+  *
+  * \brief Represents a sequence of transpositions (row/column interchange)
+  *
+  * \param SizeAtCompileTime the number of transpositions, or Dynamic
+  * \param MaxSizeAtCompileTime the maximum number of transpositions, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it.
+  *
+  * This class represents a permutation transformation as a sequence of \em n transpositions
+  * \f$[T_{n-1} \ldots T_{i} \ldots T_{0}]\f$. It is internally stored as a vector of integers \c indices.
+  * Each transposition \f$ T_{i} \f$ applied on the left of a matrix (\f$ T_{i} M\f$) interchanges
+  * the rows \c i and \c indices[i] of the matrix \c M.
+  * A transposition applied on the right (e.g., \f$ M T_{i}\f$) yields a column interchange.
+  *
+  * Compared to the class PermutationMatrix, such a sequence of transpositions is what is
+  * computed during a decomposition with pivoting, and it is faster when applying the permutation in-place.
+  * 
+  * To apply a sequence of transpositions to a matrix, simply use the operator * as in the following example:
+  * \code
+  * Transpositions tr;
+  * MatrixXf mat;
+  * mat = tr * mat;
+  * \endcode
+  * In this example, we detect that the matrix appears on both side, and so the transpositions
+  * are applied in-place without any temporary or extra copy.
+  *
+  * \sa class PermutationMatrix
+  */
+
+namespace internal {
+template<typename TranspositionType, typename MatrixType, int Side, bool Transposed=false> struct transposition_matrix_product_retval;
+}
+
+template<typename Derived>
+class TranspositionsBase
+{
+    typedef internal::traits<Derived> Traits;
+    
+  public:
+
+    typedef typename Traits::IndicesType IndicesType;
+    typedef typename IndicesType::Scalar Index;
+
+    Derived& derived() { return *static_cast<Derived*>(this); }
+    const Derived& derived() const { return *static_cast<const Derived*>(this); }
+
+    /** Copies the \a other transpositions into \c *this */
+    template<typename OtherDerived>
+    Derived& operator=(const TranspositionsBase<OtherDerived>& other)
+    {
+      indices() = other.indices();
+      return derived();
+    }
+
+    #ifndef EIGEN_PARSED_BY_DOXYGEN
+    /** This is a special case of the templated operator=. Its purpose is to
+      * prevent a default operator= from hiding the templated operator=.
+      */
+    Derived& operator=(const TranspositionsBase& other)
+    {
+      indices() = other.indices();
+      return derived();
+    }
+    #endif
+
+    /** \returns the number of transpositions */
+    inline Index size() const { return indices().size(); }
+
+    /** Direct access to the underlying index vector */
+    inline const Index& coeff(Index i) const { return indices().coeff(i); }
+    /** Direct access to the underlying index vector */
+    inline Index& coeffRef(Index i) { return indices().coeffRef(i); }
+    /** Direct access to the underlying index vector */
+    inline const Index& operator()(Index i) const { return indices()(i); }
+    /** Direct access to the underlying index vector */
+    inline Index& operator()(Index i) { return indices()(i); }
+    /** Direct access to the underlying index vector */
+    inline const Index& operator[](Index i) const { return indices()(i); }
+    /** Direct access to the underlying index vector */
+    inline Index& operator[](Index i) { return indices()(i); }
+
+    /** const version of indices(). */
+    const IndicesType& indices() const { return derived().indices(); }
+    /** \returns a reference to the stored array representing the transpositions. */
+    IndicesType& indices() { return derived().indices(); }
+
+    /** Resizes to given size. */
+    inline void resize(int newSize)
+    {
+      indices().resize(newSize);
+    }
+
+    /** Sets \c *this to represents an identity transformation */
+    void setIdentity()
+    {
+      for(int i = 0; i < indices().size(); ++i)
+        coeffRef(i) = i;
+    }
+
+    // FIXME: do we want such methods ?
+    // might be usefull when the target matrix expression is complex, e.g.:
+    // object.matrix().block(..,..,..,..) = trans * object.matrix().block(..,..,..,..);
+    /*
+    template<typename MatrixType>
+    void applyForwardToRows(MatrixType& mat) const
+    {
+      for(Index k=0 ; k<size() ; ++k)
+        if(m_indices(k)!=k)
+          mat.row(k).swap(mat.row(m_indices(k)));
+    }
+
+    template<typename MatrixType>
+    void applyBackwardToRows(MatrixType& mat) const
+    {
+      for(Index k=size()-1 ; k>=0 ; --k)
+        if(m_indices(k)!=k)
+          mat.row(k).swap(mat.row(m_indices(k)));
+    }
+    */
+
+    /** \returns the inverse transformation */
+    inline Transpose<TranspositionsBase> inverse() const
+    { return Transpose<TranspositionsBase>(derived()); }
+
+    /** \returns the tranpose transformation */
+    inline Transpose<TranspositionsBase> transpose() const
+    { return Transpose<TranspositionsBase>(derived()); }
+
+  protected:
+};
+
+namespace internal {
+template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
+struct traits<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType> >
+{
+  typedef IndexType Index;
+  typedef Matrix<Index, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
+};
+}
+
+template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
+class Transpositions : public TranspositionsBase<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType> >
+{
+    typedef internal::traits<Transpositions> Traits;
+  public:
+
+    typedef TranspositionsBase<Transpositions> Base;
+    typedef typename Traits::IndicesType IndicesType;
+    typedef typename IndicesType::Scalar Index;
+
+    inline Transpositions() {}
+
+    /** Copy constructor. */
+    template<typename OtherDerived>
+    inline Transpositions(const TranspositionsBase<OtherDerived>& other)
+      : m_indices(other.indices()) {}
+
+    #ifndef EIGEN_PARSED_BY_DOXYGEN
+    /** Standard copy constructor. Defined only to prevent a default copy constructor
+      * from hiding the other templated constructor */
+    inline Transpositions(const Transpositions& other) : m_indices(other.indices()) {}
+    #endif
+
+    /** Generic constructor from expression of the transposition indices. */
+    template<typename Other>
+    explicit inline Transpositions(const MatrixBase<Other>& a_indices) : m_indices(a_indices)
+    {}
+
+    /** Copies the \a other transpositions into \c *this */
+    template<typename OtherDerived>
+    Transpositions& operator=(const TranspositionsBase<OtherDerived>& other)
+    {
+      return Base::operator=(other);
+    }
+
+    #ifndef EIGEN_PARSED_BY_DOXYGEN
+    /** This is a special case of the templated operator=. Its purpose is to
+      * prevent a default operator= from hiding the templated operator=.
+      */
+    Transpositions& operator=(const Transpositions& other)
+    {
+      m_indices = other.m_indices;
+      return *this;
+    }
+    #endif
+
+    /** Constructs an uninitialized permutation matrix of given size.
+      */
+    inline Transpositions(Index size) : m_indices(size)
+    {}
+
+    /** const version of indices(). */
+    const IndicesType& indices() const { return m_indices; }
+    /** \returns a reference to the stored array representing the transpositions. */
+    IndicesType& indices() { return m_indices; }
+
+  protected:
+
+    IndicesType m_indices;
+};
+
+
+namespace internal {
+template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int _PacketAccess>
+struct traits<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType>,_PacketAccess> >
+{
+  typedef IndexType Index;
+  typedef Map<const Matrix<Index,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1>, _PacketAccess> IndicesType;
+};
+}
+
+template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int PacketAccess>
+class Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType>,PacketAccess>
+ : public TranspositionsBase<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType>,PacketAccess> >
+{
+    typedef internal::traits<Map> Traits;
+  public:
+
+    typedef TranspositionsBase<Map> Base;
+    typedef typename Traits::IndicesType IndicesType;
+    typedef typename IndicesType::Scalar Index;
+
+    inline Map(const Index* indicesPtr)
+      : m_indices(indicesPtr)
+    {}
+
+    inline Map(const Index* indicesPtr, Index size)
+      : m_indices(indicesPtr,size)
+    {}
+
+    /** Copies the \a other transpositions into \c *this */
+    template<typename OtherDerived>
+    Map& operator=(const TranspositionsBase<OtherDerived>& other)
+    {
+      return Base::operator=(other);
+    }
+
+    #ifndef EIGEN_PARSED_BY_DOXYGEN
+    /** This is a special case of the templated operator=. Its purpose is to
+      * prevent a default operator= from hiding the templated operator=.
+      */
+    Map& operator=(const Map& other)
+    {
+      m_indices = other.m_indices;
+      return *this;
+    }
+    #endif
+
+    /** const version of indices(). */
+    const IndicesType& indices() const { return m_indices; }
+    
+    /** \returns a reference to the stored array representing the transpositions. */
+    IndicesType& indices() { return m_indices; }
+
+  protected:
+
+    IndicesType m_indices;
+};
+
+namespace internal {
+template<typename _IndicesType>
+struct traits<TranspositionsWrapper<_IndicesType> >
+{
+  typedef typename _IndicesType::Scalar Index;
+  typedef _IndicesType IndicesType;
+};
+}
+
+template<typename _IndicesType>
+class TranspositionsWrapper
+ : public TranspositionsBase<TranspositionsWrapper<_IndicesType> >
+{
+    typedef internal::traits<TranspositionsWrapper> Traits;
+  public:
+
+    typedef TranspositionsBase<TranspositionsWrapper> Base;
+    typedef typename Traits::IndicesType IndicesType;
+    typedef typename IndicesType::Scalar Index;
+
+    inline TranspositionsWrapper(IndicesType& a_indices)
+      : m_indices(a_indices)
+    {}
+
+    /** Copies the \a other transpositions into \c *this */
+    template<typename OtherDerived>
+    TranspositionsWrapper& operator=(const TranspositionsBase<OtherDerived>& other)
+    {
+      return Base::operator=(other);
+    }
+
+    #ifndef EIGEN_PARSED_BY_DOXYGEN
+    /** This is a special case of the templated operator=. Its purpose is to
+      * prevent a default operator= from hiding the templated operator=.
+      */
+    TranspositionsWrapper& operator=(const TranspositionsWrapper& other)
+    {
+      m_indices = other.m_indices;
+      return *this;
+    }
+    #endif
+
+    /** const version of indices(). */
+    const IndicesType& indices() const { return m_indices; }
+
+    /** \returns a reference to the stored array representing the transpositions. */
+    IndicesType& indices() { return m_indices; }
+
+  protected:
+
+    const typename IndicesType::Nested m_indices;
+};
+
+/** \returns the \a matrix with the \a transpositions applied to the columns.
+  */
+template<typename Derived, typename TranspositionsDerived>
+inline const internal::transposition_matrix_product_retval<TranspositionsDerived, Derived, OnTheRight>
+operator*(const MatrixBase<Derived>& matrix,
+          const TranspositionsBase<TranspositionsDerived> &transpositions)
+{
+  return internal::transposition_matrix_product_retval
+           <TranspositionsDerived, Derived, OnTheRight>
+           (transpositions.derived(), matrix.derived());
+}
+
+/** \returns the \a matrix with the \a transpositions applied to the rows.
+  */
+template<typename Derived, typename TranspositionDerived>
+inline const internal::transposition_matrix_product_retval
+               <TranspositionDerived, Derived, OnTheLeft>
+operator*(const TranspositionsBase<TranspositionDerived> &transpositions,
+          const MatrixBase<Derived>& matrix)
+{
+  return internal::transposition_matrix_product_retval
+           <TranspositionDerived, Derived, OnTheLeft>
+           (transpositions.derived(), matrix.derived());
+}
+
+namespace internal {
+
+template<typename TranspositionType, typename MatrixType, int Side, bool Transposed>
+struct traits<transposition_matrix_product_retval<TranspositionType, MatrixType, Side, Transposed> >
+{
+  typedef typename MatrixType::PlainObject ReturnType;
+};
+
+template<typename TranspositionType, typename MatrixType, int Side, bool Transposed>
+struct transposition_matrix_product_retval
+ : public ReturnByValue<transposition_matrix_product_retval<TranspositionType, MatrixType, Side, Transposed> >
+{
+    typedef typename remove_all<typename MatrixType::Nested>::type MatrixTypeNestedCleaned;
+    typedef typename TranspositionType::Index Index;
+
+    transposition_matrix_product_retval(const TranspositionType& tr, const MatrixType& matrix)
+      : m_transpositions(tr), m_matrix(matrix)
+    {}
+
+    inline int rows() const { return m_matrix.rows(); }
+    inline int cols() const { return m_matrix.cols(); }
+
+    template<typename Dest> inline void evalTo(Dest& dst) const
+    {
+      const int size = m_transpositions.size();
+      Index j = 0;
+
+      if(!(is_same<MatrixTypeNestedCleaned,Dest>::value && extract_data(dst) == extract_data(m_matrix)))
+        dst = m_matrix;
+
+      for(int k=(Transposed?size-1:0) ; Transposed?k>=0:k<size ; Transposed?--k:++k)
+        if((j=m_transpositions.coeff(k))!=k)
+        {
+          if(Side==OnTheLeft)
+            dst.row(k).swap(dst.row(j));
+          else if(Side==OnTheRight)
+            dst.col(k).swap(dst.col(j));
+        }
+    }
+
+  protected:
+    const TranspositionType& m_transpositions;
+    typename MatrixType::Nested m_matrix;
+};
+
+} // end namespace internal
+
+/* Template partial specialization for transposed/inverse transpositions */
+
+template<typename TranspositionsDerived>
+class Transpose<TranspositionsBase<TranspositionsDerived> >
+{
+    typedef TranspositionsDerived TranspositionType;
+    typedef typename TranspositionType::IndicesType IndicesType;
+  public:
+
+    Transpose(const TranspositionType& t) : m_transpositions(t) {}
+
+    inline int size() const { return m_transpositions.size(); }
+
+    /** \returns the \a matrix with the inverse transpositions applied to the columns.
+      */
+    template<typename Derived> friend
+    inline const internal::transposition_matrix_product_retval<TranspositionType, Derived, OnTheRight, true>
+    operator*(const MatrixBase<Derived>& matrix, const Transpose& trt)
+    {
+      return internal::transposition_matrix_product_retval<TranspositionType, Derived, OnTheRight, true>(trt.m_transpositions, matrix.derived());
+    }
+
+    /** \returns the \a matrix with the inverse transpositions applied to the rows.
+      */
+    template<typename Derived>
+    inline const internal::transposition_matrix_product_retval<TranspositionType, Derived, OnTheLeft, true>
+    operator*(const MatrixBase<Derived>& matrix) const
+    {
+      return internal::transposition_matrix_product_retval<TranspositionType, Derived, OnTheLeft, true>(m_transpositions, matrix.derived());
+    }
+
+  protected:
+    const TranspositionType& m_transpositions;
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_TRANSPOSITIONS_H