diff options
Diffstat (limited to 'src/Eigen/src/Cholesky/LLT.h')
-rw-r--r-- | src/Eigen/src/Cholesky/LLT.h | 490 |
1 files changed, 490 insertions, 0 deletions
diff --git a/src/Eigen/src/Cholesky/LLT.h b/src/Eigen/src/Cholesky/LLT.h new file mode 100644 index 0000000..2e6189f --- /dev/null +++ b/src/Eigen/src/Cholesky/LLT.h @@ -0,0 +1,490 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_LLT_H +#define EIGEN_LLT_H + +namespace Eigen { + +namespace internal{ +template<typename MatrixType, int UpLo> struct LLT_Traits; +} + +/** \ingroup Cholesky_Module + * + * \class LLT + * + * \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features + * + * \param MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition + * \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. + * The other triangular part won't be read. + * + * This class performs a LL^T Cholesky decomposition of a symmetric, positive definite + * matrix A such that A = LL^* = U^*U, where L is lower triangular. + * + * While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b, + * for that purpose, we recommend the Cholesky decomposition without square root which is more stable + * and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other + * situations like generalised eigen problems with hermitian matrices. + * + * Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices, + * use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations + * has a solution. + * + * Example: \include LLT_example.cpp + * Output: \verbinclude LLT_example.out + * + * \sa MatrixBase::llt(), class LDLT + */ + /* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH) + * Note that during the decomposition, only the upper triangular part of A is considered. Therefore, + * the strict lower part does not have to store correct values. + */ +template<typename _MatrixType, int _UpLo> class LLT +{ + public: + typedef _MatrixType MatrixType; + enum { + RowsAtCompileTime = MatrixType::RowsAtCompileTime, + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + Options = MatrixType::Options, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + typedef typename MatrixType::Scalar Scalar; + typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; + typedef typename MatrixType::Index Index; + + enum { + PacketSize = internal::packet_traits<Scalar>::size, + AlignmentMask = int(PacketSize)-1, + UpLo = _UpLo + }; + + typedef internal::LLT_Traits<MatrixType,UpLo> Traits; + + /** + * \brief Default Constructor. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via LLT::compute(const MatrixType&). + */ + LLT() : m_matrix(), m_isInitialized(false) {} + + /** \brief Default Constructor with memory preallocation + * + * Like the default constructor but with preallocation of the internal data + * according to the specified problem \a size. + * \sa LLT() + */ + LLT(Index size) : m_matrix(size, size), + m_isInitialized(false) {} + + LLT(const MatrixType& matrix) + : m_matrix(matrix.rows(), matrix.cols()), + m_isInitialized(false) + { + compute(matrix); + } + + /** \returns a view of the upper triangular matrix U */ + inline typename Traits::MatrixU matrixU() const + { + eigen_assert(m_isInitialized && "LLT is not initialized."); + return Traits::getU(m_matrix); + } + + /** \returns a view of the lower triangular matrix L */ + inline typename Traits::MatrixL matrixL() const + { + eigen_assert(m_isInitialized && "LLT is not initialized."); + return Traits::getL(m_matrix); + } + + /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. + * + * Since this LLT class assumes anyway that the matrix A is invertible, the solution + * theoretically exists and is unique regardless of b. + * + * Example: \include LLT_solve.cpp + * Output: \verbinclude LLT_solve.out + * + * \sa solveInPlace(), MatrixBase::llt() + */ + template<typename Rhs> + inline const internal::solve_retval<LLT, Rhs> + solve(const MatrixBase<Rhs>& b) const + { + eigen_assert(m_isInitialized && "LLT is not initialized."); + eigen_assert(m_matrix.rows()==b.rows() + && "LLT::solve(): invalid number of rows of the right hand side matrix b"); + return internal::solve_retval<LLT, Rhs>(*this, b.derived()); + } + + #ifdef EIGEN2_SUPPORT + template<typename OtherDerived, typename ResultType> + bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const + { + *result = this->solve(b); + return true; + } + + bool isPositiveDefinite() const { return true; } + #endif + + template<typename Derived> + void solveInPlace(MatrixBase<Derived> &bAndX) const; + + LLT& compute(const MatrixType& matrix); + + /** \returns the LLT decomposition matrix + * + * TODO: document the storage layout + */ + inline const MatrixType& matrixLLT() const + { + eigen_assert(m_isInitialized && "LLT is not initialized."); + return m_matrix; + } + + MatrixType reconstructedMatrix() const; + + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was succesful, + * \c NumericalIssue if the matrix.appears to be negative. + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "LLT is not initialized."); + return m_info; + } + + inline Index rows() const { return m_matrix.rows(); } + inline Index cols() const { return m_matrix.cols(); } + + template<typename VectorType> + LLT rankUpdate(const VectorType& vec, const RealScalar& sigma = 1); + + protected: + /** \internal + * Used to compute and store L + * The strict upper part is not used and even not initialized. + */ + MatrixType m_matrix; + bool m_isInitialized; + ComputationInfo m_info; +}; + +namespace internal { + +template<typename Scalar, int UpLo> struct llt_inplace; + +template<typename MatrixType, typename VectorType> +static typename MatrixType::Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) +{ + using std::sqrt; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + typedef typename MatrixType::Index Index; + typedef typename MatrixType::ColXpr ColXpr; + typedef typename internal::remove_all<ColXpr>::type ColXprCleaned; + typedef typename ColXprCleaned::SegmentReturnType ColXprSegment; + typedef Matrix<Scalar,Dynamic,1> TempVectorType; + typedef typename TempVectorType::SegmentReturnType TempVecSegment; + + Index n = mat.cols(); + eigen_assert(mat.rows()==n && vec.size()==n); + + TempVectorType temp; + + if(sigma>0) + { + // This version is based on Givens rotations. + // It is faster than the other one below, but only works for updates, + // i.e., for sigma > 0 + temp = sqrt(sigma) * vec; + + for(Index i=0; i<n; ++i) + { + JacobiRotation<Scalar> g; + g.makeGivens(mat(i,i), -temp(i), &mat(i,i)); + + Index rs = n-i-1; + if(rs>0) + { + ColXprSegment x(mat.col(i).tail(rs)); + TempVecSegment y(temp.tail(rs)); + apply_rotation_in_the_plane(x, y, g); + } + } + } + else + { + temp = vec; + RealScalar beta = 1; + for(Index j=0; j<n; ++j) + { + RealScalar Ljj = numext::real(mat.coeff(j,j)); + RealScalar dj = numext::abs2(Ljj); + Scalar wj = temp.coeff(j); + RealScalar swj2 = sigma*numext::abs2(wj); + RealScalar gamma = dj*beta + swj2; + + RealScalar x = dj + swj2/beta; + if (x<=RealScalar(0)) + return j; + RealScalar nLjj = sqrt(x); + mat.coeffRef(j,j) = nLjj; + beta += swj2/dj; + + // Update the terms of L + Index rs = n-j-1; + if(rs) + { + temp.tail(rs) -= (wj/Ljj) * mat.col(j).tail(rs); + if(gamma != 0) + mat.col(j).tail(rs) = (nLjj/Ljj) * mat.col(j).tail(rs) + (nLjj * sigma*numext::conj(wj)/gamma)*temp.tail(rs); + } + } + } + return -1; +} + +template<typename Scalar> struct llt_inplace<Scalar, Lower> +{ + typedef typename NumTraits<Scalar>::Real RealScalar; + template<typename MatrixType> + static typename MatrixType::Index unblocked(MatrixType& mat) + { + using std::sqrt; + typedef typename MatrixType::Index Index; + + eigen_assert(mat.rows()==mat.cols()); + const Index size = mat.rows(); + for(Index k = 0; k < size; ++k) + { + Index rs = size-k-1; // remaining size + + Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1); + Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k); + Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k); + + RealScalar x = numext::real(mat.coeff(k,k)); + if (k>0) x -= A10.squaredNorm(); + if (x<=RealScalar(0)) + return k; + mat.coeffRef(k,k) = x = sqrt(x); + if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint(); + if (rs>0) A21 *= RealScalar(1)/x; + } + return -1; + } + + template<typename MatrixType> + static typename MatrixType::Index blocked(MatrixType& m) + { + typedef typename MatrixType::Index Index; + eigen_assert(m.rows()==m.cols()); + Index size = m.rows(); + if(size<32) + return unblocked(m); + + Index blockSize = size/8; + blockSize = (blockSize/16)*16; + blockSize = (std::min)((std::max)(blockSize,Index(8)), Index(128)); + + for (Index k=0; k<size; k+=blockSize) + { + // partition the matrix: + // A00 | - | - + // lu = A10 | A11 | - + // A20 | A21 | A22 + Index bs = (std::min)(blockSize, size-k); + Index rs = size - k - bs; + Block<MatrixType,Dynamic,Dynamic> A11(m,k, k, bs,bs); + Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k, rs,bs); + Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs); + + Index ret; + if((ret=unblocked(A11))>=0) return k+ret; + if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21); + if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,-1); // bottleneck + } + return -1; + } + + template<typename MatrixType, typename VectorType> + static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) + { + return Eigen::internal::llt_rank_update_lower(mat, vec, sigma); + } +}; + +template<typename Scalar> struct llt_inplace<Scalar, Upper> +{ + typedef typename NumTraits<Scalar>::Real RealScalar; + + template<typename MatrixType> + static EIGEN_STRONG_INLINE typename MatrixType::Index unblocked(MatrixType& mat) + { + Transpose<MatrixType> matt(mat); + return llt_inplace<Scalar, Lower>::unblocked(matt); + } + template<typename MatrixType> + static EIGEN_STRONG_INLINE typename MatrixType::Index blocked(MatrixType& mat) + { + Transpose<MatrixType> matt(mat); + return llt_inplace<Scalar, Lower>::blocked(matt); + } + template<typename MatrixType, typename VectorType> + static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) + { + Transpose<MatrixType> matt(mat); + return llt_inplace<Scalar, Lower>::rankUpdate(matt, vec.conjugate(), sigma); + } +}; + +template<typename MatrixType> struct LLT_Traits<MatrixType,Lower> +{ + typedef const TriangularView<const MatrixType, Lower> MatrixL; + typedef const TriangularView<const typename MatrixType::AdjointReturnType, Upper> MatrixU; + static inline MatrixL getL(const MatrixType& m) { return m; } + static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); } + static bool inplace_decomposition(MatrixType& m) + { return llt_inplace<typename MatrixType::Scalar, Lower>::blocked(m)==-1; } +}; + +template<typename MatrixType> struct LLT_Traits<MatrixType,Upper> +{ + typedef const TriangularView<const typename MatrixType::AdjointReturnType, Lower> MatrixL; + typedef const TriangularView<const MatrixType, Upper> MatrixU; + static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); } + static inline MatrixU getU(const MatrixType& m) { return m; } + static bool inplace_decomposition(MatrixType& m) + { return llt_inplace<typename MatrixType::Scalar, Upper>::blocked(m)==-1; } +}; + +} // end namespace internal + +/** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix + * + * \returns a reference to *this + * + * Example: \include TutorialLinAlgComputeTwice.cpp + * Output: \verbinclude TutorialLinAlgComputeTwice.out + */ +template<typename MatrixType, int _UpLo> +LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const MatrixType& a) +{ + eigen_assert(a.rows()==a.cols()); + const Index size = a.rows(); + m_matrix.resize(size, size); + m_matrix = a; + + m_isInitialized = true; + bool ok = Traits::inplace_decomposition(m_matrix); + m_info = ok ? Success : NumericalIssue; + + return *this; +} + +/** Performs a rank one update (or dowdate) of the current decomposition. + * If A = LL^* before the rank one update, + * then after it we have LL^* = A + sigma * v v^* where \a v must be a vector + * of same dimension. + */ +template<typename _MatrixType, int _UpLo> +template<typename VectorType> +LLT<_MatrixType,_UpLo> LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, const RealScalar& sigma) +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType); + eigen_assert(v.size()==m_matrix.cols()); + eigen_assert(m_isInitialized); + if(internal::llt_inplace<typename MatrixType::Scalar, UpLo>::rankUpdate(m_matrix,v,sigma)>=0) + m_info = NumericalIssue; + else + m_info = Success; + + return *this; +} + +namespace internal { +template<typename _MatrixType, int UpLo, typename Rhs> +struct solve_retval<LLT<_MatrixType, UpLo>, Rhs> + : solve_retval_base<LLT<_MatrixType, UpLo>, Rhs> +{ + typedef LLT<_MatrixType,UpLo> LLTType; + EIGEN_MAKE_SOLVE_HELPERS(LLTType,Rhs) + + template<typename Dest> void evalTo(Dest& dst) const + { + dst = rhs(); + dec().solveInPlace(dst); + } +}; +} + +/** \internal use x = llt_object.solve(x); + * + * This is the \em in-place version of solve(). + * + * \param bAndX represents both the right-hand side matrix b and result x. + * + * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD. + * + * This version avoids a copy when the right hand side matrix b is not + * needed anymore. + * + * \sa LLT::solve(), MatrixBase::llt() + */ +template<typename MatrixType, int _UpLo> +template<typename Derived> +void LLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const +{ + eigen_assert(m_isInitialized && "LLT is not initialized."); + eigen_assert(m_matrix.rows()==bAndX.rows()); + matrixL().solveInPlace(bAndX); + matrixU().solveInPlace(bAndX); +} + +/** \returns the matrix represented by the decomposition, + * i.e., it returns the product: L L^*. + * This function is provided for debug purpose. */ +template<typename MatrixType, int _UpLo> +MatrixType LLT<MatrixType,_UpLo>::reconstructedMatrix() const +{ + eigen_assert(m_isInitialized && "LLT is not initialized."); + return matrixL() * matrixL().adjoint().toDenseMatrix(); +} + +/** \cholesky_module + * \returns the LLT decomposition of \c *this + */ +template<typename Derived> +inline const LLT<typename MatrixBase<Derived>::PlainObject> +MatrixBase<Derived>::llt() const +{ + return LLT<PlainObject>(derived()); +} + +/** \cholesky_module + * \returns the LLT decomposition of \c *this + */ +template<typename MatrixType, unsigned int UpLo> +inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> +SelfAdjointView<MatrixType, UpLo>::llt() const +{ + return LLT<PlainObject,UpLo>(m_matrix); +} + +} // end namespace Eigen + +#endif // EIGEN_LLT_H |