aboutsummaryrefslogtreecommitdiff
path: root/src/Eigen/IterativeLinearSolvers
diff options
context:
space:
mode:
Diffstat (limited to 'src/Eigen/IterativeLinearSolvers')
-rw-r--r--src/Eigen/IterativeLinearSolvers40
1 files changed, 40 insertions, 0 deletions
diff --git a/src/Eigen/IterativeLinearSolvers b/src/Eigen/IterativeLinearSolvers
new file mode 100644
index 0000000..0f4159d
--- /dev/null
+++ b/src/Eigen/IterativeLinearSolvers
@@ -0,0 +1,40 @@
+#ifndef EIGEN_ITERATIVELINEARSOLVERS_MODULE_H
+#define EIGEN_ITERATIVELINEARSOLVERS_MODULE_H
+
+#include "SparseCore"
+#include "OrderingMethods"
+
+#include "src/Core/util/DisableStupidWarnings.h"
+
+/**
+ * \defgroup IterativeLinearSolvers_Module IterativeLinearSolvers module
+ *
+ * This module currently provides iterative methods to solve problems of the form \c A \c x = \c b, where \c A is a squared matrix, usually very large and sparse.
+ * Those solvers are accessible via the following classes:
+ * - ConjugateGradient for selfadjoint (hermitian) matrices,
+ * - BiCGSTAB for general square matrices.
+ *
+ * These iterative solvers are associated with some preconditioners:
+ * - IdentityPreconditioner - not really useful
+ * - DiagonalPreconditioner - also called JAcobi preconditioner, work very well on diagonal dominant matrices.
+ * - IncompleteILUT - incomplete LU factorization with dual thresholding
+ *
+ * Such problems can also be solved using the direct sparse decomposition modules: SparseCholesky, CholmodSupport, UmfPackSupport, SuperLUSupport.
+ *
+ * \code
+ * #include <Eigen/IterativeLinearSolvers>
+ * \endcode
+ */
+
+#include "src/misc/Solve.h"
+#include "src/misc/SparseSolve.h"
+
+#include "src/IterativeLinearSolvers/IterativeSolverBase.h"
+#include "src/IterativeLinearSolvers/BasicPreconditioners.h"
+#include "src/IterativeLinearSolvers/ConjugateGradient.h"
+#include "src/IterativeLinearSolvers/BiCGSTAB.h"
+#include "src/IterativeLinearSolvers/IncompleteLUT.h"
+
+#include "src/Core/util/ReenableStupidWarnings.h"
+
+#endif // EIGEN_ITERATIVELINEARSOLVERS_MODULE_H