about summary refs log tree commit diff
path: root/lapack.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lapack.cpp')
-rw-r--r--lapack.cpp609
1 files changed, 609 insertions, 0 deletions
diff --git a/lapack.cpp b/lapack.cpp
new file mode 100644
index 0000000..83d5290
--- /dev/null
+++ b/lapack.cpp
@@ -0,0 +1,609 @@
+/*
+	Genome-wide Efficient Mixed Model Association (GEMMA)
+    Copyright (C) 2011  Xiang Zhou
+
+    This program is free software: you can redistribute it and/or modify
+    it under the terms of the GNU General Public License as published by
+    the Free Software Foundation, either version 3 of the License, or
+    (at your option) any later version.
+
+    This program is distributed in the hope that it will be useful,
+    but WITHOUT ANY WARRANTY; without even the implied warranty of
+    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+    GNU General Public License for more details.
+
+    You should have received a copy of the GNU General Public License
+    along with this program.  If not, see <http://www.gnu.org/licenses/>.
+*/
+
+#include <iostream>
+#include <cmath>
+#include "gsl/gsl_vector.h"
+#include "gsl/gsl_matrix.h"
+#include "gsl/gsl_linalg.h"
+
+using namespace std;
+
+extern "C" void sgemm_(char *TRANSA, char *TRANSB, int *M, int *N, int *K, float *ALPHA, float *A, int *LDA, float *B, int *LDB, float *BETA, float *C, int *LDC);
+extern "C" void spotrf_(char *UPLO, int *N, float *A, int *LDA, int *INFO);
+extern "C" void spotrs_(char *UPLO, int *N, int *NRHS, float *A, int *LDA, float *B, int *LDB, int *INFO);
+extern "C" void ssyev_(char* JOBZ, char* UPLO, int *N, float *A, int *LDA, float *W, float *WORK, int *LWORK, int *INFO);
+extern "C" void ssyevr_(char* JOBZ, char *RANGE, char* UPLO, int *N, float *A, int *LDA, float *VL, float *VU, int *IL, int *IU, float *ABSTOL, int *M, float *W, float *Z, int *LDZ, int *ISUPPZ, float *WORK, int *LWORK, int *IWORK, int *LIWORK, int *INFO);
+
+extern "C" void dgemm_(char *TRANSA, char *TRANSB, int *M, int *N, int *K, double *ALPHA, double *A, int *LDA, double *B, int *LDB, double *BETA, double *C, int *LDC);
+extern "C" void dpotrf_(char *UPLO, int *N, double *A, int *LDA, int *INFO);
+extern "C" void dpotrs_(char *UPLO, int *N, int *NRHS, double *A, int *LDA, double *B, int *LDB, int *INFO);
+extern "C" void dsyev_(char* JOBZ, char* UPLO, int *N, double *A, int *LDA, double *W, double *WORK, int *LWORK, int *INFO);
+extern "C" void dsyevr_(char* JOBZ, char *RANGE, char* UPLO, int *N, double *A, int *LDA, double *VL, double *VU, int *IL, int *IU, double *ABSTOL, int *M, double *W, double *Z, int *LDZ, int *ISUPPZ, double *WORK, int *LWORK, int *IWORK, int *LIWORK, int *INFO);
+
+
+//cholesky decomposition, A is distroyed
+void lapack_float_cholesky_decomp (gsl_matrix_float *A)
+{
+	int N=A->size1, LDA=A->size1, INFO;
+	char UPLO='L';
+	
+	if (N!=(int)A->size2) {cout<<"Matrix needs to be symmetric and same dimension in lapack_cholesky_decomp."<<endl; return;}
+	
+	spotrf_(&UPLO, &N, A->data, &LDA, &INFO);
+	if (INFO!=0) {cout<<"Cholesky decomposition unsuccessful in lapack_cholesky_decomp."<<endl; return;}	
+	
+	return;
+}
+
+//cholesky decomposition, A is distroyed
+void lapack_cholesky_decomp (gsl_matrix *A)
+{
+	int N=A->size1, LDA=A->size1, INFO;
+	char UPLO='L';
+	
+	if (N!=(int)A->size2) {cout<<"Matrix needs to be symmetric and same dimension in lapack_cholesky_decomp."<<endl; return;}
+	
+	dpotrf_(&UPLO, &N, A->data, &LDA, &INFO);
+	if (INFO!=0) {cout<<"Cholesky decomposition unsuccessful in lapack_cholesky_decomp."<<endl; return;}	
+	
+	return;
+}
+
+//cholesky solve, A is decomposed, 
+void lapack_float_cholesky_solve (gsl_matrix_float *A, const gsl_vector_float *b, gsl_vector_float *x)
+{
+	int N=A->size1, NRHS=1, LDA=A->size1, LDB=b->size, INFO;
+	char UPLO='L';
+	
+	if (N!=(int)A->size2 || N!=LDB) {cout<<"Matrix needs to be symmetric and same dimension in lapack_cholesky_solve."<<endl; return;}
+	
+	gsl_vector_float_memcpy (x, b);
+	spotrs_(&UPLO, &N, &NRHS, A->data, &LDA, x->data, &LDB, &INFO);
+	if (INFO!=0) {cout<<"Cholesky solve unsuccessful in lapack_cholesky_solve."<<endl; return;}	
+	
+	return;
+}
+
+//cholesky solve, A is decomposed, 
+void lapack_cholesky_solve (gsl_matrix *A, const gsl_vector *b, gsl_vector *x)
+{
+	int N=A->size1, NRHS=1, LDA=A->size1, LDB=b->size, INFO;
+	char UPLO='L';
+	
+	if (N!=(int)A->size2 || N!=LDB) {cout<<"Matrix needs to be symmetric and same dimension in lapack_cholesky_solve."<<endl; return;}
+	
+	gsl_vector_memcpy (x, b);
+	dpotrs_(&UPLO, &N, &NRHS, A->data, &LDA, x->data, &LDB, &INFO);
+	if (INFO!=0) {cout<<"Cholesky solve unsuccessful in lapack_cholesky_solve."<<endl; return;}	
+	
+	return;
+}
+
+
+void lapack_sgemm (char *TransA, char *TransB, float alpha, const gsl_matrix_float *A, const gsl_matrix_float *B, float beta, gsl_matrix_float *C)
+{
+	int M, N, K1, K2, LDA=A->size1, LDB=B->size1, LDC=C->size2;
+	
+	if (*TransA=='N' || *TransA=='n') {M=A->size1; K1=A->size2;}
+	else if (*TransA=='T' || *TransA=='t') {M=A->size2; K1=A->size1;}
+	else {cout<<"need 'N' or 'T' in lapack_sgemm"<<endl; return;}
+	
+	if (*TransB=='N' || *TransB=='n') {N=B->size2; K2=B->size1;}
+	else if (*TransB=='T' || *TransB=='t')  {N=B->size1; K2=B->size2;}
+	else {cout<<"need 'N' or 'T' in lapack_sgemm"<<endl;  return;}
+	
+	if (K1!=K2) {cout<<"A and B not compatible in lapack_sgemm"<<endl; return;}
+	if (C->size1!=(size_t)M || C->size2!=(size_t)N) {cout<<"C not compatible in lapack_sgemm"<<endl; return;}
+	
+	gsl_matrix_float *A_t=gsl_matrix_float_alloc (A->size2, A->size1);
+	gsl_matrix_float_transpose_memcpy (A_t, A);
+	gsl_matrix_float *B_t=gsl_matrix_float_alloc (B->size2, B->size1);
+	gsl_matrix_float_transpose_memcpy (B_t, B);
+	gsl_matrix_float *C_t=gsl_matrix_float_alloc (C->size2, C->size1);
+	gsl_matrix_float_transpose_memcpy (C_t, C);
+	
+	sgemm_(TransA, TransB, &M, &N, &K1, &alpha, A_t->data, &LDA, B_t->data, &LDB, &beta, C_t->data, &LDC);
+	gsl_matrix_float_transpose_memcpy (C, C_t);
+	
+	gsl_matrix_float_free (A_t);
+	gsl_matrix_float_free (B_t);
+	gsl_matrix_float_free (C_t);
+	return;
+}
+
+
+
+void lapack_dgemm (char *TransA, char *TransB, double alpha, const gsl_matrix *A, const gsl_matrix *B, double beta, gsl_matrix *C)
+{
+	int M, N, K1, K2, LDA=A->size1, LDB=B->size1, LDC=C->size2;
+	
+	if (*TransA=='N' || *TransA=='n') {M=A->size1; K1=A->size2;}
+	else if (*TransA=='T' || *TransA=='t') {M=A->size2; K1=A->size1;}
+	else {cout<<"need 'N' or 'T' in lapack_dgemm"<<endl; return;}
+	
+	if (*TransB=='N' || *TransB=='n') {N=B->size2; K2=B->size1;}
+	else if (*TransB=='T' || *TransB=='t')  {N=B->size1; K2=B->size2;}
+	else {cout<<"need 'N' or 'T' in lapack_dgemm"<<endl;  return;}
+	
+	if (K1!=K2) {cout<<"A and B not compatible in lapack_dgemm"<<endl; return;}
+	if (C->size1!=(size_t)M || C->size2!=(size_t)N) {cout<<"C not compatible in lapack_dgemm"<<endl; return;}
+	
+	gsl_matrix *A_t=gsl_matrix_alloc (A->size2, A->size1);
+	gsl_matrix_transpose_memcpy (A_t, A);
+	gsl_matrix *B_t=gsl_matrix_alloc (B->size2, B->size1);
+	gsl_matrix_transpose_memcpy (B_t, B);
+	gsl_matrix *C_t=gsl_matrix_alloc (C->size2, C->size1);
+	gsl_matrix_transpose_memcpy (C_t, C);
+
+	dgemm_(TransA, TransB, &M, &N, &K1, &alpha, A_t->data, &LDA, B_t->data, &LDB, &beta, C_t->data, &LDC);
+
+	gsl_matrix_transpose_memcpy (C, C_t);
+	
+	gsl_matrix_free (A_t);
+	gsl_matrix_free (B_t);
+	gsl_matrix_free (C_t);
+	return;
+}
+
+
+
+//eigen value decomposition, matrix A is destroyed, float seems to have problem with large matrices (in mac)
+void lapack_float_eigen_symmv (gsl_matrix_float *A, gsl_vector_float *eval, gsl_matrix_float *evec, const size_t flag_largematrix)
+{
+	if (flag_largematrix==1) {
+		int N=A->size1, LDA=A->size1, INFO, LWORK=-1;
+		char JOBZ='V', UPLO='L';
+				
+		if (N!=(int)A->size2 || N!=(int)eval->size) {cout<<"Matrix needs to be symmetric and same dimension in lapack_eigen_symmv."<<endl; return;}
+		
+		//	float temp[1];
+		//	ssyev_(&JOBZ, &UPLO, &N, A->data, &LDA, eval->data, temp, &LWORK, &INFO);
+		//	if (INFO!=0) {cout<<"Work space estimate unsuccessful in lapack_eigen_symmv."<<endl; return;}
+		//	LWORK=(int)temp[0];
+		
+		LWORK=3*N;
+		float *WORK=new float [LWORK];	
+		ssyev_(&JOBZ, &UPLO, &N, A->data, &LDA, eval->data, WORK, &LWORK, &INFO);
+		if (INFO!=0) {cout<<"Eigen decomposition unsuccessful in lapack_eigen_symmv."<<endl; return;}
+		
+		gsl_matrix_float_view A_sub=gsl_matrix_float_submatrix(A, 0, 0, N, N);
+		gsl_matrix_float_memcpy (evec, &A_sub.matrix);
+		gsl_matrix_float_transpose (evec);
+		
+		delete [] WORK;
+	} else {	
+		int N=A->size1, LDA=A->size1, LDZ=A->size1, INFO, LWORK=-1, LIWORK=-1;
+		char JOBZ='V', UPLO='L', RANGE='A';
+		float ABSTOL=1.0E-7;
+		
+		//VL, VU, IL, IU are not referenced; M equals N if RANGE='A'
+		float VL=0.0, VU=0.0;
+		int IL=0, IU=0, M;
+		
+		if (N!=(int)A->size2 || N!=(int)eval->size) {cout<<"Matrix needs to be symmetric and same dimension in lapack_float_eigen_symmv."<<endl; return;}
+		
+		int *ISUPPZ=new int [2*N];
+				
+		float WORK_temp[1];
+		int IWORK_temp[1];
+		ssyevr_(&JOBZ, &RANGE, &UPLO, &N, A->data, &LDA, &VL, &VU, &IL, &IU, &ABSTOL, &M, eval->data, evec->data, &LDZ, ISUPPZ, WORK_temp, &LWORK, IWORK_temp, &LIWORK, &INFO);
+		if (INFO!=0) {cout<<"Work space estimate unsuccessful in lapack_float_eigen_symmv."<<endl; return;}	
+		LWORK=(int)WORK_temp[0]; LIWORK=(int)IWORK_temp[0];	
+		 
+		//LWORK=26*N;
+		//LIWORK=10*N;
+		float *WORK=new float [LWORK];
+		int *IWORK=new int [LIWORK];
+		
+		ssyevr_(&JOBZ, &RANGE, &UPLO, &N, A->data, &LDA, &VL, &VU, &IL, &IU, &ABSTOL, &M, eval->data, evec->data, &LDZ, ISUPPZ, WORK, &LWORK, IWORK, &LIWORK, &INFO);
+		if (INFO!=0) {cout<<"Eigen decomposition unsuccessful in lapack_float_eigen_symmv."<<endl; return;}
+		
+		gsl_matrix_float_transpose (evec);
+		
+		delete [] ISUPPZ;
+		delete [] WORK;
+		delete [] IWORK;
+	}
+	
+	
+	return;
+}
+
+
+
+//eigen value decomposition, matrix A is destroyed
+void lapack_eigen_symmv (gsl_matrix *A, gsl_vector *eval, gsl_matrix *evec, const size_t flag_largematrix)
+{
+	if (flag_largematrix==1) {
+		int N=A->size1, LDA=A->size1, INFO, LWORK=-1;
+		char JOBZ='V', UPLO='L';		
+		
+		if (N!=(int)A->size2 || N!=(int)eval->size) {cout<<"Matrix needs to be symmetric and same dimension in lapack_eigen_symmv."<<endl; return;}
+		
+		//	double temp[1];
+		//	dsyev_(&JOBZ, &UPLO, &N, A->data, &LDA, eval->data, temp, &LWORK, &INFO);
+		//	if (INFO!=0) {cout<<"Work space estimate unsuccessful in lapack_eigen_symmv."<<endl; return;}		
+		//	LWORK=(int)temp[0];
+		
+		LWORK=3*N;
+		double *WORK=new double [LWORK];	
+		dsyev_(&JOBZ, &UPLO, &N, A->data, &LDA, eval->data, WORK, &LWORK, &INFO);
+		if (INFO!=0) {cout<<"Eigen decomposition unsuccessful in lapack_eigen_symmv."<<endl; return;}
+		
+		gsl_matrix_view A_sub=gsl_matrix_submatrix(A, 0, 0, N, N);
+		gsl_matrix_memcpy (evec, &A_sub.matrix);
+		gsl_matrix_transpose (evec);
+		
+		delete [] WORK;
+	} else {	
+		int N=A->size1, LDA=A->size1, LDZ=A->size1, INFO, LWORK=-1, LIWORK=-1;
+		char JOBZ='V', UPLO='L', RANGE='A';
+		double ABSTOL=1.0E-7;
+		
+		//VL, VU, IL, IU are not referenced; M equals N if RANGE='A'
+		double VL=0.0, VU=0.0;
+		int IL=0, IU=0, M;
+		
+		if (N!=(int)A->size2 || N!=(int)eval->size) {cout<<"Matrix needs to be symmetric and same dimension in lapack_eigen_symmv."<<endl; return;}
+		
+		int *ISUPPZ=new int [2*N];
+		
+		double WORK_temp[1];
+		int IWORK_temp[1];
+
+		dsyevr_(&JOBZ, &RANGE, &UPLO, &N, A->data, &LDA, &VL, &VU, &IL, &IU, &ABSTOL, &M, eval->data, evec->data, &LDZ, ISUPPZ, WORK_temp, &LWORK, IWORK_temp, &LIWORK, &INFO);
+		if (INFO!=0) {cout<<"Work space estimate unsuccessful in lapack_eigen_symmv."<<endl; return;}	
+		LWORK=(int)WORK_temp[0]; LIWORK=(int)IWORK_temp[0];	
+
+		//LWORK=26*N;
+		//LIWORK=10*N;
+		double *WORK=new double [LWORK];
+		int *IWORK=new int [LIWORK];
+		
+		dsyevr_(&JOBZ, &RANGE, &UPLO, &N, A->data, &LDA, &VL, &VU, &IL, &IU, &ABSTOL, &M, eval->data, evec->data, &LDZ, ISUPPZ, WORK, &LWORK, IWORK, &LIWORK, &INFO);
+		if (INFO!=0) {cout<<"Eigen decomposition unsuccessful in lapack_eigen_symmv."<<endl; return;}
+
+		gsl_matrix_transpose (evec);
+		
+		delete [] ISUPPZ;
+		delete [] WORK;
+		delete [] IWORK;
+	}
+	
+	return;
+}
+
+//DO NOT set eigen values to be positive
+double EigenDecomp (gsl_matrix *G, gsl_matrix *U, gsl_vector *eval, const size_t flag_largematrix)
+{
+#ifdef WITH_LAPACK
+	lapack_eigen_symmv (G, eval, U, flag_largematrix);
+#else
+	gsl_eigen_symmv_workspace *w=gsl_eigen_symmv_alloc (G->size1);
+	gsl_eigen_symmv (G, eval, U, w);
+	gsl_eigen_symmv_free (w);	
+#endif	
+	/*
+	for (size_t i=0; i<eval->size; ++i) {
+		if (gsl_vector_get (eval, i)<1e-10) {
+//			cout<<gsl_vector_get (eval, i)<<endl;
+			gsl_vector_set (eval, i, 0);			
+		}
+	}
+	*/
+	//calculate track_G=mean(diag(G))	
+	double d=0.0;
+	for (size_t i=0; i<eval->size; ++i) {
+		d+=gsl_vector_get(eval, i);
+	}
+	d/=(double)eval->size;
+	
+	return d;
+}
+
+
+//DO NOT set eigen values to be positive
+double EigenDecomp (gsl_matrix_float *G, gsl_matrix_float *U, gsl_vector_float *eval, const size_t flag_largematrix)
+{
+#ifdef WITH_LAPACK
+	lapack_float_eigen_symmv (G, eval, U, flag_largematrix);
+#else
+	//gsl doesn't provide float precision eigen decomposition; plus, float precision eigen decomposition in lapack may not work on OS 10.4
+	//first change to double precision
+	gsl_matrix *G_double=gsl_matrix_alloc (G->size1, G->size2);
+	gsl_matrix *U_double=gsl_matrix_alloc (U->size1, U->size2);
+	gsl_vector *eval_double=gsl_vector_alloc (eval->size);
+	for (size_t i=0; i<G->size1; i++) {
+		for (size_t j=0; j<G->size2; j++) {
+			gsl_matrix_set(G_double, i, j, gsl_matrix_float_get(G, i, j));
+		}
+	}	
+	gsl_eigen_symmv_workspace *w_space=gsl_eigen_symmv_alloc (G->size1);
+	gsl_eigen_symmv (G_double, eval_double, U_double, w_space);
+	gsl_eigen_symmv_free (w_space);	
+	
+	//change back to float precision
+	for (size_t i=0; i<G->size1; i++) {
+		for (size_t j=0; j<G->size2; j++) {
+			gsl_matrix_float_set(K, i, j, gsl_matrix_get(G_double, i, j));
+		}
+	}
+	for (size_t i=0; i<U->size1; i++) {
+		for (size_t j=0; j<U->size2; j++) {
+			gsl_matrix_float_set(U, i, j, gsl_matrix_get(U_double, i, j));
+		}
+	}
+	for (size_t i=0; i<eval->size; i++) {
+		gsl_vector_float_set(eval, i, gsl_vector_get(eval_double, i));
+	}	
+	
+	//delete double precision matrices
+	gsl_matrix_free (G_double);
+	gsl_matrix_free (U_double);
+	gsl_vector_free (eval_double);
+#endif
+	/*
+	for (size_t i=0; i<eval->size; ++i) {
+		if (gsl_vector_float_get (eval, i)<1e-10) {
+			gsl_vector_float_set (eval, i, 0);
+		}
+	}
+	*/
+	//calculate track_G=mean(diag(G))	
+	double d=0.0;
+	for (size_t i=0; i<eval->size; ++i) {
+		d+=gsl_vector_float_get(eval, i);
+	}
+	d/=(double)eval->size;
+	
+	return d;
+}
+
+
+double CholeskySolve(gsl_matrix *Omega, gsl_vector *Xty, gsl_vector *OiXty)
+{
+	double logdet_O=0.0;
+	
+#ifdef WITH_LAPACK
+	lapack_cholesky_decomp(Omega);
+	for (size_t i=0; i<Omega->size1; ++i) {
+		logdet_O+=log(gsl_matrix_get (Omega, i, i));
+	}	
+	logdet_O*=2.0;	
+	lapack_cholesky_solve(Omega, Xty, OiXty);	
+#else	
+	int status = gsl_linalg_cholesky_decomp(Omega);
+	if(status == GSL_EDOM) {
+		cout << "## non-positive definite matrix" << endl; 
+		//		exit(0); 
+	}
+	
+	for (size_t i=0; i<Omega->size1; ++i) {
+		logdet_O+=log(gsl_matrix_get (Omega, i, i));
+	}
+	logdet_O*=2.0;	
+	
+	gsl_vector_memcpy (OiXty, Xty);
+	gsl_blas_dtrsv(CblasLower, CblasNoTrans, CblasNonUnit, Omega, OiXty); 
+	gsl_blas_dtrsv(CblasUpper, CblasNoTrans, CblasNonUnit, Omega, OiXty); 	
+	//	gsl_linalg_cholesky_solve(XtX, Xty, iXty);
+#endif
+	
+	return logdet_O;
+}
+
+
+double CholeskySolve(gsl_matrix_float *Omega, gsl_vector_float *Xty, gsl_vector_float *OiXty)
+{
+	double logdet_O=0.0;
+	
+#ifdef WITH_LAPACK
+	lapack_float_cholesky_decomp(Omega);
+	for (size_t i=0; i<Omega->size1; ++i) {
+		logdet_O+=log(gsl_matrix_float_get (Omega, i, i));
+	}	
+	logdet_O*=2.0;	
+	lapack_float_cholesky_solve(Omega, Xty, OiXty);	
+#else
+	gsl_matrix *Omega_double=gsl_matrix_alloc (Omega->size1, Omega->size2);
+	double d;
+	for (size_t i=0; i<Omega->size1; ++i) {
+		for (size_t j=0; j<Omega->size2; ++j) {
+			d=(double)gsl_matrix_float_get (Omega, i, j);
+			gsl_matrix_set (Omega_double, i, j, d);
+		}
+	}
+	
+	int status = gsl_linalg_cholesky_decomp(Omega_double);
+	if(status == GSL_EDOM) {
+		cout << "## non-positive definite matrix" << endl; 
+		//		exit(0); 
+	}	
+	
+	for (size_t i=0; i<Omega->size1; ++i) {
+		for (size_t j=0; j<Omega->size2; ++j) {
+			d=gsl_matrix_get (Omega_double, i, j);
+			if (j==i) {logdet_O+=log(d);}
+			gsl_matrix_float_set (Omega, i, j, (float)d);
+		}
+	}
+	logdet_O*=2.0;	
+	
+	gsl_vector_float_memcpy (OiXty, Xty);
+	gsl_blas_strsv(CblasLower, CblasNoTrans, CblasNonUnit, Omega, OiXty); 
+	gsl_blas_strsv(CblasUpper, CblasNoTrans, CblasNonUnit, Omega, OiXty); 	
+	//	gsl_linalg_cholesky_solve(XtX, Xty, iXty);
+	
+	gsl_matrix_free (Omega_double);
+#endif
+	
+	return logdet_O;
+}	
+
+
+//LU decomposition
+void LUDecomp (gsl_matrix *LU, gsl_permutation *p, int *signum)
+{
+	gsl_linalg_LU_decomp (LU, p, signum);
+	return;
+}
+
+void LUDecomp (gsl_matrix_float *LU, gsl_permutation *p, int *signum)
+{
+	gsl_matrix *LU_double=gsl_matrix_alloc (LU->size1, LU->size2);
+	
+	//copy float matrix to double	
+	for (size_t i=0; i<LU->size1; i++) {
+		for (size_t j=0; j<LU->size2; j++) {
+			gsl_matrix_set (LU_double, i, j, gsl_matrix_float_get(LU, i, j));
+		}
+	}
+	
+	//LU decomposition
+	gsl_linalg_LU_decomp (LU_double, p, signum);
+	
+	//copy float matrix to double
+	for (size_t i=0; i<LU->size1; i++) {
+		for (size_t j=0; j<LU->size2; j++) {
+			gsl_matrix_float_set (LU, i, j, gsl_matrix_get(LU_double, i, j));
+		}
+	}
+	
+	//free matrix
+	gsl_matrix_free (LU_double);
+	return;
+}
+
+
+//LU invert
+void LUInvert (const gsl_matrix *LU, const gsl_permutation *p, gsl_matrix *inverse)
+{
+	gsl_linalg_LU_invert (LU, p, inverse);
+	return;
+}
+
+void LUInvert (const gsl_matrix_float *LU, const gsl_permutation *p, gsl_matrix_float *inverse)
+{
+	gsl_matrix *LU_double=gsl_matrix_alloc (LU->size1, LU->size2);
+	gsl_matrix *inverse_double=gsl_matrix_alloc (inverse->size1, inverse->size2);
+	
+	//copy float matrix to double	
+	for (size_t i=0; i<LU->size1; i++) {
+		for (size_t j=0; j<LU->size2; j++) {
+			gsl_matrix_set (LU_double, i, j, gsl_matrix_float_get(LU, i, j));
+		}
+	}
+	
+	//LU decomposition
+	gsl_linalg_LU_invert (LU_double, p, inverse_double);
+	
+	//copy float matrix to double
+	for (size_t i=0; i<inverse->size1; i++) {
+		for (size_t j=0; j<inverse->size2; j++) {
+			gsl_matrix_float_set (inverse, i, j, gsl_matrix_get(inverse_double, i, j));
+		}
+	}
+	
+	//free matrix
+	gsl_matrix_free (LU_double);
+	gsl_matrix_free (inverse_double);
+	return;
+}
+
+//LU lndet
+double LULndet (gsl_matrix *LU)
+{
+	double d;
+	d=gsl_linalg_LU_lndet (LU);
+	return d;
+}
+
+double LULndet (gsl_matrix_float *LU)
+{
+	gsl_matrix *LU_double=gsl_matrix_alloc (LU->size1, LU->size2);
+	double d;
+	
+	//copy float matrix to double	
+	for (size_t i=0; i<LU->size1; i++) {
+		for (size_t j=0; j<LU->size2; j++) {
+			gsl_matrix_set (LU_double, i, j, gsl_matrix_float_get(LU, i, j));
+		}
+	}
+	
+	//LU decomposition
+	d=gsl_linalg_LU_lndet (LU_double);
+	
+	//copy float matrix to double
+	/*
+	for (size_t i=0; i<LU->size1; i++) {
+		for (size_t j=0; j<LU->size2; j++) {
+			gsl_matrix_float_set (LU, i, j, gsl_matrix_get(LU_double, i, j));
+		}
+	}
+	*/
+	//free matrix
+	gsl_matrix_free (LU_double);
+	return d;
+}
+
+
+//LU solve
+void LUSolve (const gsl_matrix *LU, const gsl_permutation *p, const gsl_vector *b, gsl_vector *x)
+{
+	gsl_linalg_LU_solve (LU, p, b, x);
+	return;
+}
+
+void LUSolve (const gsl_matrix_float *LU, const gsl_permutation *p, const gsl_vector_float *b, gsl_vector_float *x)
+{
+	gsl_matrix *LU_double=gsl_matrix_alloc (LU->size1, LU->size2);
+	gsl_vector *b_double=gsl_vector_alloc (b->size);
+	gsl_vector *x_double=gsl_vector_alloc (x->size);	
+	
+	//copy float matrix to double	
+	for (size_t i=0; i<LU->size1; i++) {
+		for (size_t j=0; j<LU->size2; j++) {
+			gsl_matrix_set (LU_double, i, j, gsl_matrix_float_get(LU, i, j));
+		}
+	}
+	
+	for (size_t i=0; i<b->size; i++) {
+		gsl_vector_set (b_double, i, gsl_vector_float_get(b, i));
+	}
+	
+	for (size_t i=0; i<x->size; i++) {
+		gsl_vector_set (x_double, i, gsl_vector_float_get(x, i));
+	}
+	
+	//LU decomposition
+	gsl_linalg_LU_solve (LU_double, p, b_double, x_double);
+	
+	//copy float matrix to double
+	for (size_t i=0; i<x->size; i++) {
+		gsl_vector_float_set (x, i, gsl_vector_get(x_double, i));
+	}
+	
+	//free matrix
+	gsl_matrix_free (LU_double);
+	gsl_vector_free (b_double);
+	gsl_vector_free (x_double);
+	return;
+}
+
+