about summary refs log tree commit diff
path: root/src/vc.cpp
diff options
context:
space:
mode:
authorxiangzhou2016-05-23 17:05:35 -0400
committerxiangzhou2016-05-23 17:05:35 -0400
commit943e970c9cbc184dcca679fbe455f48c32242cdc (patch)
tree70369d969dee3432e09e345c8106a541ac0d5a76 /src/vc.cpp
parent3ab77854a52ac016b9e2b824858f5f0c695d4170 (diff)
downloadpangemma-943e970c9cbc184dcca679fbe455f48c32242cdc.tar.gz
version 0.95alpha
Diffstat (limited to 'src/vc.cpp')
-rw-r--r--src/vc.cpp2240
1 files changed, 2148 insertions, 92 deletions
diff --git a/src/vc.cpp b/src/vc.cpp
index 77cf746..94bf931 100644
--- a/src/vc.cpp
+++ b/src/vc.cpp
@@ -1,17 +1,17 @@
 /*
  Genome-wide Efficient Mixed Model Association (GEMMA)
  Copyright (C) 2011  Xiang Zhou
- 
+
  This program is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation, either version 3 of the License, or
  (at your option) any later version.
- 
+
  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.
- 
+
  You should have received a copy of the GNU General Public License
  along with this program.  If not, see <http://www.gnu.org/licenses/>.
  */
@@ -26,8 +26,12 @@
 #include <cmath>
 #include <iostream>
 #include <stdio.h>
-#include <stdlib.h> 
+#include <stdlib.h>
 #include <bitset>
+#include <vector>
+#include <set>
+#include <map>
+#include <string>
 #include <cstring>
 
 #include "gsl/gsl_vector.h"
@@ -39,9 +43,14 @@
 #include "gsl/gsl_multiroots.h"
 #include "gsl/gsl_min.h"
 
+#include "Eigen/Dense"
+
+#include "param.h"
 #include "io.h"
 #include "lapack.h"
+#include "eigenlib.h"
 #include "gzstream.h"
+#include "mathfunc.h"
 
 #ifdef FORCE_FLOAT
 #include "lmm_float.h"
@@ -54,95 +63,194 @@
 
 
 using namespace std;
-
+using namespace Eigen;
 
 //in this file, X, Y are already transformed (i.e. UtX and UtY)
 
 
-void VC::CopyFromParam (PARAM &cPar) 
-{	
-	file_out=cPar.file_out;
-	
-	//	v_sigma2=cPar.v_sigma2;
-	
-	time_UtX=0.0;
-	time_opt=0.0;
+void VC::CopyFromParam (PARAM &cPar)
+{
+  a_mode=cPar.a_mode;
 
-	v_traceG=cPar.v_traceG;
-	
-	return;
+  file_cat=cPar.file_cat;
+  file_beta=cPar.file_beta;
+  file_cor=cPar.file_cor;
+
+  setSnps=cPar.setSnps;
+
+  file_out=cPar.file_out;
+  path_out=cPar.path_out;
+
+  //v_sigma2=cPar.v_sigma2;
+
+  time_UtX=0.0;
+  time_opt=0.0;
+
+  v_traceG=cPar.v_traceG;
+
+  ni_total=cPar.ni_total;
+  ns_total=cPar.ns_total;
+  ns_test=cPar.ns_test;
+
+  crt=cPar.crt;
+  window_cm=cPar.window_cm;
+  window_bp=cPar.window_bp;
+  window_ns=cPar.window_ns;
+
+  n_vc=cPar.n_vc;
+
+  return;
 }
 
 
-void VC::CopyToParam (PARAM &cPar) 
+void VC::CopyToParam (PARAM &cPar)
 {
 	cPar.time_UtX=time_UtX;
-	cPar.time_opt=time_opt;	
-		
-	cPar.v_sigma2=v_sigma2;
-	cPar.v_se_sigma2=v_se_sigma2;
+	cPar.time_opt=time_opt;
+
 	cPar.v_pve=v_pve;
 	cPar.v_se_pve=v_se_pve;
+	cPar.v_sigma2=v_sigma2;
+	cPar.v_se_sigma2=v_se_sigma2;
+	cPar.pve_total=pve_total;
+	cPar.se_pve_total=se_pve_total;
 	cPar.v_traceG=v_traceG;
-	
+
 	cPar.v_beta=v_beta;
 	cPar.v_se_beta=v_se_beta;
-	
+
+	cPar.ni_total=ni_total;
+	cPar.ns_total=ns_total;
+	cPar.ns_test=ns_test;
+
+	cPar.n_vc=n_vc;
+
+	return;
+}
+
+
+
+void VC::WriteFile_qs (const gsl_vector *s_vec, const gsl_vector *q_vec, const gsl_vector *qvar_vec, const gsl_matrix *S_mat, const gsl_matrix *Svar_mat)
+{
+	string file_str;
+	file_str=path_out+"/"+file_out;
+	file_str+=".qvec.txt";
+
+	ofstream outfile_q (file_str.c_str(), ofstream::out);
+	if (!outfile_q) {cout<<"error writing file: "<<file_str.c_str()<<endl; return;}
+
+	for (size_t i=0; i<s_vec->size; i++) {
+	  outfile_q<<gsl_vector_get(s_vec, i)<<endl;
+	}
+	for (size_t i=0; i<q_vec->size; i++) {
+	  outfile_q<<gsl_vector_get(q_vec, i)<<endl;
+	}
+	for (size_t i=0; i<qvar_vec->size; i++) {
+	  outfile_q<<gsl_vector_get(qvar_vec, i)<<endl;
+	}
+
+	outfile_q.clear();
+	outfile_q.close();
+
+	file_str=path_out+"/"+file_out;
+	file_str+=".smat.txt";
+
+	ofstream outfile_s (file_str.c_str(), ofstream::out);
+	if (!outfile_s) {cout<<"error writing file: "<<file_str.c_str()<<endl; return;}
+
+	for (size_t i=0; i<S_mat->size1; i++) {
+	  for (size_t j=0; j<S_mat->size2; j++) {
+	    outfile_s<<gsl_matrix_get(S_mat, i, j)<<"\t";
+	  }
+	  outfile_s<<endl;
+	}
+	for (size_t i=0; i<Svar_mat->size1; i++) {
+	  for (size_t j=0; j<Svar_mat->size2; j++) {
+	    outfile_s<<gsl_matrix_get(Svar_mat, i, j)<<"\t";
+	  }
+	  outfile_s<<endl;
+	}
+
+	outfile_s.clear();
+	outfile_s.close();
+
 	return;
 }
 
 
 
+
+
+
+
+
 void UpdateParam (const gsl_vector *log_sigma2, VC_PARAM *p)
 {
   size_t n1=(p->K)->size1, n_vc=log_sigma2->size-1, n_cvt=(p->W)->size2;
- 
+
   gsl_matrix *K_temp=gsl_matrix_alloc(n1, n1);
   gsl_matrix *HiW=gsl_matrix_alloc(n1, n_cvt);
   gsl_matrix *WtHiW=gsl_matrix_alloc(n_cvt, n_cvt);
   gsl_matrix *WtHiWi=gsl_matrix_alloc(n_cvt, n_cvt);
   gsl_matrix *WtHiWiWtHi=gsl_matrix_alloc(n_cvt, n1);
 
-  double sigma2;  
+  double sigma2;
   //calculate H=\sum_i^{k+1} \sigma_i^2 K_i
   gsl_matrix_set_zero (p->P);
   for (size_t i=0; i<n_vc+1; i++) {
     if (i==n_vc) {
-      gsl_matrix_set_identity (K_temp);      
+      gsl_matrix_set_identity (K_temp);
     } else {
       gsl_matrix_const_view K_sub=gsl_matrix_const_submatrix (p->K, 0, n1*i, n1, n1);
       gsl_matrix_memcpy (K_temp, &K_sub.matrix);
     }
 
-    sigma2=exp(gsl_vector_get (log_sigma2, i) );
+    //when unconstrained, update on sigma2 instead of log_sigma2
+    if (p->noconstrain) {
+      sigma2=gsl_vector_get (log_sigma2, i);
+    } else {
+      sigma2=exp(gsl_vector_get (log_sigma2, i) );
+    }
     gsl_matrix_scale(K_temp, sigma2);
     gsl_matrix_add (p->P, K_temp);
   }
 
   //calculate H^{-1}
+  /*
   int sig;
   gsl_permutation * pmt1=gsl_permutation_alloc (n1);
-  LUDecomp (p->P, pmt1, &sig);	
+  LUDecomp (p->P, pmt1, &sig);
   LUInvert (p->P, pmt1, K_temp);
   gsl_permutation_free(pmt1);
 
   gsl_matrix_memcpy (p->P, K_temp);
+  */
+  eigenlib_invert(p->P);
 
   //calculate P=H^{-1}-H^{-1}W(W^TH^{-1}W)^{-1}W^TH^{-1}
-  gsl_blas_dgemm (CblasNoTrans, CblasNoTrans, 1.0, p->P, p->W, 0.0, HiW);
-  gsl_blas_dgemm (CblasTrans, CblasNoTrans, 1.0, p->W, HiW, 0.0, WtHiW);
+  //gsl_blas_dgemm (CblasNoTrans, CblasNoTrans, 1.0, p->P, p->W, 0.0, HiW);
+  //gsl_blas_dgemm (CblasTrans, CblasNoTrans, 1.0, p->W, HiW, 0.0, WtHiW);
+
+  eigenlib_dgemm ("N", "N", 1.0, p->P, p->W, 0.0, HiW);
+  eigenlib_dgemm ("T", "N", 1.0, p->W, HiW, 0.0, WtHiW);
 
-  gsl_permutation * pmt2=gsl_permutation_alloc (n_cvt);
-  LUDecomp (WtHiW, pmt2, &sig);	
-  LUInvert (WtHiW, pmt2, WtHiWi);
-  gsl_permutation_free(pmt2);
+  //gsl_permutation * pmt2=gsl_permutation_alloc (n_cvt);
+  //LUDecomp (WtHiW, pmt2, &sig);
+  //LUInvert (WtHiW, pmt2, WtHiWi);
+  //gsl_permutation_free(pmt2);
+  eigenlib_invert(WtHiW);
+  gsl_matrix_memcpy(WtHiWi, WtHiW);
+
+  //gsl_blas_dgemm (CblasNoTrans, CblasTrans, 1.0, WtHiWi, HiW, 0.0, WtHiWiWtHi);
+  //gsl_blas_dgemm (CblasNoTrans, CblasNoTrans, -1.0, HiW, WtHiWiWtHi, 1.0, p->P);
+  eigenlib_dgemm ("N", "T", 1.0, WtHiWi, HiW, 0.0, WtHiWiWtHi);
+  eigenlib_dgemm ("N", "N", -1.0, HiW, WtHiWiWtHi, 1.0, p->P);
 
-  gsl_blas_dgemm (CblasNoTrans, CblasTrans, 1.0, WtHiWi, HiW, 0.0, WtHiWiWtHi);  
-  gsl_blas_dgemm (CblasNoTrans, CblasNoTrans, -1.0, HiW, WtHiWiWtHi, 1.0, p->P);
-  
   //calculate Py, KPy, PKPy
-  gsl_blas_dgemv(CblasNoTrans, 1.0, p->P, p->y, 0.0, p->Py);    
+  gsl_blas_dgemv(CblasNoTrans, 1.0, p->P, p->y, 0.0, p->Py);
+  //eigenlib_dgemv("N", 1.0, p->P, p->y, 0.0, p->Py);
 
+  double d;
   for (size_t i=0; i<n_vc+1; i++) {
     gsl_vector_view KPy=gsl_matrix_column (p->KPy_mat, i);
     gsl_vector_view PKPy=gsl_matrix_column (p->PKPy_mat, i);
@@ -150,11 +258,22 @@ void UpdateParam (const gsl_vector *log_sigma2, VC_PARAM *p)
     if (i==n_vc) {
       gsl_vector_memcpy (&KPy.vector, p->Py);
     } else {
-      gsl_matrix_const_view K_sub=gsl_matrix_const_submatrix (p->K, 0, n1*i, n1, n1);      
+      gsl_matrix_const_view K_sub=gsl_matrix_const_submatrix (p->K, 0, n1*i, n1, n1);
+      //seems to be important to use gsl dgemv here instead of eigenlib_dgemv; otherwise
       gsl_blas_dgemv(CblasNoTrans, 1.0, &K_sub.matrix, p->Py, 0.0, &KPy.vector);
+      //eigenlib_dgemv("N", 1.0, &K_sub.matrix, p->Py, 0.0, &KPy.vector);
     }
-    
+
     gsl_blas_dgemv(CblasNoTrans, 1.0, p->P, &KPy.vector, 0.0, &PKPy.vector);
+    //eigenlib_dgemv("N", 1.0, p->P, &KPy.vector, 0.0, &PKPy.vector);
+
+    //when phenotypes are not normalized well, then some values in the following matrix maybe nan; change that to 0; this seems to only happen when eigenlib_dgemv was used above
+    for (size_t j=0; j<p->KPy_mat->size1; j++) {
+      d=gsl_matrix_get (p->KPy_mat, j, i);
+      if (std::isnan(d)) {gsl_matrix_set (p->KPy_mat, j, i, 0); cout<<"nan appears in "<<i<<" "<<j<<endl;}
+      d=gsl_matrix_get (p->PKPy_mat, j, i);
+      if (std::isnan(d)) {gsl_matrix_set (p->PKPy_mat, j, i, 0); cout<<"nan appears in "<<i<<" "<<j<<endl;}
+    }
   }
 
   gsl_matrix_free (K_temp);
@@ -173,7 +292,7 @@ int LogRL_dev1 (const gsl_vector *log_sigma2, void *params, gsl_vector *dev1)
   VC_PARAM *p=(VC_PARAM *) params;
 
   size_t n1=(p->K)->size1, n_vc=log_sigma2->size-1;
-  
+
   double tr, d;
 
   //update parameters
@@ -199,8 +318,12 @@ int LogRL_dev1 (const gsl_vector *log_sigma2, void *params, gsl_vector *dev1)
     gsl_vector_view KPy_i=gsl_matrix_column (p->KPy_mat, i);
     gsl_blas_ddot(p->Py, &KPy_i.vector, &d);
 
-    d=(-0.5*tr+0.5*d)*exp(gsl_vector_get(log_sigma2, i));
-    
+    if (p->noconstrain) {
+      d=(-0.5*tr+0.5*d);
+    } else {
+      d=(-0.5*tr+0.5*d)*exp(gsl_vector_get(log_sigma2, i));
+    }
+
     gsl_vector_set(dev1, i, d);
   }
 
@@ -214,32 +337,47 @@ int LogRL_dev2 (const gsl_vector *log_sigma2, void *params, gsl_matrix *dev2)
   VC_PARAM *p=(VC_PARAM *) params;
 
   size_t n_vc=log_sigma2->size-1;
-  
+
   double d, sigma2_i, sigma2_j;
 
   //update parameters
   UpdateParam (log_sigma2, p);
-  
+
   //calculate dev2=0.5(yPKPKPy)
   for (size_t i=0; i<n_vc+1; i++) {
     gsl_vector_view KPy_i=gsl_matrix_column (p->KPy_mat, i);
-    sigma2_i=exp(gsl_vector_get(log_sigma2, i));
+    if (p->noconstrain) {
+      sigma2_i=gsl_vector_get(log_sigma2, i);
+    } else {
+      sigma2_i=exp(gsl_vector_get(log_sigma2, i));
+    }
 
     for (size_t j=i; j<n_vc+1; j++) {
       gsl_vector_view PKPy_j=gsl_matrix_column (p->PKPy_mat, j);
 
       gsl_blas_ddot(&KPy_i.vector, &PKPy_j.vector, &d);
-      sigma2_j=exp(gsl_vector_get(log_sigma2, j));
-
-      d*=-0.5*sigma2_i*sigma2_j;
+      if (p->noconstrain) {
+	sigma2_j=gsl_vector_get(log_sigma2, j);
+	d*=-0.5;
+      } else {
+	sigma2_j=exp(gsl_vector_get(log_sigma2, j));
+	d*=-0.5*sigma2_i*sigma2_j;
+      }
 
       gsl_matrix_set(dev2, i, j, d);
       if (j!=i) {gsl_matrix_set(dev2, j, i, d);}
-    }   
+    }
   }
 
   gsl_matrix_memcpy (p->Hessian, dev2);
-
+  /*
+  for (size_t i=0; i<dev2->size1; i++) {
+    for (size_t j=0; j<dev2->size2; j++) {
+      cout<<gsl_matrix_get (dev2, i, j)<<" ";
+    }
+    cout<<endl;
+  }
+  */
   return GSL_SUCCESS;
 }
 
@@ -250,14 +388,14 @@ int LogRL_dev12 (const gsl_vector *log_sigma2, void *params, gsl_vector *dev1, g
   VC_PARAM *p=(VC_PARAM *) params;
 
   size_t n1=(p->K)->size1, n_vc=log_sigma2->size-1;
-  
+
   double tr, d, sigma2_i, sigma2_j;
 
   //update parameters
   UpdateParam (log_sigma2, p);
 
-  //calculate dev1=-0.5*trace(PK_i)+0.5*yPKPy
-  //calculate dev2=0.5(yPKPKPy)
+  //calculate dev1=(-0.5*trace(PK_i)+0.5*yPK_iPy)*sigma2_i
+  //calculate dev2=0.5(yPK_iPK_jPy)*sigma2_i*sigma2_j
   for (size_t i=0; i<n_vc+1; i++) {
     if (i==n_vc) {
       tr=0;
@@ -277,21 +415,31 @@ int LogRL_dev12 (const gsl_vector *log_sigma2, void *params, gsl_vector *dev1, g
     gsl_vector_view KPy_i=gsl_matrix_column (p->KPy_mat, i);
     gsl_blas_ddot(p->Py, &KPy_i.vector, &d);
 
-    sigma2_i=exp(gsl_vector_get(log_sigma2, i));
-    d=(-0.5*tr+0.5*d)*sigma2_i;
- 
+    if (p->noconstrain) {
+      sigma2_i=gsl_vector_get(log_sigma2, i);
+      d=(-0.5*tr+0.5*d);
+    } else {
+      sigma2_i=exp(gsl_vector_get(log_sigma2, i));
+      d=(-0.5*tr+0.5*d)*sigma2_i;
+    }
+
     gsl_vector_set(dev1, i, d);
-      
+
     for (size_t j=i; j<n_vc+1; j++) {
       gsl_vector_view PKPy_j=gsl_matrix_column (p->PKPy_mat, j);
       gsl_blas_ddot(&KPy_i.vector, &PKPy_j.vector, &d);
 
-      sigma2_j=exp(gsl_vector_get(log_sigma2, j));
-      d*=-0.5*sigma2_i*sigma2_j;
+      if (p->noconstrain) {
+	sigma2_j=gsl_vector_get(log_sigma2, j);
+	d*=-0.5;
+      } else {
+	sigma2_j=exp(gsl_vector_get(log_sigma2, j));
+	d*=-0.5*sigma2_i*sigma2_j;
+      }
 
       gsl_matrix_set(dev2, i, j, d);
       if (j!=i) {gsl_matrix_set(dev2, j, i, d);}
-    }   
+    }
 
   }
 
@@ -303,13 +451,1195 @@ int LogRL_dev12 (const gsl_vector *log_sigma2, void *params, gsl_vector *dev1, g
 
 
 
-void VC::CalcVCreml (const gsl_matrix *K, const gsl_matrix *W, const gsl_vector *y)
+
+//read header to determine which column contains which item
+bool ReadHeader (const string &line, HEADER &header)
+{
+  string rs_ptr[]={"rs","RS","snp","SNP","snps","SNPS","snpid","SNPID","rsid","RSID"};
+  set<string> rs_set(rs_ptr, rs_ptr+10);
+  string chr_ptr[]={"chr","CHR"};
+  set<string> chr_set(chr_ptr, chr_ptr+2);
+  string pos_ptr[]={"ps","PS","pos","POS","base_position","BASE_POSITION", "bp", "BP"};
+  set<string> pos_set(pos_ptr, pos_ptr+8);
+  string cm_ptr[]={"cm","CM"};
+  set<string> cm_set(cm_ptr, cm_ptr+2);
+  string a1_ptr[]={"a1","A1","allele1","ALLELE1"};
+  set<string> a1_set(a1_ptr, a1_ptr+4);
+  string a0_ptr[]={"a0","A0","allele0","ALLELE0"};
+  set<string> a0_set(a0_ptr, a0_ptr+4);
+
+  string z_ptr[]={"z","Z","z_score","Z_SCORE","zscore","ZSCORE"};
+  set<string> z_set(z_ptr, z_ptr+6);
+  string beta_ptr[]={"beta","BETA","b","B"};
+  set<string> beta_set(beta_ptr, beta_ptr+4);
+  string sebeta_ptr[]={"se_beta","SE_BETA","se","SE"};
+  set<string> sebeta_set(sebeta_ptr, sebeta_ptr+4);
+  string chisq_ptr[]={"chisq","CHISQ","chisquare","CHISQUARE"};
+  set<string> chisq_set(chisq_ptr, chisq_ptr+4);
+  string p_ptr[]={"p","P","pvalue","PVALUE","p-value","P-VALUE"};
+  set<string> p_set(p_ptr, p_ptr+6);
+
+  string n_ptr[]={"n","N","ntotal","NTOTAL","n_total","N_TOTAL"};
+  set<string> n_set(n_ptr, n_ptr+6);
+  string nmis_ptr[]={"nmis","NMIS","n_mis","N_MIS","n_miss","N_MISS"};
+  set<string> nmis_set(nmis_ptr, nmis_ptr+6);
+  string nobs_ptr[]={"nobs","NOBS","n_obs","N_OBS"};
+  set<string> nobs_set(nobs_ptr, nobs_ptr+4);
+
+  string af_ptr[]={"af","AF","maf","MAF","f","F","allele_freq","ALLELE_FREQ","allele_frequency","ALLELE_FREQUENCY"};
+  set<string> af_set(af_ptr, af_ptr+10);
+  string var_ptr[]={"var","VAR"};
+  set<string> var_set(var_ptr, var_ptr+2);
+
+  string ws_ptr[]={"window_size","WINDOW_SIZE","ws","WS"};
+  set<string> ws_set(ws_ptr, ws_ptr+4);
+  string cor_ptr[]={"cor","COR","r","R"};
+  set<string> cor_set(cor_ptr, cor_ptr+4);
+
+  header.rs_col=0; header.chr_col=0; header.pos_col=0; header.a1_col=0; header.a0_col=0; header.z_col=0; header.beta_col=0; header.sebeta_col=0; header.chisq_col=0; header.p_col=0; header.n_col=0; header.nmis_col=0; header.nobs_col=0; header.af_col=0; header.var_col=0; header.ws_col=0; header.cor_col=0; header.coln=0;
+
+  char *ch_ptr;
+  string type;
+  size_t n_error=0;
+
+  ch_ptr=strtok ((char *)line.c_str(), " , \t");
+  while (ch_ptr!=NULL) {
+    type=ch_ptr;
+    if (rs_set.count(type)!=0) {
+      if (header.rs_col==0) {header.rs_col=header.coln+1;} else {cout<<"error! more than two rs columns in the file."<<endl; n_error++;}
+    } else if (chr_set.count(type)!=0) {
+      if (header.chr_col==0) {header.chr_col=header.coln+1;} else {cout<<"error! more than two chr columns in the file."<<endl; n_error++;}
+    } else if (pos_set.count(type)!=0) {
+      if (header.pos_col==0) {header.pos_col=header.coln+1;} else {cout<<"error! more than two pos columns in the file."<<endl; n_error++;}
+    } else if (cm_set.count(type)!=0) {
+      if (header.cm_col==0) {header.cm_col=header.coln+1;} else {cout<<"error! more than two cm columns in the file."<<endl; n_error++;}
+    } else if (a1_set.count(type)!=0) {
+      if (header.a1_col==0) {header.a1_col=header.coln+1;} else {cout<<"error! more than two allele1 columns in the file."<<endl; n_error++;}
+    } else if (a0_set.count(type)!=0) {
+      if (header.a0_col==0) {header.a0_col=header.coln+1;} else {cout<<"error! more than two allele0 columns in the file."<<endl; n_error++;}
+    } else if (z_set.count(type)!=0) {
+      if (header.z_col==0) {header.z_col=header.coln+1;} else {cout<<"error! more than two z columns in the file."<<endl; n_error++;}
+    } else if (beta_set.count(type)!=0) {
+      if (header.beta_col==0) {header.beta_col=header.coln+1;} else {cout<<"error! more than two beta columns in the file."<<endl; n_error++;}
+    } else if (sebeta_set.count(type)!=0) {
+      if (header.sebeta_col==0) {header.sebeta_col=header.coln+1;} else {cout<<"error! more than two se_beta columns in the file."<<endl; n_error++;}
+    } else if (chisq_set.count(type)!=0) {
+      if (header.chisq_col==0) {header.chisq_col=header.coln+1;} else {cout<<"error! more than two z columns in the file."<<endl; n_error++;}
+    } else if (p_set.count(type)!=0) {
+      if (header.p_col==0) {header.p_col=header.coln+1;} else {cout<<"error! more than two p columns in the file."<<endl; n_error++;}
+    } else if (n_set.count(type)!=0) {
+      if (header.n_col==0) {header.n_col=header.coln+1;} else {cout<<"error! more than two n_total columns in the file."<<endl; n_error++;}
+    } else if (nmis_set.count(type)!=0) {
+      if (header.nmis_col==0) {header.nmis_col=header.coln+1;} else {cout<<"error! more than two n_mis columns in the file."<<endl; n_error++;}
+    } else if (nobs_set.count(type)!=0) {
+      if (header.nobs_col==0) {header.nobs_col=header.coln+1;} else {cout<<"error! more than two n_obs columns in the file."<<endl; n_error++;}
+    } else if (ws_set.count(type)!=0) {
+      if (header.ws_col==0) {header.ws_col=header.coln+1;} else {cout<<"error! more than two window_size columns in the file."<<endl; n_error++;}
+    } else if (af_set.count(type)!=0) {
+      if (header.af_col==0) {header.af_col=header.coln+1;} else {cout<<"error! more than two af columns in the file."<<endl; n_error++;}
+    } else if (cor_set.count(type)!=0) {
+      if (header.cor_col==0) {header.cor_col=header.coln+1;} else {cout<<"error! more than two cor columns in the file."<<endl; n_error++;}
+    } else {}
+
+    ch_ptr=strtok (NULL, " , \t");
+    header.coln++;
+  }
+
+  if (header.cor_col!=0 && header.cor_col!=header.coln) {cout<<"error! the cor column should be the last column."<<endl; n_error++;}
+
+  if (header.rs_col==0) {
+    if (header.chr_col!=0 && header.pos_col!=0) {
+      cout<<"missing an rs column. rs id will be replaced by chr:pos"<<endl;
+    } else {
+      cout<<"error! missing an rs column."<<endl; n_error++;
+    }
+  }
+
+  if (n_error==0) {return true;} else {return false;}
+}
+
+
+
+
+
+
+//read cov file the first time, record mapRS2in, mapRS2var (in case var is not provided in the z file), store vec_n and vec_rs
+void ReadFile_cor (const string &file_cor, const set<string> &setSnps, vector<string> &vec_rs, vector<size_t> &vec_n, vector<double> &vec_cm, vector<double> &vec_bp, map<string, size_t> &mapRS2in, map<string, double> &mapRS2var)
+{
+  vec_rs.clear();
+  vec_n.clear();
+  mapRS2in.clear();
+  mapRS2var.clear();
+
+  igzstream infile (file_cor.c_str(), igzstream::in);
+  if (!infile) {cout<<"error! fail to open cov file: "<<file_cor<<endl; return;}
+
+  string line;
+  char *ch_ptr;
+
+  string rs, chr, a1, a0, pos, cm;
+  double af=0, var_x=0, d_pos, d_cm;
+  size_t n_total=0, n_mis=0, n_obs=0, ni_total=0;
+  size_t ns_test=0, ns_total=0;
+
+  HEADER header;
+
+  //header
+  !safeGetline(infile, line).eof();
+  ReadHeader (line, header);
+
+  if (header.n_col==0 ) {
+    if (header.nobs_col==0 && header.nmis_col==0) {
+      cout<<"error! missing sample size in the cor file."<<endl;
+    } else {
+      cout<<"total sample size will be replaced by obs/mis sample size."<<endl;
+    }
+  }
+
+  while (!safeGetline(infile, line).eof()) {
+    //do not read cor values this time; upto col_n-1
+    ch_ptr=strtok ((char *)line.c_str(), " , \t");
+
+    n_total=0; n_mis=0; n_obs=0; af=0; var_x=0; d_cm=0; d_pos=0;
+    for (size_t i=0; i<header.coln-1; i++) {
+      if (header.rs_col!=0 && header.rs_col==i+1) {rs=ch_ptr;}
+      if (header.chr_col!=0 && header.chr_col==i+1) {chr=ch_ptr;}
+      if (header.pos_col!=0 && header.pos_col==i+1) {pos=ch_ptr; d_pos=atof(ch_ptr);}
+      if (header.cm_col!=0 && header.cm_col==i+1) {cm=ch_ptr; d_cm=atof(ch_ptr);}
+      if (header.a1_col!=0 && header.a1_col==i+1) {a1=ch_ptr;}
+      if (header.a0_col!=0 && header.a0_col==i+1) {a0=ch_ptr;}
+
+      if (header.n_col!=0 && header.n_col==i+1) {n_total=atoi(ch_ptr);}
+      if (header.nmis_col!=0 && header.nmis_col==i+1) {n_mis=atoi(ch_ptr);}
+      if (header.nobs_col!=0 && header.nobs_col==i+1) {n_obs=atoi(ch_ptr);}
+
+      if (header.af_col!=0 && header.af_col==i+1) {af=atof(ch_ptr);}
+      if (header.var_col!=0 && header.var_col==i+1) {var_x=atof(ch_ptr);}
+
+      ch_ptr=strtok (NULL, " , \t");
+    }
+
+    if (header.rs_col==0) {
+      rs=chr+":"+pos;
+    }
+
+    if (header.n_col==0) {
+      n_total=n_mis+n_obs;
+    }
+
+    //record rs, n
+    vec_rs.push_back(rs);
+    vec_n.push_back(n_total);
+    if (d_cm>0) {vec_cm.push_back(d_cm);} else {vec_cm.push_back(d_cm);}
+    if (d_pos>0) {vec_bp.push_back(d_pos);} else {vec_bp.push_back(d_pos);}
+
+    //record mapRS2in and mapRS2var
+    if (setSnps.size()==0 || setSnps.count(rs)!=0) {
+      if (mapRS2in.count(rs)==0) {
+	mapRS2in[rs]=1;
+
+	if (header.var_col!=0) {
+	  mapRS2var[rs]=var_x;
+	} else if (header.af_col!=0) {
+	  var_x=2.0*af*(1.0-af);
+	  mapRS2var[rs]=var_x;
+	} else {}
+
+	ns_test++;
+
+      } else {
+	cout<<"error! more than one snp has the same id "<<rs<<" in cor file?"<<endl;
+      }
+    }
+
+    //record max pos,
+
+    ni_total=max(ni_total, n_total);
+    ns_total++;
+  }
+
+  //  cout<<"## number of analyzed individuals in the reference = "<<ni_total<<endl;
+  //  cout<<"## number of analyzed SNPs in the reference = "<<ns_total<<endl;
+
+  infile.close();
+  infile.clear();
+
+  return;
+}
+
+
+
+
+
+
+//read beta file, store mapRS2var if var is provided here, calculate q and var_y
+void ReadFile_beta (const bool flag_priorscale, const string &file_beta, const map<string, size_t> &mapRS2cat, map<string, size_t> &mapRS2in, map<string, double> &mapRS2var, map<string, size_t> &mapRS2nsamp, gsl_vector *q_vec, gsl_vector *qvar_vec, gsl_vector *s_vec, size_t &ni_total, size_t &ns_total)
+{
+  mapRS2nsamp.clear();
+
+  igzstream infile (file_beta.c_str(), igzstream::in);
+  if (!infile) {cout<<"error! fail to open beta file: "<<file_beta<<endl; return;}
+
+  string line;
+  char *ch_ptr;
+  string type;
+
+  string rs, chr, a1, a0, pos, cm;
+  double z=0, beta=0, se_beta=0, chisq=0, pvalue=0, zsquare=0, af=0, var_x=0;
+  size_t n_total=0, n_mis=0, n_obs=0;
+  size_t ns_test=0;
+  ns_total=0; ni_total=0;
+
+  vector<double> vec_q, vec_qvar, vec_s;
+  for (size_t i=0; i<q_vec->size; i++) {
+    vec_q.push_back(0.0);
+    vec_qvar.push_back(0.0);
+    vec_s.push_back(0.0);
+  }
+
+  //read header
+  HEADER header;
+  !safeGetline(infile, line).eof();
+  ReadHeader (line, header);
+
+  if (header.n_col==0 ) {
+    if (header.nobs_col==0 && header.nmis_col==0) {
+      cout<<"error! missing sample size in the beta file."<<endl;
+    } else {
+      cout<<"total sample size will be replaced by obs/mis sample size."<<endl;
+    }
+  }
+
+  if (header.z_col==0 && (header.beta_col==0 || header.sebeta_col==0) && header.chisq_col==0 && header.p_col==0) {
+    cout<<"error! missing z scores in the beta file."<<endl;
+  }
+
+  if (header.af_col==0 && header.var_col==0 && mapRS2var.size()==0) {
+    cout<<"error! missing allele frequency in the beta file."<<endl;
+  }
+
+  while (!safeGetline(infile, line).eof()) {
+    ch_ptr=strtok ((char *)line.c_str(), " , \t");
+
+    z=0; beta=0; se_beta=0; chisq=0; pvalue=0;
+    n_total=0; n_mis=0; n_obs=0; af=0; var_x=0;
+    for (size_t i=0; i<header.coln; i++) {
+      if (header.rs_col!=0 && header.rs_col==i+1) {rs=ch_ptr;}
+      if (header.chr_col!=0 && header.chr_col==i+1) {chr=ch_ptr;}
+      if (header.pos_col!=0 && header.pos_col==i+1) {pos=ch_ptr;}
+      if (header.cm_col!=0 && header.cm_col==i+1) {cm=ch_ptr;}
+      if (header.a1_col!=0 && header.a1_col==i+1) {a1=ch_ptr;}
+      if (header.a0_col!=0 && header.a0_col==i+1) {a0=ch_ptr;}
+
+      if (header.z_col!=0 && header.z_col==i+1) {z=atof(ch_ptr);}
+      if (header.beta_col!=0 && header.beta_col==i+1) {beta=atof(ch_ptr);}
+      if (header.sebeta_col!=0 && header.sebeta_col==i+1) {se_beta=atof(ch_ptr);}
+      if (header.chisq_col!=0 && header.chisq_col==i+1) {chisq=atof(ch_ptr);}
+      if (header.p_col!=0 && header.p_col==i+1) {pvalue=atof(ch_ptr);}
+
+      if (header.n_col!=0 && header.n_col==i+1) {n_total=atoi(ch_ptr);}
+      if (header.nmis_col!=0 && header.nmis_col==i+1) {n_mis=atoi(ch_ptr);}
+      if (header.nobs_col!=0 && header.nobs_col==i+1) {n_obs=atoi(ch_ptr);}
+
+      if (header.af_col!=0 && header.af_col==i+1) {af=atof(ch_ptr);}
+      if (header.var_col!=0 && header.var_col==i+1) {var_x=atof(ch_ptr);}
+
+      ch_ptr=strtok (NULL, " , \t");
+    }
+
+    if (header.rs_col==0) {
+      rs=chr+":"+pos;
+    }
+
+    if (header.n_col==0) {
+      n_total=n_mis+n_obs;
+    }
+
+    //both z values and beta/se_beta have directions, while chisq/pvalue do not
+    if (header.z_col!=0) {
+      zsquare=z*z;
+    } else if (header.beta_col!=0 && header.sebeta_col!=0) {
+      z=beta/se_beta;
+      zsquare=z*z;
+    } else if (header.chisq_col!=0) {
+      zsquare=chisq;
+    } else if (header.p_col!=0) {
+      zsquare=gsl_cdf_chisq_Qinv (pvalue, 1);
+    } else {zsquare=0;}
+
+    //if the snp is also present in cor file, then do calculations
+    if ((header.var_col!=0 || header.af_col!=0 || mapRS2var.count(rs)!=0) && mapRS2in.count(rs)!=0 && (mapRS2cat.size()==0 || mapRS2cat.count(rs)!=0) ) {
+      if (mapRS2in.at(rs)>1) {
+	cout<<"error! more than one snp has the same id "<<rs<<" in beta file?"<<endl;
+	break;
+      }
+
+      if (header.var_col==0) {
+	if (header.af_col!=0) {
+	  var_x=2.0*af*(1.0-af);
+	} else {
+	  var_x=mapRS2var.at(rs);
+	}
+      }
+
+      if (flag_priorscale) {var_x=1;}
+
+      mapRS2in[rs]++;
+      mapRS2var[rs]=var_x;
+      mapRS2nsamp[rs]=n_total;
+
+      if (mapRS2cat.size()!=0) {
+	vec_q[mapRS2cat.at(rs) ]+=(zsquare-1.0)*var_x/(double)n_total;
+	vec_s[mapRS2cat.at(rs) ]+=var_x;
+	vec_qvar[mapRS2cat.at(rs) ]+=var_x*var_x/((double)n_total*(double)n_total);
+      } else {
+	vec_q[0]+=(zsquare-1.0)*var_x/(double)n_total;
+	vec_s[0]+=var_x;
+	vec_qvar[0]+=var_x*var_x/((double)n_total*(double)n_total);
+      }
+
+      ni_total=max(ni_total, n_total);
+      ns_test++;
+    }
+
+    ns_total++;
+  }
+
+  for (size_t i=0; i<q_vec->size; i++) {
+    gsl_vector_set(q_vec, i, vec_q[i]);
+    gsl_vector_set(qvar_vec, i, 2.0*vec_qvar[i]);
+    gsl_vector_set(s_vec, i, vec_s[i]);
+  }
+
+
+  infile.clear();
+  infile.close();
+
+  return;
+}
+
+
+
+
+
+//read covariance file the second time
+//look for rs, n_mis+n_obs, var, window_size, cov
+//if window_cm/bp/ns is provided, then use these max values to calibrate estimates
+void ReadFile_cor (const string &file_cor, const vector<string> &vec_rs, const vector<size_t> &vec_n, const vector<double> &vec_cm, const vector<double> &vec_bp, const map<string, size_t> &mapRS2cat, const map<string, size_t> &mapRS2in, const map<string, double> &mapRS2var, const map<string, size_t> &mapRS2nsamp, const size_t crt, const double &window_cm, const double &window_bp, const double &window_ns, gsl_matrix *S_mat, gsl_matrix *Svar_mat, gsl_vector *qvar_vec, size_t &ni_total, size_t &ns_total, size_t &ns_test, size_t &ns_pair)
+{
+  igzstream infile (file_cor.c_str(), igzstream::in);
+  if (!infile) {cout<<"error! fail to open cov file: "<<file_cor<<endl; return;}
+
+  string line;
+  char *ch_ptr;
+
+  string rs1, rs2;
+  double d1, d2, d3, cor, var1, var2;
+  size_t n_nb, nsamp1, nsamp2, n12, bin_size=10, bin;
+
+  vector<vector<double> > mat_S, mat_Svar, mat_tmp;
+  vector<double> vec_qvar, vec_tmp;
+  vector<vector<vector<double> > > mat3d_Sbin;
+
+  for (size_t i=0; i<S_mat->size1; i++) {
+    vec_qvar.push_back(0.0);
+  }
+
+  for (size_t i=0; i<S_mat->size1; i++) {
+    mat_S.push_back(vec_qvar);
+    mat_Svar.push_back(vec_qvar);
+  }
+
+  for (size_t k=0; k<bin_size; k++) {
+    vec_tmp.push_back(0.0);
+  }
+  for (size_t i=0; i<S_mat->size1; i++) {
+    mat_tmp.push_back(vec_tmp);
+  }
+  for (size_t i=0; i<S_mat->size1; i++) {
+    mat3d_Sbin.push_back(mat_tmp);
+  }
+
+  string rs, chr, a1, a0, type, pos, cm;
+  size_t n_total=0, n_mis=0, n_obs=0;
+  double d_pos1, d_pos2, d_pos, d_cm1, d_cm2, d_cm;
+  ns_test=0; ns_total=0; ns_pair=0; ni_total=0;
+
+  //header
+  HEADER header;
+
+  !safeGetline(infile, line).eof();
+  ReadHeader (line, header);
+
+  while (!safeGetline(infile, line).eof()) {
+    //do not read cor values this time; upto col_n-1
+    d_pos1=0; d_cm1=0;
+    ch_ptr=strtok ((char *)line.c_str(), " , \t");
+    for (size_t i=0; i<header.coln-1; i++) {
+      if (header.rs_col!=0 && header.rs_col==i+1) {rs=ch_ptr;}
+      if (header.chr_col!=0 && header.chr_col==i+1) {chr=ch_ptr;}
+      if (header.pos_col!=0 && header.pos_col==i+1) {pos=ch_ptr; d_pos1=atof(ch_ptr);}
+      if (header.cm_col!=0 && header.cm_col==i+1) {cm=ch_ptr; d_cm1=atof(ch_ptr); }
+      if (header.a1_col!=0 && header.a1_col==i+1) {a1=ch_ptr;}
+      if (header.a0_col!=0 && header.a0_col==i+1) {a0=ch_ptr;}
+
+      if (header.n_col!=0 && header.n_col==i+1) {n_total=atoi(ch_ptr);}
+      if (header.nmis_col!=0 && header.nmis_col==i+1) {n_mis=atoi(ch_ptr);}
+      if (header.nobs_col!=0 && header.nobs_col==i+1) {n_obs=atoi(ch_ptr);}
+
+      ch_ptr=strtok (NULL, " , \t");
+    }
+
+    if (header.rs_col==0) {
+      rs=chr+":"+pos;
+    }
+
+    if (header.n_col==0) {
+      n_total=n_mis+n_obs;
+    }
+
+    rs1=rs;
+
+    if ( (mapRS2cat.size()==0 || mapRS2cat.count(rs1)!=0) && mapRS2in.count(rs1)!=0 && mapRS2in.at(rs1)==2) {
+      var1=mapRS2var.at(rs1);
+      nsamp1=mapRS2nsamp.at(rs1);
+      d2=var1*var1;
+
+      if (mapRS2cat.size()!=0) {
+	mat_S[mapRS2cat.at(rs1) ][mapRS2cat.at(rs1) ]+=(1-1.0/(double)vec_n[ns_total])*d2;
+	mat_Svar[mapRS2cat.at(rs1) ][mapRS2cat.at(rs1) ]+=d2*d2/((double)vec_n[ns_total]*(double)vec_n[ns_total]);
+	if (crt==1) {
+	  mat3d_Sbin[mapRS2cat.at(rs1) ][mapRS2cat.at(rs1) ][0]+=(1-1.0/(double)vec_n[ns_total])*d2;
+	}
+      } else {
+	//mat_S[0][0]+=(1-1.0/(double)vec_n[ns_total])*d2;
+	mat_S[0][0]+=(1-1.0/(double)vec_n[ns_total])*d2;
+	mat_Svar[0][0]+=d2*d2/((double)vec_n[ns_total]*(double)vec_n[ns_total]);
+	if (crt==1) {
+	  mat3d_Sbin[0][0][0]+=(1-1.0/(double)vec_n[ns_total])*d2;
+	}
+      }
+
+      n_nb=0;
+      while(ch_ptr!=NULL) {
+	type=ch_ptr;
+	if (type.compare("NA")!=0 && type.compare("na")!=0 && type.compare("nan")!=0 && type.compare("-nan")!=0) {
+	  cor=atof(ch_ptr);
+	  rs2=vec_rs[ns_total+n_nb+1];
+	  d_pos2=vec_bp[ns_total+n_nb+1];
+	  d_cm2=vec_cm[ns_total+n_nb+1];
+	  d_pos=abs(d_pos2-d_pos1);
+	  d_cm=abs(d_cm2-d_cm1);
+
+	  if ( (mapRS2cat.size()==0 || mapRS2cat.count(rs2)!=0) && mapRS2in.count(rs2)!=0 && mapRS2in.at(rs2)==2) {
+	    var2=mapRS2var.at(rs2);
+	    nsamp2=mapRS2nsamp.at(rs2);
+	    d1=cor*cor-1.0/(double)min(vec_n[ns_total], vec_n[ns_total+n_nb+1]);
+	    d2=var1*var2;
+	    d3=cor*cor/((double)nsamp1*(double)nsamp2);
+	    n12=min(vec_n[ns_total], vec_n[ns_total+n_nb+1]);
+
+	    //compute bin
+	    if (crt==1) {
+	      if (window_cm!=0 && d_cm1!=0 && d_cm2!=0) {
+		bin=min( (int)floor(d_cm/window_cm*bin_size), (int)bin_size);
+	      } else if (window_bp!=0 && d_pos1!=0 && d_pos2!=0) {
+		bin=min( (int)floor(d_pos/window_bp*bin_size), (int)bin_size);
+	      } else if (window_ns!=0) {
+		bin=min( (int)floor(((double)n_nb+1)/window_ns*bin_size), (int)bin_size);
+	      }
+	    }
+
+	    //if (mat_S[0][0]!=mat_S[0][0] && flag_nan==0) {
+	    //if (rs1.compare("rs10915560")==0 || rs1.compare("rs241273")==0) {cout<<rs1<<" "<<rs2<<" "<<ns_total<<" "<<n_nb<<" "<<vec_n[ns_total]<<" "<<vec_n[ns_total+n_nb+1]<<" "<<nsamp1<<" "<<nsamp2<<" "<<var1<<" "<<var2<<" "<<cor<<" "<<d1<<" "<<d2<<" "<<d3<<" "<<mat_S[0][0]<<endl; flag_nan++;}
+	    if (mapRS2cat.size()!=0) {
+	      if (mapRS2cat.at(rs1)==mapRS2cat.at(rs2)) {
+		vec_qvar[mapRS2cat.at(rs1)]+=2*d3*d2;
+		mat_S[mapRS2cat.at(rs1) ][mapRS2cat.at(rs2) ]+=2*d1*d2;
+		mat_Svar[mapRS2cat.at(rs1) ][mapRS2cat.at(rs2) ]+=2*d2*d2/((double)n12*(double)n12);
+		if (crt==1) {
+		  mat3d_Sbin[mapRS2cat.at(rs1) ][mapRS2cat.at(rs2) ][bin]+=2*d1*d2;
+		}
+	      } else {
+		mat_S[mapRS2cat.at(rs1) ][mapRS2cat.at(rs2) ]+=d1*d2;
+		mat_Svar[mapRS2cat.at(rs1) ][mapRS2cat.at(rs2) ]+=d2*d2/((double)n12*(double)n12);
+		if (crt==1) {
+		  mat3d_Sbin[mapRS2cat.at(rs1) ][mapRS2cat.at(rs2) ][bin]+=d1*d2;
+		}
+	      }
+	    } else {
+	      vec_qvar[0]+=2*d3*d2;
+	      mat_S[0][0]+=2*d1*d2;
+	      mat_Svar[0][0]+=2*d2*d2/((double)n12*(double)n12);
+
+	      if (crt==1) {
+		mat3d_Sbin[0][0][bin]+=2*d1*d2;
+	      }
+	    }
+	    ns_pair++;
+	  }
+	}
+
+	ch_ptr=strtok (NULL, " , \t");
+	n_nb++;
+      }
+      ni_total=max(ni_total, n_total);
+      ns_test++;
+    }
+
+    ns_total++;
+  }
+
+  //use S_bin to fit a rational function y=1/(a+bx)^2, where x=seq(0.5,bin_size-0.5,by=1)
+  //and then compute a correlation factor as a percentage
+  double a, b, x, y, n, var_y, var_x, mean_y, mean_x, cov_xy, crt_factor;
+  if (crt==1) {
+    for (size_t i=0; i<S_mat->size1; i++) {
+      for (size_t j=i; j<S_mat->size2; j++) {
+
+	//correct mat_S
+	n=0; var_y=0; var_x=0; mean_y=0; mean_x=0; cov_xy=0;
+	for (size_t k=0; k<bin_size; k++) {
+	  if (j==i) {
+	    y=mat3d_Sbin[i][j][k];
+	  } else {
+	    y=mat3d_Sbin[i][j][k]+mat3d_Sbin[j][i][k];
+	  }
+	  x=k+0.5;
+	  cout<<y<<", ";
+	  if (y>0) {
+	    y=1/sqrt(y);
+	    mean_x+=x; mean_y+=y; var_x+=x*x; var_y+=y*y; cov_xy+=x*y;
+	    n++;
+	  }
+	}
+	cout<<endl;
+
+	if (n>=5) {
+	  mean_x/=n; mean_y/=n; var_x/=n; var_y/=n; cov_xy/=n;
+	  var_x-=mean_x*mean_x; var_y-=mean_y*mean_y; cov_xy-=mean_x*mean_y;
+	  b=cov_xy/var_x;
+	  a=mean_y-b*mean_x;
+	  crt_factor=a/(b*(bin_size+0.5))+1;
+	  if (i==j) {
+	    mat_S[i][j]*=crt_factor;
+	  } else {
+	    mat_S[i][j]*=crt_factor; mat_S[j][i]*=crt_factor;
+	  }
+	  cout<<crt_factor<<endl;
+	  //correct qvar
+	  if (i==j) {
+	    vec_qvar[i]*=crt_factor; //=vec_qvar[i]*crt_factor+(ns_test*ns_test-ns_pair*crt_factor)/pow(ni_total, 3.0);
+	  }
+	}
+      }
+    }
+  }
+
+  //save to gsl_vector and gsl_matrix: qvar_vec, S_mat, Svar_mat
+  for (size_t i=0; i<S_mat->size1; i++) {
+    d1=gsl_vector_get(qvar_vec, i)+2*vec_qvar[i];
+    gsl_vector_set(qvar_vec, i, d1);
+    for (size_t j=0; j<S_mat->size2; j++) {
+      if (i==j) {
+	gsl_matrix_set(S_mat, i, j, mat_S[i][i]);
+	gsl_matrix_set(Svar_mat, i, j, 2.0*mat_Svar[i][i]*ns_test*ns_test/(2.0*ns_pair) );
+      } else {
+	gsl_matrix_set(S_mat, i, j, mat_S[i][j]+mat_S[j][i]);
+	gsl_matrix_set(Svar_mat, i, j, 2.0*(mat_Svar[i][j]+mat_Svar[j][i])*ns_test*ns_test/(2.0*ns_pair) );
+      }
+    }
+  }
+
+
+
+  infile.clear();
+  infile.close();
+
+  return;
+}
+
+
+
+
+
+//copied from lmm.cpp; is used in the following function VCss
+//map a number 1-(n_cvt+2) to an index between 0 and [(n_c+2)^2+(n_c+2)]/2-1
+size_t GetabIndex (const size_t a, const size_t b, const size_t n_cvt) {
+	if (a>n_cvt+2 || b>n_cvt+2 || a<=0 || b<=0) {cout<<"error in GetabIndex."<<endl; return 0;}
+	size_t index;
+	size_t l, h;
+	if (b>a) {l=a; h=b;} else {l=b; h=a;}
+
+	size_t n=n_cvt+2;
+	index=(2*n-l+2)*(l-1)/2+h-l;
+
+	return index;
+}
+
+
+//use the new method to calculate variance components with summary statistics
+//first, use a function CalcS to compute S matrix (where the diagonal elements are part of V(q) ), and then use bootstrap to compute the variance for S, use a set of genotypes, phenotypes, and individual ids, and snp category label
+void CalcVCss(const gsl_matrix *Vq, const gsl_matrix *S_mat, const gsl_matrix *Svar_mat, const gsl_vector *q_vec, const gsl_vector *s_vec, const double df, vector<double> &v_pve, vector<double> &v_se_pve, double &pve_total, double &se_pve_total, vector<double> &v_sigma2, vector<double> &v_se_sigma2, vector<double> &v_enrich, vector<double> &v_se_enrich) {
+  size_t n_vc=S_mat->size1;
+
+  gsl_matrix *Si_mat=gsl_matrix_alloc (n_vc, n_vc);
+  gsl_matrix *Var_mat=gsl_matrix_alloc (n_vc, n_vc);
+  gsl_matrix *tmp_mat=gsl_matrix_alloc (n_vc, n_vc);
+  gsl_matrix *tmp_mat1=gsl_matrix_alloc (n_vc, n_vc);
+  gsl_matrix *VarEnrich_mat=gsl_matrix_alloc (n_vc, n_vc);
+  gsl_matrix *qvar_mat=gsl_matrix_alloc (n_vc, n_vc);
+
+  gsl_vector *pve=gsl_vector_alloc (n_vc);
+  gsl_vector *pve_plus=gsl_vector_alloc (n_vc+1);
+  gsl_vector *tmp=gsl_vector_alloc (n_vc+1);
+  gsl_vector *sigma2persnp=gsl_vector_alloc (n_vc);
+  gsl_vector *enrich=gsl_vector_alloc (n_vc);
+  gsl_vector *se_pve=gsl_vector_alloc (n_vc);
+  gsl_vector *se_sigma2persnp=gsl_vector_alloc (n_vc);
+  gsl_vector *se_enrich=gsl_vector_alloc (n_vc);
+
+  double d;
+
+  //calculate S^{-1}q
+  gsl_matrix_memcpy (tmp_mat, S_mat);
+  int sig;
+  gsl_permutation * pmt=gsl_permutation_alloc (n_vc);
+  LUDecomp (tmp_mat, pmt, &sig);
+  LUInvert (tmp_mat, pmt, Si_mat);
+
+  //calculate sigma2snp and pve
+  gsl_blas_dgemv (CblasNoTrans, 1.0, Si_mat, q_vec, 0.0, pve);
+  gsl_vector_memcpy(sigma2persnp, pve);
+  gsl_vector_div(sigma2persnp, s_vec);
+
+  //get qvar_mat
+  /*
+  if (n_block==0 || n_block==1) {
+    double s=1.0;
+    for (size_t i=0; i<n_vc; i++) {
+      d=gsl_vector_get(pve, i);
+      gsl_vector_set(pve_plus, i, d);
+      s-=d;
+    }
+    gsl_vector_set(pve_plus, n_vc, s);
+
+    for (size_t i=0; i<n_vc; i++) {
+      for (size_t j=i; j<n_vc; j++) {
+	size_t t_ij=GetabIndex (i+1, j+1, n_vc-2);
+	gsl_matrix_const_view Vsub=gsl_matrix_const_submatrix(V, 0, t_ij*(n_vc+1), n_vc+1, n_vc+1);
+	gsl_blas_dgemv (CblasNoTrans, 1.0, &Vsub.matrix, pve_plus, 0.0, tmp);
+	gsl_blas_ddot (pve_plus, tmp, &d);
+
+	d*=2/(df*df);
+
+	gsl_matrix_set (qvar_mat, i, j, d);
+	if (i!=j) {gsl_matrix_set (qvar_mat, j, i, d);}
+	//cout<<t_ij<<"/"<<d<<" ";
+      }
+      //cout<<endl;
+    }
+  } else {
+  */
+    gsl_matrix_memcpy (qvar_mat, Vq);
+    gsl_matrix_scale (qvar_mat, 1.0/(df*df));
+    //}
+
+  //gsl_matrix_memcpy (qvar_mat, S_mat);
+  //gsl_matrix_scale (qvar_mat, 2/(df*df));
+
+  //calculate variance for these estimates
+  for (size_t i=0; i<n_vc; i++) {
+    for (size_t j=i; j<n_vc; j++) {
+      d=gsl_matrix_get(Svar_mat, i, j);
+      d*=gsl_vector_get(pve, i)*gsl_vector_get(pve, j);
+      //cout<<d<<" ";
+
+      d+=gsl_matrix_get(qvar_mat, i, j);
+      gsl_matrix_set(Var_mat, i, j, d);
+      if (i!=j) {gsl_matrix_set(Var_mat, j, i, d);}
+    }
+    //cout<<endl;
+  }
+
+  gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Si_mat, Var_mat, 0.0, tmp_mat);
+  gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, tmp_mat, Si_mat, 0.0, Var_mat);
+
+  for (size_t i=0; i<n_vc; i++) {
+    d=sqrt(gsl_matrix_get(Var_mat, i, i));
+    gsl_vector_set(se_pve, i, d);
+    d/=gsl_vector_get(s_vec, i);
+    gsl_vector_set(se_sigma2persnp, i, d);
+  }
+
+  //compute pve_total, se_pve_total
+  pve_total=0; se_pve_total=0;
+  for (size_t i=0; i<n_vc; i++) {
+    pve_total+=gsl_vector_get(pve, i);
+
+    for (size_t j=0; j<n_vc; j++) {
+      se_pve_total+=gsl_matrix_get(Var_mat, i, j);
+    }
+  }
+  se_pve_total=sqrt(se_pve_total);
+
+  //compute enrichment and its variance
+  double s_pve=0, s_snp=0;
+  for (size_t i=0; i<n_vc; i++) {
+    s_pve+=gsl_vector_get(pve, i);
+    s_snp+=gsl_vector_get(s_vec, i);
+  }
+  gsl_vector_memcpy (enrich, sigma2persnp);
+  gsl_vector_scale (enrich, s_snp/s_pve);
+
+  gsl_matrix_set_identity(tmp_mat);
+
+  double d1;
+  for (size_t i=0; i<n_vc; i++) {
+    d=gsl_vector_get(pve, i)/s_pve;
+    d1=gsl_vector_get(s_vec, i);
+    for (size_t j=0; j<n_vc; j++) {
+      if (i==j) {
+	gsl_matrix_set(tmp_mat, i, j, (1-d)/d1*s_snp/s_pve);
+      } else {
+	gsl_matrix_set(tmp_mat, i, j, -1*d/d1*s_snp/s_pve);
+      }
+    }
+  }
+  gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, tmp_mat, Var_mat, 0.0, tmp_mat1);
+  gsl_blas_dgemm(CblasNoTrans, CblasTrans, 1.0, tmp_mat1, tmp_mat, 0.0, VarEnrich_mat);
+
+  for (size_t i=0; i<n_vc; i++) {
+    d=sqrt(gsl_matrix_get(VarEnrich_mat, i, i));
+    gsl_vector_set(se_enrich, i, d);
+  }
+
+  cout<<"pve = ";
+  for (size_t i=0; i<n_vc; i++) {
+    cout<<gsl_vector_get(pve, i)<<" ";
+  }
+  cout<<endl;
+
+  cout<<"se(pve) = ";
+  for (size_t i=0; i<n_vc; i++) {
+    cout<<gsl_vector_get(se_pve, i)<<" ";
+  }
+  cout<<endl;
+
+  cout<<"sigma2 per snp = ";
+  for (size_t i=0; i<n_vc; i++) {
+    cout<<gsl_vector_get(sigma2persnp, i)<<" ";
+  }
+  cout<<endl;
+
+  cout<<"se(sigma2 per snp) = ";
+  for (size_t i=0; i<n_vc; i++) {
+    cout<<gsl_vector_get(se_sigma2persnp, i)<<" ";
+  }
+  cout<<endl;
+
+  cout<<"enrichment = ";
+  for (size_t i=0; i<n_vc; i++) {
+    cout<<gsl_vector_get(enrich, i)<<" ";
+  }
+  cout<<endl;
+
+  cout<<"se(enrichment) = ";
+  for (size_t i=0; i<n_vc; i++) {
+    cout<<gsl_vector_get(se_enrich, i)<<" ";
+  }
+  cout<<endl;
+
+  //save data
+  v_pve.clear(); v_se_pve.clear();
+  v_sigma2.clear(); v_se_sigma2.clear();
+  v_enrich.clear(); v_se_enrich.clear();
+  for (size_t i=0; i<n_vc; i++) {
+    d=gsl_vector_get(pve, i);
+    v_pve.push_back(d);
+    d=gsl_vector_get(se_pve, i);
+    v_se_pve.push_back(d);
+
+    d=gsl_vector_get(sigma2persnp, i);
+    v_sigma2.push_back(d);
+    d=gsl_vector_get(se_sigma2persnp, i);
+    v_se_sigma2.push_back(d);
+
+    d=gsl_vector_get(enrich, i);
+    v_enrich.push_back(d);
+    d=gsl_vector_get(se_enrich, i);
+    v_se_enrich.push_back(d);
+  }
+
+  //delete matrices
+  gsl_matrix_free(Si_mat);
+  gsl_matrix_free(Var_mat);
+  gsl_matrix_free(VarEnrich_mat);
+  gsl_matrix_free(tmp_mat);
+  gsl_matrix_free(tmp_mat1);
+  gsl_matrix_free(qvar_mat);
+
+  gsl_vector_free(pve);
+  gsl_vector_free(pve_plus);
+  gsl_vector_free(tmp);
+  gsl_vector_free(sigma2persnp);
+  gsl_vector_free(enrich);
+  gsl_vector_free(se_pve);
+  gsl_vector_free(se_sigma2persnp);
+  gsl_vector_free(se_enrich);
+
+  return;
+}
+
+
+
+
+
+//Ks are not scaled;
+void VC::CalcVChe (const gsl_matrix *K, const gsl_matrix *W, const gsl_vector *y)
+{
+  size_t n1=K->size1, n2=K->size2;
+  size_t n_vc=n2/n1;
+
+  double r=(double)n1/(double)(n1 - W->size2);
+  double var_y, var_y_new;
+  double d, tr, s, v;
+  vector<double> traceG_new;
+
+  //new matrices/vectors
+  gsl_matrix *K_scale=gsl_matrix_alloc (n1, n2);
+  gsl_vector *y_scale=gsl_vector_alloc (n1);
+  gsl_matrix *Kry=gsl_matrix_alloc (n1, n_vc);
+  gsl_matrix *yKrKKry=gsl_matrix_alloc (n_vc, n_vc*(n_vc+1) );
+  gsl_vector *KKry=gsl_vector_alloc (n1);
+
+  //old matrices/vectors
+  gsl_vector *pve=gsl_vector_alloc (n_vc);
+  gsl_vector *se_pve=gsl_vector_alloc (n_vc);
+  gsl_vector *q_vec=gsl_vector_alloc (n_vc);
+  gsl_matrix *qvar_mat=gsl_matrix_alloc (n_vc, n_vc);
+  gsl_matrix *tmp_mat=gsl_matrix_alloc (n_vc, n_vc);
+  gsl_matrix *S_mat=gsl_matrix_alloc (n_vc, n_vc);
+  gsl_matrix *Si_mat=gsl_matrix_alloc (n_vc, n_vc);
+  gsl_matrix *Var_mat=gsl_matrix_alloc (n_vc, n_vc);
+
+  //center and scale K by W
+  for (size_t i=0; i<n_vc; i++) {
+    gsl_matrix_view Kscale_sub = gsl_matrix_submatrix (K_scale, 0, n1*i, n1, n1);
+    gsl_matrix_const_view K_sub = gsl_matrix_const_submatrix (K, 0, n1*i, n1, n1);
+    gsl_matrix_memcpy (&Kscale_sub.matrix, &K_sub.matrix);
+
+    CenterMatrix (&Kscale_sub.matrix, W);
+    d=ScaleMatrix (&Kscale_sub.matrix);
+    traceG_new.push_back(d);
+  }
+
+  //center y by W, and standardize it to have variance 1 (t(y)%*%y/n=1)
+  gsl_vector_memcpy (y_scale, y);
+  CenterVector (y_scale, W);
+
+  var_y=VectorVar (y);
+  var_y_new=VectorVar (y_scale);
+
+  StandardizeVector (y_scale);
+
+  //compute Kry, which is used for confidence interval; also compute q_vec (*n^2)
+  for (size_t i=0; i<n_vc; i++) {
+    gsl_matrix_const_view Kscale_sub = gsl_matrix_const_submatrix (K_scale, 0, n1*i, n1, n1);
+    gsl_vector_view Kry_col=gsl_matrix_column (Kry, i);
+
+    gsl_vector_memcpy (&Kry_col.vector, y_scale);
+    gsl_blas_dgemv(CblasNoTrans, 1.0, &Kscale_sub.matrix, y_scale, -1.0*r, &Kry_col.vector);
+
+    gsl_blas_ddot (&Kry_col.vector, y_scale, &d);
+    gsl_vector_set(q_vec, i, d);
+  }
+
+  //compuate yKrKKry, which is used later for confidence interval
+  for (size_t i=0; i<n_vc; i++) {
+    gsl_vector_const_view Kry_coli=gsl_matrix_const_column (Kry, i);
+    for (size_t j=i; j<n_vc; j++) {
+      gsl_vector_const_view Kry_colj=gsl_matrix_const_column (Kry, j);
+      for (size_t l=0; l<n_vc; l++) {
+	gsl_matrix_const_view Kscale_sub = gsl_matrix_const_submatrix (K_scale, 0, n1*l, n1, n1);
+	gsl_blas_dgemv (CblasNoTrans, 1.0, &Kscale_sub.matrix, &Kry_coli.vector, 0.0, KKry);
+	gsl_blas_ddot (&Kry_colj.vector, KKry, &d);
+	gsl_matrix_set(yKrKKry, i, l*n_vc+j, d);
+	if (i!=j) {gsl_matrix_set(yKrKKry, j, l*n_vc+i, d);}
+      }
+      gsl_blas_ddot (&Kry_coli.vector, &Kry_colj.vector, &d);
+      gsl_matrix_set(yKrKKry, i, n_vc*n_vc+j, d);
+      if (i!=j) {gsl_matrix_set(yKrKKry, j, n_vc*n_vc+i, d);}
+    }
+  }
+
+  //compute Sij (*n^2)
+  for (size_t i=0; i<n_vc; i++) {
+    for (size_t j=i; j<n_vc; j++) {
+      tr=0;
+      for (size_t l=0; l<n1; l++) {
+	gsl_vector_const_view Ki_col=gsl_matrix_const_column (K_scale, i*n1+l);
+	gsl_vector_const_view Kj_col=gsl_matrix_const_column (K_scale, j*n1+l);
+	gsl_blas_ddot (&Ki_col.vector, &Kj_col.vector, &d);
+	tr+=d;
+      }
+
+      tr=tr-r*(double)n1;
+      gsl_matrix_set (S_mat, i, j, tr);
+      if (i!=j) {gsl_matrix_set (S_mat, j, i, tr);}
+    }
+  }
+
+  /*
+  cout<<"q_vec = "<<endl;
+  for (size_t i=0; i<q_vec->size; i++) {
+    cout<<gsl_vector_get(q_vec, i)<<" ";
+  }
+  cout<<endl;
+
+  cout<<"S_mat = "<<endl;
+  for (size_t i=0; i<S_mat->size1; i++) {
+    for (size_t j=0; j<S_mat->size2; j++) {
+      cout<<gsl_matrix_get(S_mat, i, j)<<" ";
+    }
+    cout<<endl;
+  }
+  */
+
+  //compute S^{-1}q
+  int sig;
+  gsl_permutation * pmt=gsl_permutation_alloc (n_vc);
+  LUDecomp (S_mat, pmt, &sig);
+  LUInvert (S_mat, pmt, Si_mat);
+
+  //compute pve (on the transformed scale)
+  gsl_blas_dgemv (CblasNoTrans, 1.0, Si_mat, q_vec, 0.0, pve);
+
+  //compute q_var (*n^4)
+  gsl_matrix_set_zero (qvar_mat);
+  s=1;
+  for (size_t i=0; i<n_vc; i++) {
+    d=gsl_vector_get(pve, i);
+    gsl_matrix_view yKrKKry_sub=gsl_matrix_submatrix(yKrKKry, 0, i*n_vc, n_vc, n_vc);
+    gsl_matrix_memcpy (tmp_mat, &yKrKKry_sub.matrix);
+    gsl_matrix_scale(tmp_mat, d);
+    gsl_matrix_add (qvar_mat, tmp_mat);
+    s-=d;
+  }
+  gsl_matrix_view yKrKKry_sub=gsl_matrix_submatrix(yKrKKry, 0, n_vc*n_vc, n_vc, n_vc);
+  gsl_matrix_memcpy (tmp_mat, &yKrKKry_sub.matrix);
+  gsl_matrix_scale(tmp_mat, s);
+  gsl_matrix_add (qvar_mat, tmp_mat);
+
+  gsl_matrix_scale(qvar_mat, 2.0);
+
+  //compute S^{-1}var_qS^{-1}
+  gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Si_mat, qvar_mat, 0.0, tmp_mat);
+  gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, tmp_mat, Si_mat, 0.0, Var_mat);
+
+  //transform pve back to the original scale and save data
+  v_pve.clear(); v_se_pve.clear();
+  v_sigma2.clear(); v_se_sigma2.clear();
+
+  s=1.0, v=0, pve_total=0, se_pve_total=0;
+  for (size_t i=0; i<n_vc; i++) {
+    d=gsl_vector_get (pve, i);
+    //cout<<var_y<<" "<<var_y_new<<" "<<v_traceG[i]<<" "<<traceG_new[i]<<endl;
+    v_sigma2.push_back(d*var_y_new/traceG_new[i]);
+    v_pve.push_back(d*(var_y_new/traceG_new[i])*(v_traceG[i]/var_y));
+    s-=d;
+    pve_total+=d*(var_y_new/traceG_new[i])*(v_traceG[i]/var_y);
+
+    d=sqrt(gsl_matrix_get (Var_mat, i, i));
+    v_se_sigma2.push_back(d*var_y_new/traceG_new[i]);
+    v_se_pve.push_back(d*(var_y_new/traceG_new[i])*(v_traceG[i]/var_y));
+
+    //d*=sqrt(var_y/v_traceG[i]-v_sigma2[i]);
+    //v_se_pve.push_back(d/var_y);
+
+    for (size_t j=0; j<n_vc; j++) {
+      v+=gsl_matrix_get(Var_mat, i, j);
+      se_pve_total+=gsl_matrix_get(Var_mat, i, j)*(var_y_new/traceG_new[i])*(v_traceG[i]/var_y)*(var_y_new/traceG_new[j])*(v_traceG[j]/var_y);
+    }
+  }
+  v_sigma2.push_back(s*r*var_y_new);
+  v_se_sigma2.push_back(sqrt(v)*r*var_y_new);
+  se_pve_total=sqrt(se_pve_total);
+
+  cout<<"sigma2 = ";
+  for (size_t i=0; i<n_vc+1; i++) {
+    cout<<v_sigma2[i]<<" ";
+  }
+  cout<<endl;
+
+  cout<<"se(sigma2) = ";
+  for (size_t i=0; i<n_vc+1; i++) {
+    cout<<v_se_sigma2[i]<<" ";
+  }
+  cout<<endl;
+
+  cout<<"pve = ";
+  for (size_t i=0; i<n_vc; i++) {
+    cout<<v_pve[i]<<" ";
+  }
+  cout<<endl;
+
+  cout<<"se(pve) = ";
+  for (size_t i=0; i<n_vc; i++) {
+    cout<<v_se_pve[i]<<" ";
+  }
+  cout<<endl;
+
+  if (n_vc>1) {
+    cout<<"total pve = "<<pve_total<<endl;
+    cout<<"se(total pve) = "<<se_pve_total<<endl;
+  }
+
+  gsl_permutation_free(pmt);
+  gsl_matrix_free(K_scale);
+  gsl_vector_free(y_scale);
+  gsl_matrix_free(Kry);
+  gsl_matrix_free(yKrKKry);
+  gsl_vector_free(KKry);
+
+  //old matrices/vectors
+  gsl_vector_free(pve);
+  gsl_vector_free(se_pve);
+  gsl_vector_free(q_vec);
+  gsl_matrix_free(qvar_mat);
+  gsl_matrix_free(tmp_mat);
+  gsl_matrix_free(S_mat);
+  gsl_matrix_free(Si_mat);
+  gsl_matrix_free(Var_mat);
+
+  return;
+}
+
+
+
+
+//reml for log(sigma2) based on the AI algorithm
+void VC::CalcVCreml (bool noconstrain, const gsl_matrix *K, const gsl_matrix *W, const gsl_vector *y)
 {
   size_t n1=K->size1, n2=K->size2;
   size_t n_vc=n2/n1;
   gsl_vector *log_sigma2=gsl_vector_alloc (n_vc+1);
   double d, s;
 
+  /*
+  //compare eigenlib vs lapack
+  //dgemm
+  gsl_matrix *K2=gsl_matrix_alloc(K->size1, K->size1);
+
+  clock_t time_start=clock();
+  gsl_blas_dgemm(CblasNoTrans, CblasTrans, 1.0, K, K, 0.0, K2);
+  cout<<"standard time: "<<(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0)<<endl;
+  for (size_t i=0; i<2; i++) {
+    for (size_t j=0; j<2; j++) {
+      cout<<gsl_matrix_get(K2, i, j)<<" ";
+    }
+    cout<<endl;
+  }
+
+  time_start=clock();
+  lapack_dgemm ((char *)"N", (char *)"T", 1.0, K, K, 0.0, K2);
+  cout<<"lapack time: "<<(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0)<<endl;
+  for (size_t i=0; i<2; i++) {
+    for (size_t j=0; j<2; j++) {
+      cout<<gsl_matrix_get(K2, i, j)<<" ";
+    }
+    cout<<endl;
+  }
+
+  time_start=clock();
+  eigenlib_dgemm((char *)"N", (char *)"T", 1.0, K, K, 0.0, K2);
+  cout<<"eigenlib time: "<<(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0)<<endl;
+  for (size_t i=0; i<2; i++) {
+    for (size_t j=0; j<2; j++) {
+      cout<<gsl_matrix_get(K2, i, j)<<" ";
+    }
+    cout<<endl;
+  }
+
+  //dgemv
+  gsl_vector_const_view W_col=gsl_matrix_const_column (K, 0);
+  gsl_vector *v=gsl_vector_alloc (K->size1);
+  time_start=clock();
+  for (size_t i=0; i<1000; i++) {
+    gsl_blas_dgemv(CblasNoTrans, 1.0, K2, &W_col.vector, 0.0, v);
+  }
+  cout<<"standard time: "<<(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0)<<endl;
+  for (size_t i=0; i<2; i++) {
+    cout<<gsl_vector_get(v, i)<<endl;
+  }
+
+  time_start=clock();
+  for (size_t i=0; i<1000; i++) {
+    eigenlib_dgemv((char *)"N", 1.0, K2, &W_col.vector, 0.0, v);
+  }
+  cout<<"eigenlib time: "<<(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0)<<endl;
+  for (size_t i=0; i<2; i++) {
+    cout<<gsl_vector_get(v, i)<<endl;
+  }
+
+  //eigen
+  gsl_matrix *K2copy=gsl_matrix_alloc(K->size1, K->size1);
+  gsl_matrix *K3=gsl_matrix_alloc(K->size1, K->size1);
+
+  gsl_matrix_memcpy(K2copy, K2);
+  time_start=clock();
+  EigenDecomp(K2copy, K3, v, 0);
+  cout<<"standard time 0: "<<(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0)<<endl;
+  for (size_t i=0; i<2; i++) {
+    cout<<gsl_vector_get(v, i)<<endl;
+  }
+
+  gsl_matrix_memcpy(K2copy, K2);
+  time_start=clock();
+  EigenDecomp(K2copy, K3, v, 1);
+  cout<<"standard time 1: "<<(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0)<<endl;
+  for (size_t i=0; i<2; i++) {
+    cout<<gsl_vector_get(v, i)<<endl;
+  }
+
+  gsl_matrix_memcpy(K2copy, K2);
+  time_start=clock();
+  eigenlib_eigensymm(K2copy, K3, v);
+  cout<<"eigenlib time: "<<(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0)<<endl;
+  for (size_t i=0; i<2; i++) {
+    cout<<gsl_vector_get(v, i)<<endl;
+  }
+
+
+
+  //invert
+  gsl_matrix_memcpy(K2copy, K2);
+  time_start=clock();
+  int sigcopy;
+  gsl_permutation * pmt1=gsl_permutation_alloc (K2->size1);
+  LUDecomp (K2copy, pmt1, &sigcopy);
+  LUInvert (K2copy, pmt1, K3);
+  gsl_permutation_free(pmt1);
+  cout<<"standard time: "<<(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0)<<endl;
+  for (size_t i=0; i<2; i++) {
+    for (size_t j=0; j<2; j++) {
+      cout<<gsl_matrix_get(K3, i, j)<<" ";
+    }
+    cout<<endl;
+  }
+
+  gsl_matrix_memcpy(K2copy, K2);
+  time_start=clock();
+  eigenlib_invert(K2copy);
+  cout<<"eigen time: "<<(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0)<<endl;
+  for (size_t i=0; i<2; i++) {
+    for (size_t j=0; j<2; j++) {
+      cout<<gsl_matrix_get(K2copy, i, j)<<" ";
+    }
+    cout<<endl;
+  }
+  */
+
   //set up params
   gsl_matrix *P=gsl_matrix_alloc (n1, n1);
   gsl_vector *Py=gsl_vector_alloc (n1);
@@ -318,18 +1648,26 @@ void VC::CalcVCreml (const gsl_matrix *K, const gsl_matrix *W, const gsl_vector
   gsl_vector *dev1=gsl_vector_alloc (n_vc+1);
   gsl_matrix *dev2=gsl_matrix_alloc (n_vc+1, n_vc+1);
   gsl_matrix *Hessian=gsl_matrix_alloc (n_vc+1, n_vc+1);
-  VC_PARAM params={K, W, y, P, Py, KPy_mat, PKPy_mat, Hessian};
+  VC_PARAM params={K, W, y, P, Py, KPy_mat, PKPy_mat, Hessian, noconstrain};
 
   //initialize sigma2/log_sigma2
+  CalcVChe (K, W, y);
+
   gsl_blas_ddot (y, y, &s);
   s/=(double)n1;
   for (size_t i=0; i<n_vc+1; i++) {
+    if (noconstrain) {
+      d=v_sigma2[i];
+    } else {
+      if (v_sigma2[i]<=0) {d=log(0.1);} else {d=log(v_sigma2[i]);}
+    }
+    /*
     if (i==n_vc) {
       d=s/((double)n_vc+1.0);
     } else {
       d=s/( ((double)n_vc+1.0)*v_traceG[i]);
     }
-
+    */
     gsl_vector_set (log_sigma2, i, d);
   }
   //  gsl_vector_set (log_sigma2, 0, 0.38);
@@ -338,7 +1676,11 @@ void VC::CalcVCreml (const gsl_matrix *K, const gsl_matrix *W, const gsl_vector
   cout<<"iteration "<<0<<endl;
   cout<<"sigma2 = ";
   for (size_t i=0; i<n_vc+1; i++) {
-    cout<<exp(gsl_vector_get(log_sigma2, i))<<" ";
+    if (noconstrain) {
+      cout<<gsl_vector_get(log_sigma2, i)<<" ";
+    } else {
+      cout<<exp(gsl_vector_get(log_sigma2, i))<<" ";
+    }
   }
   cout<<endl;
 
@@ -349,15 +1691,15 @@ void VC::CalcVCreml (const gsl_matrix *K, const gsl_matrix *W, const gsl_vector
   FDF.f=&LogRL_dev1;
   FDF.df=&LogRL_dev2;
   FDF.fdf=&LogRL_dev12;
-  
-  //set up solver 	
+
+  //set up solver
   int status;
   int iter=0, max_iter=100;
 
   const gsl_multiroot_fdfsolver_type *T_fdf;
   gsl_multiroot_fdfsolver *s_fdf;
   T_fdf=gsl_multiroot_fdfsolver_hybridsj;
-  s_fdf=gsl_multiroot_fdfsolver_alloc (T_fdf, n_vc+1);	
+  s_fdf=gsl_multiroot_fdfsolver_alloc (T_fdf, n_vc+1);
 
   gsl_multiroot_fdfsolver_set (s_fdf, &FDF, log_sigma2);
 
@@ -370,37 +1712,55 @@ void VC::CalcVCreml (const gsl_matrix *K, const gsl_matrix *W, const gsl_vector
     cout<<"iteration "<<iter<<endl;
     cout<<"sigma2 = ";
     for (size_t i=0; i<n_vc+1; i++) {
-      cout<<exp(gsl_vector_get(s_fdf->x, i))<<" ";
+      if (noconstrain) {
+	cout<<gsl_vector_get(s_fdf->x, i)<<" ";
+      } else {
+	cout<<exp(gsl_vector_get(s_fdf->x, i))<<" ";
+      }
     }
     cout<<endl;
+    /*
     cout<<"derivatives = ";
     for (size_t i=0; i<n_vc+1; i++) {
       cout<<gsl_vector_get(s_fdf->f, i)<<" ";
     }
     cout<<endl;
-
-    status=gsl_multiroot_test_residual (s_fdf->f, 1e-3);		
+    */
+    status=gsl_multiroot_test_residual (s_fdf->f, 1e-3);
   }
-  while (status==GSL_CONTINUE && iter<max_iter); 
-
-  //obtain Hessian inverse
-  int sig=LogRL_dev12 (s_fdf->f, &params, dev1, dev2);
+  while (status==GSL_CONTINUE && iter<max_iter);
+
+  //obtain Hessian and Hessian inverse
+  int sig=LogRL_dev12 (s_fdf->x, &params, dev1, dev2);
+  /*
+  for (size_t i=0; i<dev2->size1; i++) {
+    for (size_t j=0; j<dev2->size2; j++) {
+      cout<<gsl_matrix_get (dev2, i, j)<<" ";
+    }
+    cout<<endl;
+  }
+  */
 
   gsl_permutation * pmt=gsl_permutation_alloc (n_vc+1);
-  LUDecomp (dev2, pmt, &sig);	
+  LUDecomp (dev2, pmt, &sig);
   LUInvert (dev2, pmt, Hessian);
   gsl_permutation_free(pmt);
 
-  //save data
-  v_sigma2.clear(); 
+  //save sigma2 and se_sigma2
+  v_sigma2.clear(); v_se_sigma2.clear();
   for (size_t i=0; i<n_vc+1; i++) {
-    d=exp(gsl_vector_get(s_fdf->x, i));
+    if (noconstrain) {
+      d=gsl_vector_get(s_fdf->x, i);
+    } else {
+      d=exp(gsl_vector_get(s_fdf->x, i));
+    }
     v_sigma2.push_back(d);
-  }
 
-  v_se_sigma2.clear();
-  for (size_t i=0; i<n_vc+1; i++) {
-    d=-1.0*v_sigma2[i]*v_sigma2[i]*gsl_matrix_get(Hessian, i, i);
+    if (noconstrain) {
+      d=-1.0*gsl_matrix_get(Hessian, i, i);
+    } else {
+      d=-1.0*d*d*gsl_matrix_get(Hessian, i, i);
+    }
     v_se_sigma2.push_back(sqrt(d));
   }
 
@@ -409,20 +1769,80 @@ void VC::CalcVCreml (const gsl_matrix *K, const gsl_matrix *W, const gsl_vector
     s+=v_traceG[i]*v_sigma2[i];
   }
   s+=v_sigma2[n_vc];
-  
-  v_pve.clear();
+
+  //compute pve
+  v_pve.clear(); pve_total=0;
   for (size_t i=0; i<n_vc; i++) {
     d=v_traceG[i]*v_sigma2[i]/s;
     v_pve.push_back(d);
+    pve_total+=d;
   }
 
-  v_se_pve.clear();
-  for (size_t i=0; i<n_vc; i++) {
-    d=v_traceG[i]*(s-v_sigma2[i]*v_traceG[i])/(s*s)*v_se_sigma2[i]*v_se_sigma2[i];
-    v_se_pve.push_back(sqrt(d) );
+  //compute se_pve; k=n_vc+1: total
+  double d1, d2;
+  v_se_pve.clear(); se_pve_total=0;
+  for (size_t k=0; k<n_vc+1; k++) {
+    d=0;
+    for (size_t i=0; i<n_vc+1; i++) {
+      if (noconstrain) {
+	d1=gsl_vector_get(s_fdf->x, i);
+	d1=1;
+      } else {
+	d1=exp(gsl_vector_get(s_fdf->x, i));
+      }
+
+      if (k<n_vc) {
+	if (i==k) {
+	  d1*=v_traceG[k]*(s-v_sigma2[k]*v_traceG[k])/(s*s);
+	} else if (i==n_vc) {
+	  d1*=-1*v_traceG[k]*v_sigma2[k]/(s*s);
+	} else {
+	  d1*=-1*v_traceG[i]*v_traceG[k]*v_sigma2[k]/(s*s);
+	}
+      } else {
+	if (i==k) {
+	  d1*=-1*(s-v_sigma2[n_vc])/(s*s);
+	} else {
+	  d1*=v_traceG[i]*v_sigma2[n_vc]/(s*s);
+	}
+      }
+
+      for (size_t j=0; j<n_vc+1; j++) {
+	if (noconstrain) {
+	  d2=gsl_vector_get(s_fdf->x, j);
+	  d2=1;
+	} else {
+	  d2=exp(gsl_vector_get(s_fdf->x, j));
+	}
+
+	if (k<n_vc) {
+	  if (j==k) {
+	    d2*=v_traceG[k]*(s-v_sigma2[k]*v_traceG[k])/(s*s);
+	  } else if (j==n_vc) {
+	    d2*=-1*v_traceG[k]*v_sigma2[k]/(s*s);
+	  } else {
+	    d2*=-1*v_traceG[j]*v_traceG[k]*v_sigma2[k]/(s*s);
+	  }
+	} else {
+	  if (j==k) {
+	    d2*=-1*(s-v_sigma2[n_vc])/(s*s);
+	  } else {
+	    d2*=v_traceG[j]*v_sigma2[n_vc]/(s*s);
+	  }
+	}
+
+	d+=-1.0*d1*d2*gsl_matrix_get(Hessian, i, j);
+      }
+    }
+
+    if (k<n_vc) {
+      v_se_pve.push_back(sqrt(d) );
+    } else {
+      se_pve_total=sqrt(d);
+    }
   }
-  
-  gsl_multiroot_fdfsolver_free(s_fdf);	
+
+  gsl_multiroot_fdfsolver_free(s_fdf);
 
   gsl_vector_free(log_sigma2);
   gsl_matrix_free(P);
@@ -437,7 +1857,643 @@ void VC::CalcVCreml (const gsl_matrix *K, const gsl_matrix *W, const gsl_vector
 }
 
 
-	
 
 
 
+
+//read bimbam mean genotype file and compute XWz
+bool BimbamXwz (const string &file_geno, const int display_pace, vector<int> &indicator_idv, vector<int> &indicator_snp, const vector<size_t> &vec_cat, const gsl_vector *w, const gsl_vector *z, size_t ns_test, gsl_matrix *XWz)
+{
+	igzstream infile (file_geno.c_str(), igzstream::in);
+	//ifstream infile (file_geno.c_str(), ifstream::in);
+	if (!infile) {cout<<"error reading genotype file:"<<file_geno<<endl; return false;}
+
+	string line;
+	char *ch_ptr;
+
+	size_t n_miss;
+	double d, geno_mean, geno_var;
+
+	size_t ni_test=XWz->size1;
+	gsl_vector *geno=gsl_vector_alloc (ni_test);
+	gsl_vector *geno_miss=gsl_vector_alloc (ni_test);
+	gsl_vector *wz=gsl_vector_alloc (w->size);
+	gsl_vector_memcpy (wz, z);
+	gsl_vector_mul(wz, w);
+
+	for (size_t t=0; t<indicator_snp.size(); ++t) {
+		!safeGetline(infile, line).eof();
+		if (t%display_pace==0 || t==(indicator_snp.size()-1)) {ProgressBar ("Reading SNPs  ", t, indicator_snp.size()-1);}
+		if (indicator_snp[t]==0) {continue;}
+
+		ch_ptr=strtok ((char *)line.c_str(), " , \t");
+		ch_ptr=strtok (NULL, " , \t");
+		ch_ptr=strtok (NULL, " , \t");
+
+		geno_mean=0.0; n_miss=0; geno_var=0.0;
+		gsl_vector_set_all(geno_miss, 0);
+
+		size_t j=0;
+		for (size_t i=0; i<indicator_idv.size(); ++i) {
+		  if (indicator_idv[i]==0) {continue;}
+			ch_ptr=strtok (NULL, " , \t");
+			if (strcmp(ch_ptr, "NA")==0) {gsl_vector_set(geno_miss, i, 0); n_miss++;}
+			else {
+				d=atof(ch_ptr);
+				gsl_vector_set (geno, j, d);
+				gsl_vector_set (geno_miss, j, 1);
+				geno_mean+=d;
+				geno_var+=d*d;
+			}
+			j++;
+		}
+
+		geno_mean/=(double)(ni_test-n_miss);
+		geno_var+=geno_mean*geno_mean*(double)n_miss;
+		geno_var/=(double)ni_test;
+		geno_var-=geno_mean*geno_mean;
+//		geno_var=geno_mean*(1-geno_mean*0.5);
+
+		for (size_t i=0; i<ni_test; ++i) {
+			if (gsl_vector_get (geno_miss, i)==0) {gsl_vector_set(geno, i, geno_mean);}
+		}
+
+		gsl_vector_add_constant (geno, -1.0*geno_mean);
+
+		gsl_vector_view XWz_col=gsl_matrix_column(XWz, vec_cat[ns_test]);
+		d=gsl_vector_get (wz, ns_test);
+		gsl_blas_daxpy (d/sqrt(geno_var), geno, &XWz_col.vector);
+
+		ns_test++;
+	}
+
+	cout<<endl;
+
+	gsl_vector_free (geno);
+	gsl_vector_free (geno_miss);
+	gsl_vector_free (wz);
+
+	infile.close();
+	infile.clear();
+
+	return true;
+}
+
+
+
+
+
+
+//read plink bed file and compute XWz
+bool PlinkXwz (const string &file_bed, const int display_pace, vector<int> &indicator_idv, vector<int> &indicator_snp, const vector<size_t> &vec_cat, const gsl_vector *w, const gsl_vector *z, size_t ns_test, gsl_matrix *XWz)
+{
+	ifstream infile (file_bed.c_str(), ios::binary);
+	if (!infile) {cout<<"error reading bed file:"<<file_bed<<endl; return false;}
+
+	char ch[1];
+	bitset<8> b;
+
+	size_t n_miss, ci_total, ci_test;
+	double d, geno_mean, geno_var;
+
+	size_t ni_test=XWz->size1;
+	size_t ni_total=indicator_idv.size();
+	gsl_vector *geno=gsl_vector_alloc (ni_test);
+	gsl_vector *wz=gsl_vector_alloc (w->size);
+	gsl_vector_memcpy (wz, z);
+	gsl_vector_mul(wz, w);
+
+	int n_bit;
+	//calculate n_bit and c, the number of bit for each snp
+	if (ni_total%4==0) {n_bit=ni_total/4;}
+	else {n_bit=ni_total/4+1; }
+
+	//print the first three majic numbers
+	for (int i=0; i<3; ++i) {
+		infile.read(ch,1);
+		b=ch[0];
+	}
+
+	for (size_t t=0; t<indicator_snp.size(); ++t) {
+		if (t%display_pace==0 || t==(indicator_snp.size()-1)) {ProgressBar ("Reading SNPs  ", t, indicator_snp.size()-1);}
+		if (indicator_snp[t]==0) {continue;}
+
+		infile.seekg(t*n_bit+3);		//n_bit, and 3 is the number of magic numbers
+
+		//read genotypes
+		geno_mean=0.0;	n_miss=0; ci_total=0; geno_var=0.0; ci_test=0;
+		for (int i=0; i<n_bit; ++i) {
+			infile.read(ch,1);
+			b=ch[0];
+			for (size_t j=0; j<4; ++j) {                //minor allele homozygous: 2.0; major: 0.0;
+				if ((i==(n_bit-1)) && ci_total==ni_total) {break;}
+				if (indicator_idv[ci_total]==0) {ci_total++; continue;}
+
+				if (b[2*j]==0) {
+					if (b[2*j+1]==0) {gsl_vector_set(geno, ci_test, 2.0); geno_mean+=2.0; geno_var+=4.0; }
+					else {gsl_vector_set(geno, ci_test, 1.0); geno_mean+=1.0; geno_var+=1.0;}
+				}
+				else {
+					if (b[2*j+1]==1) {gsl_vector_set(geno, ci_test, 0.0); }
+					else {gsl_vector_set(geno, ci_test, -9.0); n_miss++; }
+				}
+
+				ci_test++;
+				ci_total++;
+			}
+		}
+
+
+		geno_mean/=(double)(ni_test-n_miss);
+		geno_var+=geno_mean*geno_mean*(double)n_miss;
+		geno_var/=(double)ni_test;
+		geno_var-=geno_mean*geno_mean;
+//		geno_var=geno_mean*(1-geno_mean*0.5);
+
+		for (size_t i=0; i<ni_test; ++i) {
+			d=gsl_vector_get(geno,i);
+			if (d==-9.0) {gsl_vector_set(geno, i, geno_mean);}
+		}
+
+		gsl_vector_add_constant (geno, -1.0*geno_mean);
+
+		gsl_vector_view XWz_col=gsl_matrix_column(XWz, vec_cat[ns_test]);
+		d=gsl_vector_get (wz, ns_test);
+		gsl_blas_daxpy (d/sqrt(geno_var), geno, &XWz_col.vector);
+
+		ns_test++;
+    }
+	cout<<endl;
+
+	gsl_vector_free (geno);
+	gsl_vector_free (wz);
+
+	infile.close();
+	infile.clear();
+
+	return true;
+}
+
+
+
+//read multiple genotype files and compute XWz
+bool MFILEXwz (const size_t mfile_mode, const string &file_mfile, const int display_pace, vector<int> &indicator_idv, vector<vector<int> > &mindicator_snp, const vector<size_t> &vec_cat, const gsl_vector *w, const gsl_vector *z, gsl_matrix *XWz)
+{
+  gsl_matrix_set_zero(XWz);
+
+  igzstream infile (file_mfile.c_str(), igzstream::in);
+  if (!infile) {cout<<"error! fail to open mfile file: "<<file_mfile<<endl; return false;}
+
+  string file_name;
+  size_t l=0, ns_test=0;
+
+  while (!safeGetline(infile, file_name).eof()) {
+    if (mfile_mode==1) {
+      file_name+=".bed";
+      PlinkXwz (file_name, display_pace, indicator_idv, mindicator_snp[l], vec_cat, w, z, ns_test, XWz);
+    } else {
+      BimbamXwz (file_name, display_pace, indicator_idv, mindicator_snp[l], vec_cat, w, z, ns_test, XWz);
+    }
+
+    l++;
+  }
+
+
+  infile.close();
+  infile.clear();
+
+  return true;
+}
+
+
+
+
+
+
+//read bimbam mean genotype file and compute X_i^TX_jWz
+bool BimbamXtXwz (const string &file_geno, const int display_pace, vector<int> &indicator_idv, vector<int> &indicator_snp, const gsl_matrix *XWz, size_t ns_test, gsl_matrix *XtXWz)
+{
+	igzstream infile (file_geno.c_str(), igzstream::in);
+	//ifstream infile (file_geno.c_str(), ifstream::in);
+	if (!infile) {cout<<"error reading genotype file:"<<file_geno<<endl; return false;}
+
+	string line;
+	char *ch_ptr;
+
+	size_t n_miss;
+	double d, geno_mean, geno_var;
+
+	size_t ni_test=XWz->size1;
+	gsl_vector *geno=gsl_vector_alloc (ni_test);
+	gsl_vector *geno_miss=gsl_vector_alloc (ni_test);
+
+	for (size_t t=0; t<indicator_snp.size(); ++t) {
+		!safeGetline(infile, line).eof();
+		if (t%display_pace==0 || t==(indicator_snp.size()-1)) {ProgressBar ("Reading SNPs  ", t, indicator_snp.size()-1);}
+		if (indicator_snp[t]==0) {continue;}
+
+		ch_ptr=strtok ((char *)line.c_str(), " , \t");
+		ch_ptr=strtok (NULL, " , \t");
+		ch_ptr=strtok (NULL, " , \t");
+
+		geno_mean=0.0; n_miss=0; geno_var=0.0;
+		gsl_vector_set_all(geno_miss, 0);
+
+		size_t j=0;
+		for (size_t i=0; i<indicator_idv.size(); ++i) {
+		  if (indicator_idv[i]==0) {continue;}
+			ch_ptr=strtok (NULL, " , \t");
+			if (strcmp(ch_ptr, "NA")==0) {gsl_vector_set(geno_miss, i, 0); n_miss++;}
+			else {
+				d=atof(ch_ptr);
+				gsl_vector_set (geno, j, d);
+				gsl_vector_set (geno_miss, j, 1);
+				geno_mean+=d;
+				geno_var+=d*d;
+			}
+			j++;
+		}
+
+		geno_mean/=(double)(ni_test-n_miss);
+		geno_var+=geno_mean*geno_mean*(double)n_miss;
+		geno_var/=(double)ni_test;
+		geno_var-=geno_mean*geno_mean;
+//		geno_var=geno_mean*(1-geno_mean*0.5);
+
+		for (size_t i=0; i<ni_test; ++i) {
+			if (gsl_vector_get (geno_miss, i)==0) {gsl_vector_set(geno, i, geno_mean);}
+		}
+
+		gsl_vector_add_constant (geno, -1.0*geno_mean);
+
+		for (size_t i=0; i<XWz->size2; i++) {
+		  gsl_vector_const_view XWz_col=gsl_matrix_const_column(XWz, i);
+		  gsl_blas_ddot (geno, &XWz_col.vector, &d);
+		  gsl_matrix_set (XtXWz, ns_test, i, d/sqrt(geno_var));
+		}
+
+		ns_test++;
+	}
+
+	cout<<endl;
+
+	gsl_vector_free (geno);
+	gsl_vector_free (geno_miss);
+
+	infile.close();
+	infile.clear();
+
+	return true;
+}
+
+
+
+
+
+
+//read plink bed file and compute XWz
+bool PlinkXtXwz (const string &file_bed, const int display_pace, vector<int> &indicator_idv, vector<int> &indicator_snp, const gsl_matrix *XWz, size_t ns_test, gsl_matrix *XtXWz)
+{
+	ifstream infile (file_bed.c_str(), ios::binary);
+	if (!infile) {cout<<"error reading bed file:"<<file_bed<<endl; return false;}
+
+	char ch[1];
+	bitset<8> b;
+
+	size_t n_miss, ci_total, ci_test;
+	double d, geno_mean, geno_var;
+
+	size_t ni_test=XWz->size1;
+	size_t ni_total=indicator_idv.size();
+	gsl_vector *geno=gsl_vector_alloc (ni_test);
+
+	int n_bit;
+
+	//calculate n_bit and c, the number of bit for each snp
+	if (ni_total%4==0) {n_bit=ni_total/4;}
+	else {n_bit=ni_total/4+1; }
+
+	//print the first three majic numbers
+	for (int i=0; i<3; ++i) {
+		infile.read(ch,1);
+		b=ch[0];
+	}
+
+	for (size_t t=0; t<indicator_snp.size(); ++t) {
+		if (t%display_pace==0 || t==(indicator_snp.size()-1)) {ProgressBar ("Reading SNPs  ", t, indicator_snp.size()-1);}
+		if (indicator_snp[t]==0) {continue;}
+
+		infile.seekg(t*n_bit+3);		//n_bit, and 3 is the number of magic numbers
+
+		//read genotypes
+		geno_mean=0.0;	n_miss=0; ci_total=0; geno_var=0.0; ci_test=0;
+		for (int i=0; i<n_bit; ++i) {
+			infile.read(ch,1);
+			b=ch[0];
+			for (size_t j=0; j<4; ++j) {                //minor allele homozygous: 2.0; major: 0.0;
+				if ((i==(n_bit-1)) && ci_total==ni_total) {break;}
+				if (indicator_idv[ci_total]==0) {ci_total++; continue;}
+
+				if (b[2*j]==0) {
+					if (b[2*j+1]==0) {gsl_vector_set(geno, ci_test, 2.0); geno_mean+=2.0; geno_var+=4.0; }
+					else {gsl_vector_set(geno, ci_test, 1.0); geno_mean+=1.0; geno_var+=1.0;}
+				}
+				else {
+					if (b[2*j+1]==1) {gsl_vector_set(geno, ci_test, 0.0); }
+					else {gsl_vector_set(geno, ci_test, -9.0); n_miss++; }
+				}
+
+				ci_test++;
+				ci_total++;
+			}
+		}
+
+
+		geno_mean/=(double)(ni_test-n_miss);
+		geno_var+=geno_mean*geno_mean*(double)n_miss;
+		geno_var/=(double)ni_test;
+		geno_var-=geno_mean*geno_mean;
+//		geno_var=geno_mean*(1-geno_mean*0.5);
+
+		for (size_t i=0; i<ni_test; ++i) {
+			d=gsl_vector_get(geno,i);
+			if (d==-9.0) {gsl_vector_set(geno, i, geno_mean);}
+		}
+
+		gsl_vector_add_constant (geno, -1.0*geno_mean);
+
+		for (size_t i=0; i<XWz->size2; i++) {
+		  gsl_vector_const_view XWz_col=gsl_matrix_const_column(XWz, i);
+		  gsl_blas_ddot (geno, &XWz_col.vector, &d);
+		  gsl_matrix_set (XtXWz, ns_test, i, d/sqrt(geno_var));
+		}
+
+		ns_test++;
+    }
+	cout<<endl;
+
+	gsl_vector_free (geno);
+
+	infile.close();
+	infile.clear();
+
+	return true;
+}
+
+
+
+//read multiple genotype files and compute XWz
+bool MFILEXtXwz (const size_t mfile_mode, const string &file_mfile, const int display_pace, vector<int> &indicator_idv, vector<vector<int> > &mindicator_snp, const gsl_matrix *XWz, gsl_matrix *XtXWz)
+{
+  gsl_matrix_set_zero(XtXWz);
+
+  igzstream infile (file_mfile.c_str(), igzstream::in);
+  if (!infile) {cout<<"error! fail to open mfile file: "<<file_mfile<<endl; return false;}
+
+  string file_name;
+  size_t l=0, ns_test=0;
+
+  while (!safeGetline(infile, file_name).eof()) {
+    if (mfile_mode==1) {
+      file_name+=".bed";
+      PlinkXtXwz (file_name, display_pace, indicator_idv, mindicator_snp[l], XWz, ns_test, XtXWz);
+    } else {
+      BimbamXtXwz (file_name, display_pace, indicator_idv, mindicator_snp[l], XWz, ns_test, XtXWz);
+    }
+
+    l++;
+  }
+
+  infile.close();
+  infile.clear();
+
+  return true;
+}
+
+
+//compute confidence intervals from summary statistics
+void CalcCIss(const gsl_matrix *Xz, const gsl_matrix *XWz, const gsl_matrix *XtXWz, const gsl_matrix *S_mat, const gsl_matrix *Svar_mat, const gsl_vector *w, const gsl_vector *z, const gsl_vector *s_vec, const vector<size_t> &vec_cat, const vector<double> &v_pve, vector<double> &v_se_pve, double &pve_total, double &se_pve_total, vector<double> &v_sigma2, vector<double> &v_se_sigma2, vector<double> &v_enrich, vector<double> &v_se_enrich) {
+  size_t n_vc=XWz->size2, ns_test=w->size, ni_test=XWz->size1;
+
+  //set up matrices
+  gsl_vector *w_pve=gsl_vector_alloc (ns_test);
+  gsl_vector *wz=gsl_vector_alloc (ns_test);
+  gsl_vector *zwz=gsl_vector_alloc (n_vc);
+  gsl_vector *zz=gsl_vector_alloc (n_vc);
+  gsl_vector *Xz_pve=gsl_vector_alloc (ni_test);
+  gsl_vector *WXtXWz=gsl_vector_alloc (ns_test);
+
+  gsl_matrix *Si_mat=gsl_matrix_alloc (n_vc, n_vc);
+  gsl_matrix *Var_mat=gsl_matrix_alloc (n_vc, n_vc);
+  gsl_matrix *tmp_mat=gsl_matrix_alloc (n_vc, n_vc);
+  gsl_matrix *tmp_mat1=gsl_matrix_alloc (n_vc, n_vc);
+  gsl_matrix *VarEnrich_mat=gsl_matrix_alloc (n_vc, n_vc);
+  gsl_matrix *qvar_mat=gsl_matrix_alloc (n_vc, n_vc);
+
+  double d, s0, s1, s, s_pve, s_snp;
+
+  //compute wz and zwz
+  gsl_vector_memcpy (wz, z);
+  gsl_vector_mul (wz, w);
+
+  gsl_vector_set_zero (zwz);
+  gsl_vector_set_zero (zz);
+  for (size_t i=0; i<w->size; i++) {
+    d=gsl_vector_get (wz, i)*gsl_vector_get (z, i);
+    d+=gsl_vector_get (zwz, vec_cat[i]);
+    gsl_vector_set (zwz, vec_cat[i], d);
+
+    d=gsl_vector_get (z, i)*gsl_vector_get (z, i);
+    d+=gsl_vector_get (zz, vec_cat[i]);
+    gsl_vector_set (zz, vec_cat[i], d);
+  }
+
+  //compute wz, ve and Xz_pve
+  gsl_vector_set_zero (Xz_pve); s_pve=0; s_snp=0;
+  for (size_t i=0; i<n_vc; i++) {
+    s_pve+=v_pve[i];
+    s_snp+=gsl_vector_get(s_vec, i);
+
+    gsl_vector_const_view Xz_col=gsl_matrix_const_column (Xz, i);
+    gsl_blas_daxpy (v_pve[i]/gsl_vector_get(s_vec, i), &Xz_col.vector, Xz_pve);
+  }
+
+  //set up wpve vector
+  for (size_t i=0; i<w->size; i++) {
+    d=v_pve[vec_cat[i]]/gsl_vector_get(s_vec, vec_cat[i]);
+    gsl_vector_set (w_pve, i, d);
+  }
+
+  //compute Vq (in qvar_mat)
+  s0=1-s_pve;
+  for (size_t i=0; i<n_vc; i++) {
+    s0+=gsl_vector_get (zz, i)*v_pve[i]/gsl_vector_get(s_vec, i);
+  }
+
+  for (size_t i=0; i<n_vc; i++) {
+    s1=s0;
+    s1-=gsl_vector_get (zwz, i)*(1-s_pve)/gsl_vector_get(s_vec, i);
+
+    gsl_vector_const_view XWz_col1=gsl_matrix_const_column (XWz, i);
+    gsl_vector_const_view XtXWz_col1=gsl_matrix_const_column (XtXWz, i);
+
+    gsl_vector_memcpy (WXtXWz, &XtXWz_col1.vector);
+    gsl_vector_mul (WXtXWz, w_pve);
+
+    gsl_blas_ddot (Xz_pve, &XWz_col1.vector, &d);
+    s1-=d/gsl_vector_get(s_vec, i);
+
+    for (size_t j=0; j<n_vc; j++) {
+      s=s1;
+
+      s-=gsl_vector_get (zwz, j)*(1-s_pve)/gsl_vector_get(s_vec, j);
+
+      gsl_vector_const_view XWz_col2=gsl_matrix_const_column (XWz, j);
+      gsl_vector_const_view XtXWz_col2=gsl_matrix_const_column (XtXWz, j);
+
+      gsl_blas_ddot (WXtXWz, &XtXWz_col2.vector, &d);
+      s+=d/(gsl_vector_get(s_vec, i)*gsl_vector_get(s_vec, j));
+
+      gsl_blas_ddot (&XWz_col1.vector, &XWz_col2.vector, &d);
+      s+=d/(gsl_vector_get(s_vec, i)*gsl_vector_get(s_vec, j))*(1-s_pve);
+
+      gsl_blas_ddot (Xz_pve, &XWz_col2.vector, &d);
+      s-=d/gsl_vector_get(s_vec, j);
+
+      gsl_matrix_set (qvar_mat, i, j, s);
+    }
+
+  }
+
+  d=(double)(ni_test-1);
+  gsl_matrix_scale (qvar_mat, 2.0/(d*d*d));
+
+  //cout<<scientific<<gsl_matrix_get(qvar_mat, 0, 0)<<endl;
+
+  //calculate S^{-1}
+  gsl_matrix_memcpy (tmp_mat, S_mat);
+  int sig;
+  gsl_permutation * pmt=gsl_permutation_alloc (n_vc);
+  LUDecomp (tmp_mat, pmt, &sig);
+  LUInvert (tmp_mat, pmt, Si_mat);
+
+  //calculate variance for the estimates
+  for (size_t i=0; i<n_vc; i++) {
+    for (size_t j=i; j<n_vc; j++) {
+      d=gsl_matrix_get(Svar_mat, i, j);
+      d*=v_pve[i]*v_pve[j];
+      //cout<<d<<" ";
+
+      d+=gsl_matrix_get(qvar_mat, i, j);
+      gsl_matrix_set(Var_mat, i, j, d);
+      if (i!=j) {gsl_matrix_set(Var_mat, j, i, d);}
+    }
+    //cout<<endl;
+  }
+
+  gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Si_mat, Var_mat, 0.0, tmp_mat);
+  gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, tmp_mat, Si_mat, 0.0, Var_mat);
+
+  //compute sigma2 per snp, enrich
+  v_sigma2.clear(); v_enrich.clear();
+  for (size_t i=0; i<n_vc; i++) {
+    v_sigma2.push_back(v_pve[i]/gsl_vector_get(s_vec, i) );
+    v_enrich.push_back(v_pve[i]/gsl_vector_get(s_vec, i)*s_snp/s_pve);
+  }
+
+  //compute se_pve, se_sigma2
+  for (size_t i=0; i<n_vc; i++) {
+    d=sqrt(gsl_matrix_get(Var_mat, i, i));
+    v_se_pve.push_back(d);
+    v_se_sigma2.push_back(d/gsl_vector_get(s_vec, i));
+  }
+
+  //compute pve_total, se_pve_total
+  pve_total=0;
+  for (size_t i=0; i<n_vc; i++) {
+    pve_total+=v_pve[i];
+  }
+
+  se_pve_total=0;
+  for (size_t i=0; i<n_vc; i++) {
+    for (size_t j=0; j<n_vc; j++) {
+      se_pve_total+=gsl_matrix_get(Var_mat, i, j);
+    }
+  }
+  se_pve_total=sqrt(se_pve_total);
+
+  //compute se_enrich
+  gsl_matrix_set_identity(tmp_mat);
+
+  double d1;
+  for (size_t i=0; i<n_vc; i++) {
+    d=v_pve[i]/s_pve;
+    d1=gsl_vector_get(s_vec, i);
+    for (size_t j=0; j<n_vc; j++) {
+      if (i==j) {
+	gsl_matrix_set(tmp_mat, i, j, (1-d)/d1*s_snp/s_pve);
+      } else {
+	gsl_matrix_set(tmp_mat, i, j, -1*d/d1*s_snp/s_pve);
+      }
+    }
+  }
+  gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, tmp_mat, Var_mat, 0.0, tmp_mat1);
+  gsl_blas_dgemm(CblasNoTrans, CblasTrans, 1.0, tmp_mat1, tmp_mat, 0.0, VarEnrich_mat);
+
+  for (size_t i=0; i<n_vc; i++) {
+    d=sqrt(gsl_matrix_get(VarEnrich_mat, i, i));
+    v_se_enrich.push_back(d);
+  }
+
+  cout<<"pve = ";
+  for (size_t i=0; i<n_vc; i++) {
+    cout<<v_pve[i]<<" ";
+  }
+  cout<<endl;
+
+  cout<<"se(pve) = ";
+  for (size_t i=0; i<n_vc; i++) {
+    cout<<v_se_pve[i]<<" ";
+  }
+  cout<<endl;
+
+  cout<<"sigma2 per snp = ";
+  for (size_t i=0; i<n_vc; i++) {
+    cout<<v_sigma2[i]<<" ";
+  }
+  cout<<endl;
+
+  cout<<"se(sigma2 per snp) = ";
+  for (size_t i=0; i<n_vc; i++) {
+    cout<<v_se_sigma2[i]<<" ";
+  }
+  cout<<endl;
+
+  cout<<"enrichment = ";
+  for (size_t i=0; i<n_vc; i++) {
+    cout<<v_enrich[i]<<" ";
+  }
+  cout<<endl;
+
+  cout<<"se(enrichment) = ";
+  for (size_t i=0; i<n_vc; i++) {
+    cout<<v_se_enrich[i]<<" ";
+  }
+  cout<<endl;
+
+  //delete matrices
+  gsl_matrix_free(Si_mat);
+  gsl_matrix_free(Var_mat);
+  gsl_matrix_free(VarEnrich_mat);
+  gsl_matrix_free(tmp_mat);
+  gsl_matrix_free(tmp_mat1);
+  gsl_matrix_free(qvar_mat);
+
+  gsl_vector_free(w_pve);
+  gsl_vector_free(wz);
+  gsl_vector_free(zwz);
+  gsl_vector_free(WXtXWz);
+  gsl_vector_free(Xz_pve);
+
+  return;
+}