aboutsummaryrefslogtreecommitdiff
path: root/src/param.cpp
diff options
context:
space:
mode:
authorxiangzhou2014-09-22 11:06:02 -0400
committerxiangzhou2014-09-22 11:06:02 -0400
commit7762722f264adc402ea3b0f21923b18f072253ba (patch)
tree879ed22943d424b52bd04b4ee6fbdf51616dc9a9 /src/param.cpp
parent44faf98d2c6fe56c916cace02fe498fc1271bd9d (diff)
downloadpangemma-7762722f264adc402ea3b0f21923b18f072253ba.tar.gz
version 0.95alpha
Diffstat (limited to 'src/param.cpp')
-rw-r--r--src/param.cpp849
1 files changed, 849 insertions, 0 deletions
diff --git a/src/param.cpp b/src/param.cpp
new file mode 100644
index 0000000..7a89ff8
--- /dev/null
+++ b/src/param.cpp
@@ -0,0 +1,849 @@
+/*
+ Genome-wide Efficient Mixed Model Association (GEMMA)
+ Copyright (C) 2011 Xiang Zhou
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see <http://www.gnu.org/licenses/>.
+*/
+
+#include <iostream>
+#include <fstream>
+#include <string>
+#include <cstring>
+#include <sys/stat.h>
+#include <cmath>
+#include <algorithm>
+
+
+#ifdef FORCE_FLOAT
+#include "param_float.h"
+#include "io_float.h"
+#else
+#include "param.h"
+#include "io.h"
+#endif
+
+using namespace std;
+
+
+
+
+
+PARAM::PARAM(void):
+mode_silence (false), a_mode (0), k_mode(1), d_pace (100000),
+file_out("result"), path_out("./output/"),
+miss_level(0.05), maf_level(0.01), hwe_level(0), r2_level(0.9999),
+l_min(1e-5), l_max(1e5), n_region(10),p_nr(0.001),em_prec(0.0001),nr_prec(0.0001),em_iter(10000),nr_iter(100),crt(0),
+pheno_mean(0),
+h_min(-1), h_max(-1), h_scale(-1),
+rho_min(0.0), rho_max(1.0), rho_scale(-1),
+logp_min(0.0), logp_max(0.0), logp_scale(-1),
+s_min(0), s_max(300),
+w_step(100000), s_step(1000000),
+r_pace(10), w_pace(1000),
+n_accept(0),
+n_mh(10),
+geo_mean(2000.0),
+randseed(-1),
+error(false),
+ n_cvt(1), n_vc(1),
+time_total(0.0), time_G(0.0), time_eigen(0.0), time_UtX(0.0), time_UtZ(0.0), time_opt(0.0), time_Omega(0.0)
+{}
+
+
+//read files
+//obtain ns_total, ng_total, ns_test, ni_test
+void PARAM::ReadFiles (void)
+{
+ string file_str;
+ if (!file_mk.empty()) {
+ if (CountFileLines (file_mk, n_vc)==false) {error=true;}
+ }
+
+ if (!file_snps.empty()) {
+ if (ReadFile_snps (file_snps, setSnps)==false) {error=true;}
+ } else {
+ setSnps.clear();
+ }
+
+ //for prediction
+ if (!file_epm.empty()) {
+ if (ReadFile_est (file_epm, est_column, mapRS2est)==false) {error=true;}
+
+ if (!file_bfile.empty()) {
+ file_str=file_bfile+".bim";
+ if (ReadFile_bim (file_str, snpInfo)==false) {error=true;}
+
+ file_str=file_bfile+".fam";
+ if (ReadFile_fam (file_str, indicator_pheno, pheno, mapID2num, p_column)==false) {error=true;}
+ }
+
+ if (!file_geno.empty()) {
+ if (ReadFile_pheno (file_pheno, indicator_pheno, pheno, p_column)==false) {error=true;}
+
+ if (CountFileLines (file_geno, ns_total)==false) {error=true;}
+ }
+
+ if (!file_ebv.empty() ) {
+ if (ReadFile_column (file_ebv, indicator_bv, vec_bv, 1)==false) {error=true;}
+ }
+
+ if (!file_log.empty() ) {
+ if (ReadFile_log (file_log, pheno_mean)==false) {error=true;}
+ }
+
+ //convert indicator_pheno to indicator_idv
+ int k=1;
+ for (size_t i=0; i<indicator_pheno.size(); i++) {
+ k=1;
+ for (size_t j=0; j<indicator_pheno[i].size(); j++) {
+ if (indicator_pheno[i][j]==0) {k=0;}
+ }
+ indicator_idv.push_back(k);
+ }
+
+ ns_test=0;
+
+ return;
+ }
+
+ //read covariates before the genotype files
+ if (!file_cvt.empty() ) {
+ if (ReadFile_cvt (file_cvt, indicator_cvt, cvt, n_cvt)==false) {error=true;}
+
+ if ((indicator_cvt).size()==0) {
+ n_cvt=1;
+ }
+ } else {
+ n_cvt=1;
+ }
+
+ //read genotype and phenotype file for plink format
+ if (!file_bfile.empty()) {
+ file_str=file_bfile+".bim";
+ if (ReadFile_bim (file_str, snpInfo)==false) {error=true;}
+
+ file_str=file_bfile+".fam";
+ if (ReadFile_fam (file_str, indicator_pheno, pheno, mapID2num, p_column)==false) {error=true;}
+
+ //post-process covariates and phenotypes, obtain ni_test, save all useful covariates
+ ProcessCvtPhen();
+
+ //obtain covariate matrix
+ gsl_matrix *W=gsl_matrix_alloc (ni_test, n_cvt);
+ CopyCvt (W);
+
+ file_str=file_bfile+".bed";
+ if (ReadFile_bed (file_str, setSnps, W, indicator_idv, indicator_snp, snpInfo, maf_level, miss_level, hwe_level, r2_level, ns_test)==false) {error=true;}
+
+ gsl_matrix_free(W);
+
+ ns_total=indicator_snp.size();
+ }
+
+ //read genotype and phenotype file for bimbam format
+ if (!file_geno.empty()) {
+ //annotation file before genotype file
+ if (!file_anno.empty() ) {
+ if (ReadFile_anno (file_anno, mapRS2chr, mapRS2bp, mapRS2cM)==false) {error=true;}
+ }
+
+ //phenotype file before genotype file
+ if (ReadFile_pheno (file_pheno, indicator_pheno, pheno, p_column)==false) {error=true;}
+
+ //post-process covariates and phenotypes, obtain ni_test, save all useful covariates
+ ProcessCvtPhen();
+
+ //obtain covariate matrix
+ gsl_matrix *W=gsl_matrix_alloc (ni_test, n_cvt);
+ CopyCvt (W);
+
+ if (ReadFile_geno (file_geno, setSnps, W, indicator_idv, indicator_snp, maf_level, miss_level, hwe_level, r2_level, mapRS2chr, mapRS2bp, mapRS2cM, snpInfo, ns_test)==false) {error=true;}
+
+ gsl_matrix_free(W);
+
+ ns_total=indicator_snp.size();
+ }
+
+ if (!file_gene.empty()) {
+ if (ReadFile_pheno (file_pheno, indicator_pheno, pheno, p_column)==false) {error=true;}
+
+ //convert indicator_pheno to indicator_idv
+ int k=1;
+ for (size_t i=0; i<indicator_pheno.size(); i++) {
+ k=1;
+ for (size_t j=0; j<indicator_pheno[i].size(); j++) {
+ if (indicator_pheno[i][j]==0) {k=0;}
+ }
+ indicator_idv.push_back(k);
+ }
+
+ if (ReadFile_gene (file_gene, vec_read, snpInfo, ng_total)==false) {error=true;}
+ }
+
+
+ //read is after gene file
+ if (!file_read.empty() ) {
+ if (ReadFile_column (file_read, indicator_read, vec_read, 1)==false) {error=true;}
+
+ ni_test=0;
+ for (vector<int>::size_type i=0; i<(indicator_idv).size(); ++i) {
+ indicator_idv[i]*=indicator_read[i];
+ ni_test+=indicator_idv[i];
+ }
+
+ if (ni_test==0) {
+ error=true;
+ cout<<"error! number of analyzed individuals equals 0. "<<endl;
+ return;
+ }
+ }
+
+ //for ridge prediction, read phenotype only
+ if (file_geno.empty() && file_gene.empty() && !file_pheno.empty()) {
+ if (ReadFile_pheno (file_pheno, indicator_pheno, pheno, p_column)==false) {error=true;}
+
+ //post-process covariates and phenotypes, obtain ni_test, save all useful covariates
+ ProcessCvtPhen();
+ }
+
+ return;
+}
+
+
+
+
+
+
+void PARAM::CheckParam (void)
+{
+ struct stat fileInfo;
+ string str;
+
+ //check parameters
+ if (k_mode!=1 && k_mode!=2) {cout<<"error! unknown kinship/relatedness input mode: "<<k_mode<<endl; error=true;}
+ if (a_mode!=1 && a_mode!=2 && a_mode!=3 && a_mode!=4 && a_mode!=5 && a_mode!=11 && a_mode!=12 && a_mode!=13 && a_mode!=21 && a_mode!=22 && a_mode!=31 && a_mode!=41 && a_mode!=42 && a_mode!=43 && a_mode!=51 && a_mode!=52 && a_mode!=53 && a_mode!=54 && a_mode!=61)
+ {cout<<"error! unknown analysis mode: "<<a_mode<<". make sure -gk or -eigen or -lmm or -bslmm or -predict is sepcified correctly."<<endl; error=true;}
+ if (miss_level>1) {cout<<"error! missing level needs to be between 0 and 1. current value = "<<miss_level<<endl; error=true;}
+ if (maf_level>0.5) {cout<<"error! maf level needs to be between 0 and 0.5. current value = "<<maf_level<<endl; error=true;}
+ if (hwe_level>1) {cout<<"error! hwe level needs to be between 0 and 1. current value = "<<hwe_level<<endl; error=true;}
+ if (r2_level>1) {cout<<"error! r2 level needs to be between 0 and 1. current value = "<<r2_level<<endl; error=true;}
+
+ if (l_max<l_min) {cout<<"error! maximum lambda value must be larger than the minimal value. current values = "<<l_max<<" and "<<l_min<<endl; error=true;}
+ if (h_max<h_min) {cout<<"error! maximum h value must be larger than the minimal value. current values = "<<h_max<<" and "<<h_min<<endl; error=true;}
+ if (s_max<s_min) {cout<<"error! maximum s value must be larger than the minimal value. current values = "<<s_max<<" and "<<s_min<<endl; error=true;}
+ if (rho_max<rho_min) {cout<<"error! maximum rho value must be larger than the minimal value. current values = "<<rho_max<<" and "<<rho_min<<endl; error=true;}
+ if (logp_max<logp_min) {cout<<"error! maximum logp value must be larger than the minimal value. current values = "<<logp_max/log(10)<<" and "<<logp_min/log(10)<<endl; error=true;}
+
+ if (h_max>1) {cout<<"error! h values must be bewtween 0 and 1. current values = "<<h_max<<" and "<<h_min<<endl; error=true;}
+ if (rho_max>1) {cout<<"error! rho values must be between 0 and 1. current values = "<<rho_max<<" and "<<rho_min<<endl; error=true;}
+ if (logp_max>0) {cout<<"error! maximum logp value must be smaller than 0. current values = "<<logp_max/log(10)<<" and "<<logp_min/log(10)<<endl; error=true;}
+ if (l_max<l_min) {cout<<"error! maximum lambda value must be larger than the minimal value. current values = "<<l_max<<" and "<<l_min<<endl; error=true;}
+
+ if (h_scale>1.0) {cout<<"error! hscale value must be between 0 and 1. current value = "<<h_scale<<endl; error=true;}
+ if (rho_scale>1.0) {cout<<"error! rscale value must be between 0 and 1. current value = "<<rho_scale<<endl; error=true;}
+ if (logp_scale>1.0) {cout<<"error! pscale value must be between 0 and 1. current value = "<<logp_scale<<endl; error=true;}
+
+ if (rho_max==1 && rho_min==1 && a_mode==12) {cout<<"error! ridge regression does not support a rho parameter. current values = "<<rho_max<<" and "<<rho_min<<endl; error=true;}
+
+ //check p_column, and (no need to) sort p_column into ascending order
+ if (p_column.size()==0) {
+ p_column.push_back(1);
+ } else {
+ for (size_t i=0; i<p_column.size(); i++) {
+ for (size_t j=0; j<i; j++) {
+ if (p_column[i]==p_column[j]) {cout<<"error! identical phenotype columns: "<<p_column[i]<<endl; error=true;}
+ }
+ }
+ }
+
+ //sort (p_column.begin(), p_column.end() );
+ n_ph=p_column.size();
+
+
+
+ //only lmm option (and one prediction option) can deal with multiple phenotypes
+ //and no gene expression files
+ if (n_ph>1 && a_mode!=1 && a_mode!=2 && a_mode!=3 && a_mode!=4 && a_mode!=43) {
+ cout<<"error! the current analysis mode "<<a_mode<<" can not deal with multiple phenotypes."<<endl; error=true;
+ }
+ if (n_ph>1 && !file_gene.empty() ) {
+ cout<<"error! multiple phenotype analysis option not allowed with gene expression files. "<<endl; error=true;
+ }
+
+ if (p_nr>1) {
+ cout<<"error! pnr value must be between 0 and 1. current value = "<<p_nr<<endl; error=true;
+ }
+
+ //check est_column
+ if (est_column.size()==0) {
+ if (file_ebv.empty()) {
+ est_column.push_back(2);
+ est_column.push_back(5);
+ est_column.push_back(6);
+ est_column.push_back(7);
+ } else {
+ est_column.push_back(2);
+ est_column.push_back(0);
+ est_column.push_back(6);
+ est_column.push_back(7);
+ }
+ }
+
+ if (est_column.size()!=4) {cout<<"error! -en not followed by four numbers. current number = "<<est_column.size()<<endl; error=true;}
+ if (est_column[0]==0) {cout<<"error! -en rs column can not be zero. current number = "<<est_column.size()<<endl; error=true;}
+
+ //check if files are compatible with each other, and if files exist
+ if (!file_bfile.empty()) {
+ str=file_bfile+".bim";
+ if (stat(str.c_str(),&fileInfo)==-1) {cout<<"error! fail to open .bim file: "<<str<<endl; error=true;}
+ str=file_bfile+".bed";
+ if (stat(str.c_str(),&fileInfo)==-1) {cout<<"error! fail to open .bed file: "<<str<<endl; error=true;}
+ str=file_bfile+".fam";
+ if (stat(str.c_str(),&fileInfo)==-1) {cout<<"error! fail to open .fam file: "<<str<<endl; error=true;}
+ }
+
+ if ((!file_geno.empty() || !file_gene.empty()) ) {
+ str=file_pheno;
+ if (stat(str.c_str(),&fileInfo)==-1) {cout<<"error! fail to open phenotype file: "<<str<<endl; error=true;}
+ }
+
+ str=file_geno;
+ if (!str.empty() && stat(str.c_str(),&fileInfo)==-1 ) {cout<<"error! fail to open mean genotype file: "<<str<<endl; error=true;}
+
+ str=file_gene;
+ if (!str.empty() && stat(str.c_str(),&fileInfo)==-1 ) {cout<<"error! fail to open gene expression file: "<<str<<endl; error=true;}
+
+ size_t flag=0;
+ if (!file_bfile.empty()) {flag++;}
+ if (!file_geno.empty()) {flag++;}
+ if (!file_gene.empty()) {flag++;}
+
+ if (flag!=1 && a_mode!=43 && a_mode!=5 && a_mode!=61) {
+ cout<<"error! either plink binary files, or bimbam mean genotype files, or gene expression files are required."<<endl; error=true;
+ }
+
+ if (file_pheno.empty() && (a_mode==43 || a_mode==5 || a_mode==61) ) {
+ cout<<"error! phenotype file is required."<<endl; error=true;
+ }
+
+ if (!file_epm.empty() && file_bfile.empty() && file_geno.empty() ) {cout<<"error! estimated parameter file also requires genotype file."<<endl; error=true;}
+ if (!file_ebv.empty() && file_kin.empty()) {cout<<"error! estimated breeding value file also requires relatedness file."<<endl; error=true;}
+
+ if (!file_log.empty() && pheno_mean!=0) {cout<<"error! either log file or mu value can be provide."<<endl; error=true;}
+
+ str=file_snps;
+ if (!str.empty() && stat(str.c_str(),&fileInfo)==-1 ) {cout<<"error! fail to open snps file: "<<str<<endl; error=true;}
+
+ str=file_log;
+ if (!str.empty() && stat(str.c_str(),&fileInfo)==-1 ) {cout<<"error! fail to open log file: "<<str<<endl; error=true;}
+
+ str=file_anno;
+ if (!str.empty() && stat(str.c_str(),&fileInfo)==-1 ) {cout<<"error! fail to open annotation file: "<<str<<endl; error=true;}
+
+ str=file_kin;
+ if (!str.empty() && stat(str.c_str(),&fileInfo)==-1 ) {cout<<"error! fail to open relatedness matrix file: "<<str<<endl; error=true;}
+
+ str=file_mk;
+ if (!str.empty() && stat(str.c_str(),&fileInfo)==-1 ) {cout<<"error! fail to open relatedness matrix file: "<<str<<endl; error=true;}
+
+ str=file_cvt;
+ if (!str.empty() && stat(str.c_str(),&fileInfo)==-1 ) {cout<<"error! fail to open covariates file: "<<str<<endl; error=true;}
+
+ str=file_epm;
+ if (!str.empty() && stat(str.c_str(),&fileInfo)==-1 ) {cout<<"error! fail to open estimated parameter file: "<<str<<endl; error=true;}
+
+ str=file_ebv;
+ if (!str.empty() && stat(str.c_str(),&fileInfo)==-1 ) {cout<<"error! fail to open estimated breeding value file: "<<str<<endl; error=true;}
+
+ str=file_read;
+ if (!str.empty() && stat(str.c_str(),&fileInfo)==-1 ) {cout<<"error! fail to open total read file: "<<str<<endl; error=true;}
+
+ //check if files are compatible with analysis mode
+ if (k_mode==2 && !file_geno.empty() ) {cout<<"error! use \"-km 1\" when using bimbam mean genotype file. "<<endl; error=true;}
+
+ if ((a_mode==1 || a_mode==2 || a_mode==3 || a_mode==4 || a_mode==5 || a_mode==31) && (file_kin.empty() && (file_ku.empty()||file_kd.empty())) ) {cout<<"error! missing relatedness file. "<<endl; error=true;}
+
+ if (a_mode==61 && (file_kin.empty() && (file_ku.empty()||file_kd.empty()) && file_mk.empty() ) ) {cout<<"error! missing relatedness file. "<<endl; error=true;}
+
+ if ((a_mode==43) && file_kin.empty()) {cout<<"error! missing relatedness file. -predict option requires -k option to provide a relatedness file."<<endl; error=true;}
+
+ if ((a_mode==11 || a_mode==12 || a_mode==13) && !file_cvt.empty() ) {cout<<"error! -bslmm option does not support covariates files."<<endl; error=true;}
+
+ if (a_mode==41 || a_mode==42) {
+ if (!file_cvt.empty() ) {cout<<"error! -predict option does not support covariates files."<<endl; error=true;}
+ if (file_epm.empty() ) {cout<<"error! -predict option requires estimated parameter files."<<endl; error=true;}
+ }
+
+ return;
+}
+
+
+
+
+
+void PARAM::CheckData (void) {
+ if ((file_cvt).empty() || (indicator_cvt).size()==0) {
+ n_cvt=1;
+ }
+ if ( (indicator_cvt).size()!=0 && (indicator_cvt).size()!=(indicator_idv).size()) {
+ error=true;
+ cout<<"error! number of rows in the covariates file do not match the number of individuals. "<<endl;
+ return;
+ }
+
+ if ( (indicator_read).size()!=0 && (indicator_read).size()!=(indicator_idv).size()) {
+ error=true;
+ cout<<"error! number of rows in the total read file do not match the number of individuals. "<<endl;
+ return;
+ }
+
+ //calculate ni_total and ni_test, and set indicator_idv to 0 whenever indicator_cvt=0
+ //and calculate np_obs and np_miss
+ ni_total=(indicator_idv).size();
+
+ ni_test=0;
+ for (vector<int>::size_type i=0; i<(indicator_idv).size(); ++i) {
+ if (indicator_idv[i]==0) {continue;}
+ ni_test++;
+ }
+
+ ni_cvt=0;
+ for (size_t i=0; i<indicator_cvt.size(); i++) {
+ if (indicator_cvt[i]==0) {continue;}
+ ni_cvt++;
+ }
+
+ np_obs=0; np_miss=0;
+ for (size_t i=0; i<indicator_pheno.size(); i++) {
+ if (indicator_cvt.size()!=0) {
+ if (indicator_cvt[i]==0) {continue;}
+ }
+
+ for (size_t j=0; j<indicator_pheno[i].size(); j++) {
+ if (indicator_pheno[i][j]==0) {
+ np_miss++;
+ } else {
+ np_obs++;
+ }
+ }
+ }
+
+ /*
+ if ((indicator_cvt).size()!=0) {
+ ni_test=0;
+ for (vector<int>::size_type i=0; i<(indicator_idv).size(); ++i) {
+ indicator_idv[i]*=indicator_cvt[i];
+ ni_test+=indicator_idv[i];
+ }
+ }
+
+ if ((indicator_read).size()!=0) {
+ ni_test=0;
+ for (vector<int>::size_type i=0; i<(indicator_idv).size(); ++i) {
+ indicator_idv[i]*=indicator_read[i];
+ ni_test+=indicator_idv[i];
+ }
+ }
+ */
+ if (ni_test==0) {
+ error=true;
+ cout<<"error! number of analyzed individuals equals 0. "<<endl;
+ return;
+ }
+
+ if (a_mode==43) {
+ if (ni_cvt==ni_test) {
+ error=true;
+ cout<<"error! no individual has missing phenotypes."<<endl;
+ return;
+ }
+ if ((np_obs+np_miss)!=(ni_cvt*n_ph)) {
+ error=true;
+ //cout<<ni_cvt<<"\t"<<ni_test<<"\t"<<ni_total<<"\t"<<np_obs<<"\t"<<np_miss<<"\t"<<indicator_cvt.size()<<endl;
+ cout<<"error! number of phenotypes do not match the summation of missing and observed phenotypes."<<endl;
+ return;
+ }
+ }
+
+ //output some information
+ cout<<"## number of total individuals = "<<ni_total<<endl;
+ if (a_mode==43) {
+ cout<<"## number of analyzed individuals = "<<ni_cvt<<endl;
+ cout<<"## number of individuals with full phenotypes = "<<ni_test<<endl;
+ } else {
+ cout<<"## number of analyzed individuals = "<<ni_test<<endl;
+ }
+ cout<<"## number of covariates = "<<n_cvt<<endl;
+ cout<<"## number of phenotypes = "<<n_ph<<endl;
+ if (a_mode==43) {
+ cout<<"## number of observed data = "<<np_obs<<endl;
+ cout<<"## number of missing data = "<<np_miss<<endl;
+ }
+ if (!file_gene.empty()) {
+ cout<<"## number of total genes = "<<ng_total<<endl;
+ } else if (file_epm.empty() && a_mode!=43 && a_mode!=5) {
+ cout<<"## number of total SNPs = "<<ns_total<<endl;
+ cout<<"## number of analyzed SNPs = "<<ns_test<<endl;
+ } else {}
+
+ //set d_pace to 1000 for gene expression
+ if (!file_gene.empty() && d_pace==100000) {
+ d_pace=1000;
+ }
+
+ //for case-control studies, count #cases and #controls
+ int flag_cc=0;
+ if (a_mode==13) {
+ ni_case=0;
+ ni_control=0;
+ for (size_t i=0; i<indicator_idv.size(); i++) {
+ if (indicator_idv[i]==0) {continue;}
+
+ if (pheno[i][0]==0) {ni_control++;}
+ else if (pheno[i][0]==1) {ni_case++;}
+ else {flag_cc=1;}
+ }
+ cout<<"## number of cases = "<<ni_case<<endl;
+ cout<<"## number of controls = "<<ni_control<<endl;
+ }
+
+ if (flag_cc==1) {cout<<"Unexpected non-binary phenotypes for case/control analysis. Use default (BSLMM) analysis instead."<<endl; a_mode=11;}
+
+ //set parameters for BSLMM
+ //and check for predict
+ if (a_mode==11 || a_mode==12 || a_mode==13) {
+ if (a_mode==11) {n_mh=1;}
+ if (logp_min==0) {logp_min=-1.0*log((double)ns_test);}
+
+ if (h_scale==-1) {h_scale=min(1.0, 10.0/sqrt((double)ni_test) );}
+ if (rho_scale==-1) {rho_scale=min(1.0, 10.0/sqrt((double)ni_test) );}
+ if (logp_scale==-1) {logp_scale=min(1.0, 5.0/sqrt((double)ni_test) );}
+
+ if (h_min==-1) {h_min=0.0;}
+ if (h_max==-1) {h_max=1.0;}
+
+ if (s_max>ns_test) {s_max=ns_test; cout<<"s_max is re-set to the number of analyzed SNPs."<<endl;}
+ if (s_max<s_min) {cout<<"error! maximum s value must be larger than the minimal value. current values = "<<s_max<<" and "<<s_min<<endl; error=true;}
+ } else if (a_mode==41 || a_mode==42) {
+ if (indicator_bv.size()!=0) {
+ if (indicator_idv.size()!=indicator_bv.size()) {
+ cout<<"error! number of rows in the phenotype file does not match that in the estimated breeding value file: "<<indicator_idv.size()<<"\t"<<indicator_bv.size()<<endl;
+ error=true;
+ } else {
+ size_t flag_bv=0;
+ for (size_t i=0; i<(indicator_bv).size(); ++i) {
+ if (indicator_idv[i]!=indicator_bv[i]) {flag_bv++;}
+ }
+ if (flag_bv!=0) {
+ cout<<"error! individuals with missing value in the phenotype file does not match that in the estimated breeding value file: "<<flag_bv<<endl;
+ error=true;
+ }
+ }
+ }
+ }
+
+ //file_mk needs to contain more than one line
+ if (n_vc==1 && !file_mk.empty()) {cout<<"error! -mk file should contain more than one line."<<endl; error=true;}
+
+ return;
+}
+
+
+void PARAM::PrintSummary ()
+{
+ if (n_ph==1) {
+ cout<<"pve estimate ="<<pve_null<<endl;
+ cout<<"se(pve) ="<<pve_se_null<<endl;
+ } else {
+
+ }
+ return;
+}
+
+
+
+void PARAM::ReadGenotypes (gsl_matrix *UtX, gsl_matrix *K, const bool calc_K) {
+ string file_str;
+
+ if (!file_bfile.empty()) {
+ file_str=file_bfile+".bed";
+ if (ReadFile_bed (file_str, indicator_idv, indicator_snp, UtX, K, calc_K)==false) {error=true;}
+ }
+ else {
+ if (ReadFile_geno (file_geno, indicator_idv, indicator_snp, UtX, K, calc_K)==false) {error=true;}
+ }
+
+ return;
+}
+
+
+
+
+void PARAM::CalcKin (gsl_matrix *matrix_kin) {
+ string file_str;
+
+ gsl_matrix_set_zero (matrix_kin);
+
+ if (!file_bfile.empty() ) {
+ file_str=file_bfile+".bed";
+ if (PlinkKin (file_str, indicator_snp, a_mode-20, d_pace, matrix_kin)==false) {error=true;}
+ }
+ else {
+ file_str=file_geno;
+ if (BimbamKin (file_str, indicator_snp, a_mode-20, d_pace, matrix_kin)==false) {error=true;}
+ }
+
+ return;
+}
+
+
+
+
+
+void PARAM::WriteMatrix (const gsl_matrix *matrix_U, const string suffix)
+{
+ string file_str;
+ file_str=path_out+"/"+file_out;
+ file_str+=".";
+ file_str+=suffix;
+ file_str+=".txt";
+
+ ofstream outfile (file_str.c_str(), ofstream::out);
+ if (!outfile) {cout<<"error writing file: "<<file_str.c_str()<<endl; return;}
+
+ outfile.precision(10);
+
+ for (size_t i=0; i<matrix_U->size1; ++i) {
+ for (size_t j=0; j<matrix_U->size2; ++j) {
+ outfile<<gsl_matrix_get (matrix_U, i, j)<<"\t";
+ }
+ outfile<<endl;
+ }
+
+ outfile.close();
+ outfile.clear();
+ return;
+}
+
+
+void PARAM::WriteVector (const gsl_vector *vector_D, const string suffix)
+{
+ string file_str;
+ file_str=path_out+"/"+file_out;
+ file_str+=".";
+ file_str+=suffix;
+ file_str+=".txt";
+
+ ofstream outfile (file_str.c_str(), ofstream::out);
+ if (!outfile) {cout<<"error writing file: "<<file_str.c_str()<<endl; return;}
+
+ outfile.precision(10);
+
+ for (size_t i=0; i<vector_D->size; ++i) {
+ outfile<<gsl_vector_get (vector_D, i)<<endl;
+ }
+
+ outfile.close();
+ outfile.clear();
+ return;
+}
+
+
+void PARAM::CheckCvt ()
+{
+ if (indicator_cvt.size()==0) {return;}
+
+ size_t ci_test=0;
+
+ gsl_matrix *W=gsl_matrix_alloc (ni_test, n_cvt);
+
+ for (vector<int>::size_type i=0; i<indicator_idv.size(); ++i) {
+ if (indicator_idv[i]==0 || indicator_cvt[i]==0) {continue;}
+ for (size_t j=0; j<n_cvt; ++j) {
+ gsl_matrix_set (W, ci_test, j, (cvt)[i][j]);
+ }
+ ci_test++;
+ }
+
+ size_t flag_ipt=0;
+ double v_min, v_max;
+ set<size_t> set_remove;
+
+ //check if any columns is an intercept
+ for (size_t i=0; i<W->size2; i++) {
+ gsl_vector_view w_col=gsl_matrix_column (W, i);
+ gsl_vector_minmax (&w_col.vector, &v_min, &v_max);
+ if (v_min==v_max) {flag_ipt=1; set_remove.insert (i);}
+ }
+
+ //add an intecept term if needed
+ if (n_cvt==set_remove.size()) {
+ indicator_cvt.clear();
+ n_cvt=1;
+ } else if (flag_ipt==0) {
+ cout<<"no intecept term is found in the cvt file. a column of 1s is added."<<endl;
+ for (vector<int>::size_type i=0; i<indicator_idv.size(); ++i) {
+ if (indicator_idv[i]==0 || indicator_cvt[i]==0) {continue;}
+ cvt[i].push_back(1.0);
+ }
+
+ n_cvt++;
+ } else {}
+
+ gsl_matrix_free(W);
+
+ return;
+}
+
+
+//post-process phentoypes, covariates
+void PARAM::ProcessCvtPhen ()
+{
+ //convert indicator_pheno to indicator_idv
+ int k=1;
+ indicator_idv.clear();
+ for (size_t i=0; i<indicator_pheno.size(); i++) {
+ k=1;
+ for (size_t j=0; j<indicator_pheno[i].size(); j++) {
+ if (indicator_pheno[i][j]==0) {k=0;}
+ }
+ indicator_idv.push_back(k);
+ }
+
+ //remove individuals with missing covariates
+ if ((indicator_cvt).size()!=0) {
+ for (vector<int>::size_type i=0; i<(indicator_idv).size(); ++i) {
+ indicator_idv[i]*=indicator_cvt[i];
+ }
+ }
+
+ //obtain ni_test
+ ni_test=0;
+ for (vector<int>::size_type i=0; i<(indicator_idv).size(); ++i) {
+ if (indicator_idv[i]==0) {continue;}
+ ni_test++;
+ }
+
+ if (ni_test==0) {
+ error=true;
+ cout<<"error! number of analyzed individuals equals 0. "<<endl;
+ return;
+ }
+
+ //check covariates to see if they are correlated with each other, and to see if the intercept term is included
+ //after getting ni_test
+ //add or remove covariates
+ if (indicator_cvt.size()!=0) {
+ CheckCvt();
+ } else {
+ vector<double> cvt_row;
+ cvt_row.push_back(1);
+
+ for (vector<int>::size_type i=0; i<(indicator_idv).size(); ++i) {
+ indicator_cvt.push_back(1);
+
+ cvt.push_back(cvt_row);
+ }
+ }
+
+ return;
+}
+
+
+
+
+void PARAM::CopyCvt (gsl_matrix *W)
+{
+ size_t ci_test=0;
+
+ for (vector<int>::size_type i=0; i<indicator_idv.size(); ++i) {
+ if (indicator_idv[i]==0 || indicator_cvt[i]==0) {continue;}
+ for (size_t j=0; j<n_cvt; ++j) {
+ gsl_matrix_set (W, ci_test, j, (cvt)[i][j]);
+ }
+ ci_test++;
+ }
+
+ return;
+}
+
+
+//if flag=0, then use indicator_idv to load W and Y
+//else, use indicator_cvt to load them
+void PARAM::CopyCvtPhen (gsl_matrix *W, gsl_vector *y, size_t flag)
+{
+ size_t ci_test=0;
+
+ for (vector<int>::size_type i=0; i<indicator_idv.size(); ++i) {
+ if (flag==0) {
+ if (indicator_idv[i]==0) {continue;}
+ } else {
+ if (indicator_cvt[i]==0) {continue;}
+ }
+
+ gsl_vector_set (y, ci_test, (pheno)[i][0]);
+
+ for (size_t j=0; j<n_cvt; ++j) {
+ gsl_matrix_set (W, ci_test, j, (cvt)[i][j]);
+ }
+ ci_test++;
+ }
+
+ return;
+}
+
+//if flag=0, then use indicator_idv to load W and Y
+//else, use indicator_cvt to load them
+void PARAM::CopyCvtPhen (gsl_matrix *W, gsl_matrix *Y, size_t flag)
+{
+ size_t ci_test=0;
+
+ for (vector<int>::size_type i=0; i<indicator_idv.size(); ++i) {
+ if (flag==0) {
+ if (indicator_idv[i]==0) {continue;}
+ } else {
+ if (indicator_cvt[i]==0) {continue;}
+ }
+
+ for (size_t j=0; j<n_ph; ++j) {
+ gsl_matrix_set (Y, ci_test, j, (pheno)[i][j]);
+ }
+ for (size_t j=0; j<n_cvt; ++j) {
+ gsl_matrix_set (W, ci_test, j, (cvt)[i][j]);
+ }
+ ci_test++;
+ }
+
+ return;
+}
+
+
+
+
+
+void PARAM::CopyRead (gsl_vector *log_N)
+{
+ size_t ci_test=0;
+
+ for (vector<int>::size_type i=0; i<indicator_idv.size(); ++i) {
+ if (indicator_idv[i]==0) {continue;}
+ gsl_vector_set (log_N, ci_test, log(vec_read[i]) );
+ ci_test++;
+ }
+
+ return;
+}
+
+
+