aboutsummaryrefslogtreecommitdiff
path: root/src/mvlmm.cpp
diff options
context:
space:
mode:
authorPjotr Prins2017-08-02 08:46:58 +0000
committerPjotr Prins2017-08-02 08:46:58 +0000
commit3935ba39d30666dd7d4a831155631847c77b70c4 (patch)
treec45fc682b473618a219e324d5c85b5e1f9361d0c /src/mvlmm.cpp
parent84360c191f418bf8682b35e0c8235fcc3bd19a06 (diff)
downloadpangemma-3935ba39d30666dd7d4a831155631847c77b70c4.tar.gz
Massive patch using LLVM coding style. It was generated with:
clang-format -style=LLVM -i *.cpp *.h Please set your editor to replace tabs with spaces and use indentation of 2 spaces.
Diffstat (limited to 'src/mvlmm.cpp')
-rw-r--r--src/mvlmm.cpp10159
1 files changed, 5101 insertions, 5058 deletions
diff --git a/src/mvlmm.cpp b/src/mvlmm.cpp
index 78cd926..f1ab3fc 100644
--- a/src/mvlmm.cpp
+++ b/src/mvlmm.cpp
@@ -16,895 +16,914 @@
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
-#include <iostream>
#include <fstream>
+#include <iostream>
#include <sstream>
-#include <iomanip>
+#include <assert.h>
+#include <bitset>
#include <cmath>
+#include <cstring>
+#include <iomanip>
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
-#include <bitset>
-#include <cstring>
-#include <assert.h>
-#include "gsl/gsl_vector.h"
-#include "gsl/gsl_matrix.h"
-#include "gsl/gsl_linalg.h"
#include "gsl/gsl_blas.h"
#include "gsl/gsl_cdf.h"
-#include "gsl/gsl_roots.h"
-#include "gsl/gsl_min.h"
#include "gsl/gsl_integration.h"
+#include "gsl/gsl_linalg.h"
+#include "gsl/gsl_matrix.h"
+#include "gsl/gsl_min.h"
+#include "gsl/gsl_roots.h"
+#include "gsl/gsl_vector.h"
-#include "io.h"
-#include "lapack.h"
#include "eigenlib.h"
#include "gzstream.h"
+#include "io.h"
+#include "lapack.h"
#include "lmm.h"
#include "mvlmm.h"
using namespace std;
// In this file, X, Y are already transformed (i.e. UtX and UtY).
-void MVLMM::CopyFromParam (PARAM &cPar) {
- a_mode=cPar.a_mode;
- d_pace=cPar.d_pace;
-
- file_bfile=cPar.file_bfile;
- file_geno=cPar.file_geno;
- file_oxford=cPar.file_oxford;
- file_out=cPar.file_out;
- path_out=cPar.path_out;
-
- l_min=cPar.l_min;
- l_max=cPar.l_max;
- n_region=cPar.n_region;
- p_nr=cPar.p_nr;
- em_iter=cPar.em_iter;
- nr_iter=cPar.nr_iter;
- em_prec=cPar.em_prec;
- nr_prec=cPar.nr_prec;
- crt=cPar.crt;
-
- Vg_remle_null=cPar.Vg_remle_null;
- Ve_remle_null=cPar.Ve_remle_null;
- Vg_mle_null=cPar.Vg_mle_null;
- Ve_mle_null=cPar.Ve_mle_null;
-
- time_UtX=0.0;
- time_opt=0.0;
-
- ni_total=cPar.ni_total;
- ns_total=cPar.ns_total;
- ni_test=cPar.ni_test;
- ns_test=cPar.ns_test;
- n_cvt=cPar.n_cvt;
-
- n_ph=cPar.n_ph;
-
- indicator_idv=cPar.indicator_idv;
- indicator_snp=cPar.indicator_snp;
- snpInfo=cPar.snpInfo;
-
- return;
+void MVLMM::CopyFromParam(PARAM &cPar) {
+ a_mode = cPar.a_mode;
+ d_pace = cPar.d_pace;
+
+ file_bfile = cPar.file_bfile;
+ file_geno = cPar.file_geno;
+ file_oxford = cPar.file_oxford;
+ file_out = cPar.file_out;
+ path_out = cPar.path_out;
+
+ l_min = cPar.l_min;
+ l_max = cPar.l_max;
+ n_region = cPar.n_region;
+ p_nr = cPar.p_nr;
+ em_iter = cPar.em_iter;
+ nr_iter = cPar.nr_iter;
+ em_prec = cPar.em_prec;
+ nr_prec = cPar.nr_prec;
+ crt = cPar.crt;
+
+ Vg_remle_null = cPar.Vg_remle_null;
+ Ve_remle_null = cPar.Ve_remle_null;
+ Vg_mle_null = cPar.Vg_mle_null;
+ Ve_mle_null = cPar.Ve_mle_null;
+
+ time_UtX = 0.0;
+ time_opt = 0.0;
+
+ ni_total = cPar.ni_total;
+ ns_total = cPar.ns_total;
+ ni_test = cPar.ni_test;
+ ns_test = cPar.ns_test;
+ n_cvt = cPar.n_cvt;
+
+ n_ph = cPar.n_ph;
+
+ indicator_idv = cPar.indicator_idv;
+ indicator_snp = cPar.indicator_snp;
+ snpInfo = cPar.snpInfo;
+
+ return;
}
-void MVLMM::CopyToParam (PARAM &cPar) {
- cPar.time_UtX=time_UtX;
- cPar.time_opt=time_opt;
+void MVLMM::CopyToParam(PARAM &cPar) {
+ cPar.time_UtX = time_UtX;
+ cPar.time_opt = time_opt;
- cPar.Vg_remle_null=Vg_remle_null;
- cPar.Ve_remle_null=Ve_remle_null;
- cPar.Vg_mle_null=Vg_mle_null;
- cPar.Ve_mle_null=Ve_mle_null;
+ cPar.Vg_remle_null = Vg_remle_null;
+ cPar.Ve_remle_null = Ve_remle_null;
+ cPar.Vg_mle_null = Vg_mle_null;
+ cPar.Ve_mle_null = Ve_mle_null;
- cPar.VVg_remle_null=VVg_remle_null;
- cPar.VVe_remle_null=VVe_remle_null;
- cPar.VVg_mle_null=VVg_mle_null;
- cPar.VVe_mle_null=VVe_mle_null;
+ cPar.VVg_remle_null = VVg_remle_null;
+ cPar.VVe_remle_null = VVe_remle_null;
+ cPar.VVg_mle_null = VVg_mle_null;
+ cPar.VVe_mle_null = VVe_mle_null;
- cPar.beta_remle_null=beta_remle_null;
- cPar.se_beta_remle_null=se_beta_remle_null;
- cPar.beta_mle_null=beta_mle_null;
- cPar.se_beta_mle_null=se_beta_mle_null;
+ cPar.beta_remle_null = beta_remle_null;
+ cPar.se_beta_remle_null = se_beta_remle_null;
+ cPar.beta_mle_null = beta_mle_null;
+ cPar.se_beta_mle_null = se_beta_mle_null;
- cPar.logl_remle_H0=logl_remle_H0;
- cPar.logl_mle_H0=logl_mle_H0;
- return;
+ cPar.logl_remle_H0 = logl_remle_H0;
+ cPar.logl_mle_H0 = logl_mle_H0;
+ return;
}
-void MVLMM::WriteFiles () {
- string file_str;
- file_str=path_out+"/"+file_out;
- file_str+=".assoc.txt";
-
- ofstream outfile (file_str.c_str(), ofstream::out);
- if (!outfile) {
- cout<<"error writing file: "<<file_str.c_str()<<endl;
- return;
- }
-
- outfile<<"chr"<<"\t"<<"rs"<<"\t"<<"ps"<<"\t"<<"n_miss"<<"\t"
- <<"allele1"<<"\t"<<"allele0"<<"\t"<<"af"<<"\t";
-
- for (size_t i=0; i<n_ph; i++) {
- outfile<<"beta_"<<i+1<<"\t";
- }
- for (size_t i=0; i<n_ph; i++) {
- for (size_t j=i; j<n_ph; j++) {
- outfile<<"Vbeta_"<<i+1<<"_"<<j+1<<"\t";
- }
- }
-
- if (a_mode==1) {
- outfile<<"p_wald"<<endl;
- } else if (a_mode==2) {
- outfile<<"p_lrt"<<endl;
- } else if (a_mode==3) {
- outfile<<"p_score"<<endl;
- } else if (a_mode==4) {
- outfile<<"p_wald"<<"\t"<<"p_lrt"<<"\t"<<"p_score"<<endl;
- } else {}
-
-
- size_t t=0, c=0;
- for (size_t i=0; i<snpInfo.size(); ++i) {
- if (indicator_snp[i]==0) {continue;}
-
- outfile<<snpInfo[i].chr<<"\t"<<snpInfo[i].rs_number<<"\t"
- <<snpInfo[i].base_position<<"\t"<<snpInfo[i].n_miss<<
- "\t"<<snpInfo[i].a_minor<<"\t"<<snpInfo[i].a_major<<"\t"<<
- fixed<<setprecision(3)<<snpInfo[i].maf<<"\t";
-
- outfile<<scientific<<setprecision(6);
-
- for (size_t i=0; i<n_ph; i++) {
- outfile<<sumStat[t].v_beta[i]<<"\t";
- }
-
- c=0;
- for (size_t i=0; i<n_ph; i++) {
- for (size_t j=i; j<n_ph; j++) {
- outfile<<sumStat[t].v_Vbeta[c]<<"\t";
- c++;
- }
- }
-
- if (a_mode==1) {
- outfile<<sumStat[t].p_wald <<endl;
- } else if (a_mode==2) {
- outfile<<sumStat[t].p_lrt<<endl;
- } else if (a_mode==3) {
- outfile<<sumStat[t].p_score<<endl;
- } else if (a_mode==4) {
- outfile<<sumStat[t].p_wald <<"\t"<<sumStat[t].p_lrt<<
- "\t"<<sumStat[t].p_score<<endl;
- } else {}
-
- t++;
- }
-
- outfile.close();
- outfile.clear();
- return;
+void MVLMM::WriteFiles() {
+ string file_str;
+ file_str = path_out + "/" + file_out;
+ file_str += ".assoc.txt";
+
+ ofstream outfile(file_str.c_str(), ofstream::out);
+ if (!outfile) {
+ cout << "error writing file: " << file_str.c_str() << endl;
+ return;
+ }
+
+ outfile << "chr"
+ << "\t"
+ << "rs"
+ << "\t"
+ << "ps"
+ << "\t"
+ << "n_miss"
+ << "\t"
+ << "allele1"
+ << "\t"
+ << "allele0"
+ << "\t"
+ << "af"
+ << "\t";
+
+ for (size_t i = 0; i < n_ph; i++) {
+ outfile << "beta_" << i + 1 << "\t";
+ }
+ for (size_t i = 0; i < n_ph; i++) {
+ for (size_t j = i; j < n_ph; j++) {
+ outfile << "Vbeta_" << i + 1 << "_" << j + 1 << "\t";
+ }
+ }
+
+ if (a_mode == 1) {
+ outfile << "p_wald" << endl;
+ } else if (a_mode == 2) {
+ outfile << "p_lrt" << endl;
+ } else if (a_mode == 3) {
+ outfile << "p_score" << endl;
+ } else if (a_mode == 4) {
+ outfile << "p_wald"
+ << "\t"
+ << "p_lrt"
+ << "\t"
+ << "p_score" << endl;
+ } else {
+ }
+
+ size_t t = 0, c = 0;
+ for (size_t i = 0; i < snpInfo.size(); ++i) {
+ if (indicator_snp[i] == 0) {
+ continue;
+ }
+
+ outfile << snpInfo[i].chr << "\t" << snpInfo[i].rs_number << "\t"
+ << snpInfo[i].base_position << "\t" << snpInfo[i].n_miss << "\t"
+ << snpInfo[i].a_minor << "\t" << snpInfo[i].a_major << "\t" << fixed
+ << setprecision(3) << snpInfo[i].maf << "\t";
+
+ outfile << scientific << setprecision(6);
+
+ for (size_t i = 0; i < n_ph; i++) {
+ outfile << sumStat[t].v_beta[i] << "\t";
+ }
+
+ c = 0;
+ for (size_t i = 0; i < n_ph; i++) {
+ for (size_t j = i; j < n_ph; j++) {
+ outfile << sumStat[t].v_Vbeta[c] << "\t";
+ c++;
+ }
+ }
+
+ if (a_mode == 1) {
+ outfile << sumStat[t].p_wald << endl;
+ } else if (a_mode == 2) {
+ outfile << sumStat[t].p_lrt << endl;
+ } else if (a_mode == 3) {
+ outfile << sumStat[t].p_score << endl;
+ } else if (a_mode == 4) {
+ outfile << sumStat[t].p_wald << "\t" << sumStat[t].p_lrt << "\t"
+ << sumStat[t].p_score << endl;
+ } else {
+ }
+
+ t++;
+ }
+
+ outfile.close();
+ outfile.clear();
+ return;
}
// Below are functions for EM algorithm.
-double EigenProc (const gsl_matrix *V_g, const gsl_matrix *V_e,
- gsl_vector *D_l, gsl_matrix *UltVeh,
- gsl_matrix *UltVehi) {
- size_t d_size=V_g->size1;
- double d, logdet_Ve=0.0;
-
- // Eigen decomposition of V_e.
- gsl_matrix *Lambda=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *V_e_temp=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *V_e_h=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *V_e_hi=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *VgVehi=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *U_l=gsl_matrix_alloc (d_size, d_size);
-
- gsl_matrix_memcpy(V_e_temp, V_e);
- EigenDecomp(V_e_temp, U_l, D_l, 0);
-
- // Calculate V_e_h and V_e_hi.
- gsl_matrix_set_zero(V_e_h);
- gsl_matrix_set_zero(V_e_hi);
- for (size_t i=0; i<d_size; i++) {
- d=gsl_vector_get (D_l, i);
- if (d<=0) {continue;}
- logdet_Ve+=log(d);
-
- gsl_vector_view U_col=gsl_matrix_column(U_l, i);
- d=sqrt(d);
- gsl_blas_dsyr (CblasUpper, d, &U_col.vector, V_e_h);
- d=1.0/d;
- gsl_blas_dsyr (CblasUpper, d, &U_col.vector, V_e_hi);
- }
-
- // Copy the upper part to lower part.
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<i; j++) {
- gsl_matrix_set (V_e_h, i, j, gsl_matrix_get(V_e_h, j, i));
- gsl_matrix_set (V_e_hi, i, j, gsl_matrix_get(V_e_hi, j, i));
- }
- }
-
- // Calculate Lambda=V_ehi V_g V_ehi.
- gsl_blas_dgemm(CblasNoTrans,CblasNoTrans,1.0,V_g,V_e_hi,0.0,VgVehi);
- gsl_blas_dgemm(CblasNoTrans,CblasNoTrans,1.0,V_e_hi,VgVehi,0.0,Lambda);
-
- // Eigen decomposition of Lambda.
- EigenDecomp(Lambda, U_l, D_l, 0);
-
- for (size_t i=0; i<d_size; i++) {
- d=gsl_vector_get (D_l, i);
- if (d<0) {gsl_vector_set (D_l, i, 0);}
- }
-
- // Calculate UltVeh and UltVehi.
- gsl_blas_dgemm(CblasTrans,CblasNoTrans,1.0,U_l,V_e_h,0.0,UltVeh);
- gsl_blas_dgemm(CblasTrans,CblasNoTrans,1.0,U_l,V_e_hi,0.0,UltVehi);
-
- //free memory
- gsl_matrix_free (Lambda);
- gsl_matrix_free (V_e_temp);
- gsl_matrix_free (V_e_h);
- gsl_matrix_free (V_e_hi);
- gsl_matrix_free (VgVehi);
- gsl_matrix_free (U_l);
-
- return logdet_Ve;
+double EigenProc(const gsl_matrix *V_g, const gsl_matrix *V_e, gsl_vector *D_l,
+ gsl_matrix *UltVeh, gsl_matrix *UltVehi) {
+ size_t d_size = V_g->size1;
+ double d, logdet_Ve = 0.0;
+
+ // Eigen decomposition of V_e.
+ gsl_matrix *Lambda = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *V_e_temp = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *V_e_h = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *V_e_hi = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *VgVehi = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *U_l = gsl_matrix_alloc(d_size, d_size);
+
+ gsl_matrix_memcpy(V_e_temp, V_e);
+ EigenDecomp(V_e_temp, U_l, D_l, 0);
+
+ // Calculate V_e_h and V_e_hi.
+ gsl_matrix_set_zero(V_e_h);
+ gsl_matrix_set_zero(V_e_hi);
+ for (size_t i = 0; i < d_size; i++) {
+ d = gsl_vector_get(D_l, i);
+ if (d <= 0) {
+ continue;
+ }
+ logdet_Ve += log(d);
+
+ gsl_vector_view U_col = gsl_matrix_column(U_l, i);
+ d = sqrt(d);
+ gsl_blas_dsyr(CblasUpper, d, &U_col.vector, V_e_h);
+ d = 1.0 / d;
+ gsl_blas_dsyr(CblasUpper, d, &U_col.vector, V_e_hi);
+ }
+
+ // Copy the upper part to lower part.
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j < i; j++) {
+ gsl_matrix_set(V_e_h, i, j, gsl_matrix_get(V_e_h, j, i));
+ gsl_matrix_set(V_e_hi, i, j, gsl_matrix_get(V_e_hi, j, i));
+ }
+ }
+
+ // Calculate Lambda=V_ehi V_g V_ehi.
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, V_g, V_e_hi, 0.0, VgVehi);
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, V_e_hi, VgVehi, 0.0, Lambda);
+
+ // Eigen decomposition of Lambda.
+ EigenDecomp(Lambda, U_l, D_l, 0);
+
+ for (size_t i = 0; i < d_size; i++) {
+ d = gsl_vector_get(D_l, i);
+ if (d < 0) {
+ gsl_vector_set(D_l, i, 0);
+ }
+ }
+
+ // Calculate UltVeh and UltVehi.
+ gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, U_l, V_e_h, 0.0, UltVeh);
+ gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, U_l, V_e_hi, 0.0, UltVehi);
+
+ // free memory
+ gsl_matrix_free(Lambda);
+ gsl_matrix_free(V_e_temp);
+ gsl_matrix_free(V_e_h);
+ gsl_matrix_free(V_e_hi);
+ gsl_matrix_free(VgVehi);
+ gsl_matrix_free(U_l);
+
+ return logdet_Ve;
}
-//Qi=(\sum_{k=1}^n x_kx_k^T\otimes(delta_k*Dl+I)^{-1} )^{-1}.
-double CalcQi (const gsl_vector *eval, const gsl_vector *D_l,
- const gsl_matrix *X, gsl_matrix *Qi) {
- size_t n_size=eval->size, d_size=D_l->size, dc_size=Qi->size1;
- size_t c_size=dc_size/d_size;
-
- double delta, dl, d1, d2, d, logdet_Q;
-
- gsl_matrix *Q=gsl_matrix_alloc (dc_size, dc_size);
- gsl_matrix_set_zero (Q);
-
- for (size_t i=0; i<c_size; i++) {
- for (size_t j=0; j<c_size; j++) {
- for (size_t l=0; l<d_size; l++) {
- dl=gsl_vector_get(D_l, l);
-
- if (j<i) {
- d=gsl_matrix_get (Q, j*d_size+l, i*d_size+l);
- } else {
- d=0.0;
- for (size_t k=0; k<n_size; k++) {
- d1=gsl_matrix_get(X, i, k);
- d2=gsl_matrix_get(X, j, k);
- delta=gsl_vector_get(eval, k);
- d+=d1*d2/(dl*delta+1.0);
- }
- }
-
- gsl_matrix_set (Q, i*d_size+l, j*d_size+l, d);
- }
- }
- }
-
- // Calculate LU decomposition of Q, and invert Q and calculate |Q|.
- int sig;
- gsl_permutation * pmt=gsl_permutation_alloc (dc_size);
- LUDecomp (Q, pmt, &sig);
- LUInvert (Q, pmt, Qi);
-
- logdet_Q=LULndet (Q);
-
- gsl_matrix_free (Q);
- gsl_permutation_free (pmt);
-
- return logdet_Q;
+// Qi=(\sum_{k=1}^n x_kx_k^T\otimes(delta_k*Dl+I)^{-1} )^{-1}.
+double CalcQi(const gsl_vector *eval, const gsl_vector *D_l,
+ const gsl_matrix *X, gsl_matrix *Qi) {
+ size_t n_size = eval->size, d_size = D_l->size, dc_size = Qi->size1;
+ size_t c_size = dc_size / d_size;
+
+ double delta, dl, d1, d2, d, logdet_Q;
+
+ gsl_matrix *Q = gsl_matrix_alloc(dc_size, dc_size);
+ gsl_matrix_set_zero(Q);
+
+ for (size_t i = 0; i < c_size; i++) {
+ for (size_t j = 0; j < c_size; j++) {
+ for (size_t l = 0; l < d_size; l++) {
+ dl = gsl_vector_get(D_l, l);
+
+ if (j < i) {
+ d = gsl_matrix_get(Q, j * d_size + l, i * d_size + l);
+ } else {
+ d = 0.0;
+ for (size_t k = 0; k < n_size; k++) {
+ d1 = gsl_matrix_get(X, i, k);
+ d2 = gsl_matrix_get(X, j, k);
+ delta = gsl_vector_get(eval, k);
+ d += d1 * d2 / (dl * delta + 1.0);
+ }
+ }
+
+ gsl_matrix_set(Q, i * d_size + l, j * d_size + l, d);
+ }
+ }
+ }
+
+ // Calculate LU decomposition of Q, and invert Q and calculate |Q|.
+ int sig;
+ gsl_permutation *pmt = gsl_permutation_alloc(dc_size);
+ LUDecomp(Q, pmt, &sig);
+ LUInvert(Q, pmt, Qi);
+
+ logdet_Q = LULndet(Q);
+
+ gsl_matrix_free(Q);
+ gsl_permutation_free(pmt);
+
+ return logdet_Q;
}
// xHiy=\sum_{k=1}^n x_k\otimes ((delta_k*Dl+I)^{-1}Ul^TVe^{-1/2}y.
-void CalcXHiY(const gsl_vector *eval, const gsl_vector *D_l,
- const gsl_matrix *X, const gsl_matrix *UltVehiY,
- gsl_vector *xHiy) {
- size_t n_size=eval->size, c_size=X->size1, d_size=D_l->size;
-
- gsl_vector_set_zero (xHiy);
-
- double x, delta, dl, y, d;
- for (size_t i=0; i<d_size; i++) {
- dl=gsl_vector_get(D_l, i);
- for (size_t j=0; j<c_size; j++) {
- d=0.0;
- for (size_t k=0; k<n_size; k++) {
- x=gsl_matrix_get(X, j, k);
- y=gsl_matrix_get(UltVehiY, i, k);
- delta=gsl_vector_get(eval, k);
- d+=x*y/(delta*dl+1.0);
- }
- gsl_vector_set(xHiy, j*d_size+i, d);
- }
- }
-
- return;
-}
+void CalcXHiY(const gsl_vector *eval, const gsl_vector *D_l,
+ const gsl_matrix *X, const gsl_matrix *UltVehiY,
+ gsl_vector *xHiy) {
+ size_t n_size = eval->size, c_size = X->size1, d_size = D_l->size;
+
+ gsl_vector_set_zero(xHiy);
+
+ double x, delta, dl, y, d;
+ for (size_t i = 0; i < d_size; i++) {
+ dl = gsl_vector_get(D_l, i);
+ for (size_t j = 0; j < c_size; j++) {
+ d = 0.0;
+ for (size_t k = 0; k < n_size; k++) {
+ x = gsl_matrix_get(X, j, k);
+ y = gsl_matrix_get(UltVehiY, i, k);
+ delta = gsl_vector_get(eval, k);
+ d += x * y / (delta * dl + 1.0);
+ }
+ gsl_vector_set(xHiy, j * d_size + i, d);
+ }
+ }
+ return;
+}
// OmegaU=D_l/(delta Dl+I)^{-1}
// OmegaE=delta D_l/(delta Dl+I)^{-1}
-void CalcOmega (const gsl_vector *eval, const gsl_vector *D_l,
-gsl_matrix *OmegaU, gsl_matrix *OmegaE) {
- size_t n_size=eval->size, d_size=D_l->size;
- double delta, dl, d_u, d_e;
+void CalcOmega(const gsl_vector *eval, const gsl_vector *D_l,
+ gsl_matrix *OmegaU, gsl_matrix *OmegaE) {
+ size_t n_size = eval->size, d_size = D_l->size;
+ double delta, dl, d_u, d_e;
- for (size_t k=0; k<n_size; k++) {
- delta=gsl_vector_get(eval, k);
- for (size_t i=0; i<d_size; i++) {
- dl=gsl_vector_get(D_l, i);
+ for (size_t k = 0; k < n_size; k++) {
+ delta = gsl_vector_get(eval, k);
+ for (size_t i = 0; i < d_size; i++) {
+ dl = gsl_vector_get(D_l, i);
- d_u=dl/(delta*dl+1.0);
- d_e=delta*d_u;
+ d_u = dl / (delta * dl + 1.0);
+ d_e = delta * d_u;
- gsl_matrix_set(OmegaU, i, k, d_u);
- gsl_matrix_set(OmegaE, i, k, d_e);
- }
- }
+ gsl_matrix_set(OmegaU, i, k, d_u);
+ gsl_matrix_set(OmegaE, i, k, d_e);
+ }
+ }
- return;
+ return;
}
-void UpdateU (const gsl_matrix *OmegaE, const gsl_matrix *UltVehiY,
- const gsl_matrix *UltVehiBX, gsl_matrix *UltVehiU) {
- gsl_matrix_memcpy (UltVehiU, UltVehiY);
- gsl_matrix_sub (UltVehiU, UltVehiBX);
+void UpdateU(const gsl_matrix *OmegaE, const gsl_matrix *UltVehiY,
+ const gsl_matrix *UltVehiBX, gsl_matrix *UltVehiU) {
+ gsl_matrix_memcpy(UltVehiU, UltVehiY);
+ gsl_matrix_sub(UltVehiU, UltVehiBX);
- gsl_matrix_mul_elements (UltVehiU, OmegaE);
- return;
+ gsl_matrix_mul_elements(UltVehiU, OmegaE);
+ return;
}
-void UpdateE (const gsl_matrix *UltVehiY, const gsl_matrix *UltVehiBX,
- const gsl_matrix *UltVehiU, gsl_matrix *UltVehiE) {
- gsl_matrix_memcpy (UltVehiE, UltVehiY);
- gsl_matrix_sub (UltVehiE, UltVehiBX);
- gsl_matrix_sub (UltVehiE, UltVehiU);
+void UpdateE(const gsl_matrix *UltVehiY, const gsl_matrix *UltVehiBX,
+ const gsl_matrix *UltVehiU, gsl_matrix *UltVehiE) {
+ gsl_matrix_memcpy(UltVehiE, UltVehiY);
+ gsl_matrix_sub(UltVehiE, UltVehiBX);
+ gsl_matrix_sub(UltVehiE, UltVehiU);
- return;
+ return;
}
-void UpdateL_B (const gsl_matrix *X, const gsl_matrix *XXti,
- const gsl_matrix *UltVehiY, const gsl_matrix *UltVehiU,
- gsl_matrix *UltVehiBX, gsl_matrix *UltVehiB) {
- size_t c_size=X->size1, d_size=UltVehiY->size1;
+void UpdateL_B(const gsl_matrix *X, const gsl_matrix *XXti,
+ const gsl_matrix *UltVehiY, const gsl_matrix *UltVehiU,
+ gsl_matrix *UltVehiBX, gsl_matrix *UltVehiB) {
+ size_t c_size = X->size1, d_size = UltVehiY->size1;
- gsl_matrix *YUX=gsl_matrix_alloc (d_size, c_size);
+ gsl_matrix *YUX = gsl_matrix_alloc(d_size, c_size);
- gsl_matrix_memcpy (UltVehiBX, UltVehiY);
- gsl_matrix_sub (UltVehiBX, UltVehiU);
+ gsl_matrix_memcpy(UltVehiBX, UltVehiY);
+ gsl_matrix_sub(UltVehiBX, UltVehiU);
- gsl_blas_dgemm(CblasNoTrans,CblasTrans,1.0,UltVehiBX,X,0.0,YUX);
- gsl_blas_dgemm(CblasNoTrans,CblasNoTrans,1.0,YUX,XXti,0.0,UltVehiB);
+ gsl_blas_dgemm(CblasNoTrans, CblasTrans, 1.0, UltVehiBX, X, 0.0, YUX);
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, YUX, XXti, 0.0, UltVehiB);
- gsl_matrix_free(YUX);
+ gsl_matrix_free(YUX);
- return;
+ return;
}
-void UpdateRL_B (const gsl_vector *xHiy, const gsl_matrix *Qi,
- gsl_matrix *UltVehiB) {
- size_t d_size=UltVehiB->size1, c_size=UltVehiB->size2,
- dc_size=Qi->size1;
+void UpdateRL_B(const gsl_vector *xHiy, const gsl_matrix *Qi,
+ gsl_matrix *UltVehiB) {
+ size_t d_size = UltVehiB->size1, c_size = UltVehiB->size2,
+ dc_size = Qi->size1;
- gsl_vector *b=gsl_vector_alloc (dc_size);
+ gsl_vector *b = gsl_vector_alloc(dc_size);
- // Calculate b=Qiv.
- gsl_blas_dgemv(CblasNoTrans, 1.0, Qi, xHiy, 0.0, b);
+ // Calculate b=Qiv.
+ gsl_blas_dgemv(CblasNoTrans, 1.0, Qi, xHiy, 0.0, b);
- // Copy b to UltVehiB.
- for (size_t i=0; i<c_size; i++) {
- gsl_vector_view UltVehiB_col=gsl_matrix_column (UltVehiB, i);
- gsl_vector_const_view b_subcol=
- gsl_vector_const_subvector (b, i*d_size, d_size);
- gsl_vector_memcpy (&UltVehiB_col.vector, &b_subcol.vector);
- }
+ // Copy b to UltVehiB.
+ for (size_t i = 0; i < c_size; i++) {
+ gsl_vector_view UltVehiB_col = gsl_matrix_column(UltVehiB, i);
+ gsl_vector_const_view b_subcol =
+ gsl_vector_const_subvector(b, i * d_size, d_size);
+ gsl_vector_memcpy(&UltVehiB_col.vector, &b_subcol.vector);
+ }
- gsl_vector_free(b);
+ gsl_vector_free(b);
- return;
+ return;
}
-void UpdateV (const gsl_vector *eval, const gsl_matrix *U,
- const gsl_matrix *E, const gsl_matrix *Sigma_uu,
- const gsl_matrix *Sigma_ee, gsl_matrix *V_g, gsl_matrix *V_e) {
- size_t n_size=eval->size, d_size=U->size1;
+void UpdateV(const gsl_vector *eval, const gsl_matrix *U, const gsl_matrix *E,
+ const gsl_matrix *Sigma_uu, const gsl_matrix *Sigma_ee,
+ gsl_matrix *V_g, gsl_matrix *V_e) {
+ size_t n_size = eval->size, d_size = U->size1;
- gsl_matrix_set_zero (V_g);
- gsl_matrix_set_zero (V_e);
+ gsl_matrix_set_zero(V_g);
+ gsl_matrix_set_zero(V_e);
- double delta;
+ double delta;
- // Calculate the first part: UD^{-1}U^T and EE^T.
- for (size_t k=0; k<n_size; k++) {
- delta=gsl_vector_get (eval, k);
- if (delta==0) {continue;}
+ // Calculate the first part: UD^{-1}U^T and EE^T.
+ for (size_t k = 0; k < n_size; k++) {
+ delta = gsl_vector_get(eval, k);
+ if (delta == 0) {
+ continue;
+ }
- gsl_vector_const_view U_col=gsl_matrix_const_column (U, k);
- gsl_blas_dsyr (CblasUpper, 1.0/delta, &U_col.vector, V_g);
- }
+ gsl_vector_const_view U_col = gsl_matrix_const_column(U, k);
+ gsl_blas_dsyr(CblasUpper, 1.0 / delta, &U_col.vector, V_g);
+ }
- gsl_blas_dsyrk(CblasUpper, CblasNoTrans, 1.0, E, 0.0, V_e);
+ gsl_blas_dsyrk(CblasUpper, CblasNoTrans, 1.0, E, 0.0, V_e);
- // Copy the upper part to lower part.
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<i; j++) {
- gsl_matrix_set (V_g, i, j, gsl_matrix_get(V_g, j, i));
- gsl_matrix_set (V_e, i, j, gsl_matrix_get(V_e, j, i));
- }
- }
+ // Copy the upper part to lower part.
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j < i; j++) {
+ gsl_matrix_set(V_g, i, j, gsl_matrix_get(V_g, j, i));
+ gsl_matrix_set(V_e, i, j, gsl_matrix_get(V_e, j, i));
+ }
+ }
- // Add Sigma.
- gsl_matrix_add (V_g, Sigma_uu);
- gsl_matrix_add (V_e, Sigma_ee);
+ // Add Sigma.
+ gsl_matrix_add(V_g, Sigma_uu);
+ gsl_matrix_add(V_e, Sigma_ee);
- // Scale by 1/n.
- gsl_matrix_scale (V_g, 1.0/(double)n_size);
- gsl_matrix_scale (V_e, 1.0/(double)n_size);
+ // Scale by 1/n.
+ gsl_matrix_scale(V_g, 1.0 / (double)n_size);
+ gsl_matrix_scale(V_e, 1.0 / (double)n_size);
- return;
+ return;
}
-void CalcSigma (const char func_name, const gsl_vector *eval,
- const gsl_vector *D_l, const gsl_matrix *X,
- const gsl_matrix *OmegaU, const gsl_matrix *OmegaE,
- const gsl_matrix *UltVeh, const gsl_matrix *Qi,
- gsl_matrix *Sigma_uu, gsl_matrix *Sigma_ee) {
- if (func_name!='R' && func_name!='L' && func_name!='r' &&
- func_name!='l') {
- cout<<"func_name only takes 'R' or 'L': 'R' for log-restricted "<<
- "likelihood, 'L' for log-likelihood."<<endl;
- return;
- }
-
- size_t n_size=eval->size, c_size=X->size1;
- size_t d_size=D_l->size, dc_size=Qi->size1;
-
- gsl_matrix_set_zero(Sigma_uu);
- gsl_matrix_set_zero(Sigma_ee);
-
- double delta, dl, x, d;
-
- // Calculate the first diagonal term.
- gsl_vector_view Suu_diag=gsl_matrix_diagonal (Sigma_uu);
- gsl_vector_view See_diag=gsl_matrix_diagonal (Sigma_ee);
-
- for (size_t k=0; k<n_size; k++) {
- gsl_vector_const_view OmegaU_col=gsl_matrix_const_column (OmegaU, k);
- gsl_vector_const_view OmegaE_col=gsl_matrix_const_column (OmegaE, k);
-
- gsl_vector_add (&Suu_diag.vector, &OmegaU_col.vector);
- gsl_vector_add (&See_diag.vector, &OmegaE_col.vector);
- }
-
- // Calculate the second term for REML.
- if (func_name=='R' || func_name=='r') {
- gsl_matrix *M_u=gsl_matrix_alloc(dc_size, d_size);
- gsl_matrix *M_e=gsl_matrix_alloc(dc_size, d_size);
- gsl_matrix *QiM=gsl_matrix_alloc(dc_size, d_size);
-
- gsl_matrix_set_zero(M_u);
- gsl_matrix_set_zero(M_e);
-
- for (size_t k=0; k<n_size; k++) {
- delta=gsl_vector_get(eval, k);
-
- for (size_t i=0; i<d_size; i++) {
- dl=gsl_vector_get(D_l, i);
- for (size_t j=0; j<c_size; j++) {
- x=gsl_matrix_get(X, j, k);
- d=x/(delta*dl+1.0);
- gsl_matrix_set(M_e, j*d_size+i, i, d);
- gsl_matrix_set(M_u, j*d_size+i, i, d*dl);
- }
- }
- gsl_blas_dgemm(CblasNoTrans,CblasNoTrans,1.0,Qi,M_u,0.0,QiM);
- gsl_blas_dgemm(CblasTrans,CblasNoTrans,delta,M_u,QiM,1.0,
- Sigma_uu);
-
- gsl_blas_dgemm(CblasNoTrans,CblasNoTrans,1.0,Qi,M_e,0.0,QiM);
- gsl_blas_dgemm(CblasTrans,CblasNoTrans,1.0,M_e,QiM,1.0,
- Sigma_ee);
- }
-
- gsl_matrix_free(M_u);
- gsl_matrix_free(M_e);
- gsl_matrix_free(QiM);
- }
-
- // Multiply both sides by VehUl.
- gsl_matrix *M=gsl_matrix_alloc (d_size, d_size);
-
- gsl_blas_dgemm(CblasNoTrans,CblasNoTrans,1.0,Sigma_uu,UltVeh,0.0,M);
- gsl_blas_dgemm(CblasTrans,CblasNoTrans,1.0,UltVeh,M,0.0,Sigma_uu);
- gsl_blas_dgemm(CblasNoTrans,CblasNoTrans,1.0,Sigma_ee,UltVeh,0.0,M);
- gsl_blas_dgemm(CblasTrans, CblasNoTrans,1.0,UltVeh,M,0.0,Sigma_ee);
-
- gsl_matrix_free(M);
- return;
+void CalcSigma(const char func_name, const gsl_vector *eval,
+ const gsl_vector *D_l, const gsl_matrix *X,
+ const gsl_matrix *OmegaU, const gsl_matrix *OmegaE,
+ const gsl_matrix *UltVeh, const gsl_matrix *Qi,
+ gsl_matrix *Sigma_uu, gsl_matrix *Sigma_ee) {
+ if (func_name != 'R' && func_name != 'L' && func_name != 'r' &&
+ func_name != 'l') {
+ cout << "func_name only takes 'R' or 'L': 'R' for log-restricted "
+ << "likelihood, 'L' for log-likelihood." << endl;
+ return;
+ }
+
+ size_t n_size = eval->size, c_size = X->size1;
+ size_t d_size = D_l->size, dc_size = Qi->size1;
+
+ gsl_matrix_set_zero(Sigma_uu);
+ gsl_matrix_set_zero(Sigma_ee);
+
+ double delta, dl, x, d;
+
+ // Calculate the first diagonal term.
+ gsl_vector_view Suu_diag = gsl_matrix_diagonal(Sigma_uu);
+ gsl_vector_view See_diag = gsl_matrix_diagonal(Sigma_ee);
+
+ for (size_t k = 0; k < n_size; k++) {
+ gsl_vector_const_view OmegaU_col = gsl_matrix_const_column(OmegaU, k);
+ gsl_vector_const_view OmegaE_col = gsl_matrix_const_column(OmegaE, k);
+
+ gsl_vector_add(&Suu_diag.vector, &OmegaU_col.vector);
+ gsl_vector_add(&See_diag.vector, &OmegaE_col.vector);
+ }
+
+ // Calculate the second term for REML.
+ if (func_name == 'R' || func_name == 'r') {
+ gsl_matrix *M_u = gsl_matrix_alloc(dc_size, d_size);
+ gsl_matrix *M_e = gsl_matrix_alloc(dc_size, d_size);
+ gsl_matrix *QiM = gsl_matrix_alloc(dc_size, d_size);
+
+ gsl_matrix_set_zero(M_u);
+ gsl_matrix_set_zero(M_e);
+
+ for (size_t k = 0; k < n_size; k++) {
+ delta = gsl_vector_get(eval, k);
+
+ for (size_t i = 0; i < d_size; i++) {
+ dl = gsl_vector_get(D_l, i);
+ for (size_t j = 0; j < c_size; j++) {
+ x = gsl_matrix_get(X, j, k);
+ d = x / (delta * dl + 1.0);
+ gsl_matrix_set(M_e, j * d_size + i, i, d);
+ gsl_matrix_set(M_u, j * d_size + i, i, d * dl);
+ }
+ }
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Qi, M_u, 0.0, QiM);
+ gsl_blas_dgemm(CblasTrans, CblasNoTrans, delta, M_u, QiM, 1.0, Sigma_uu);
+
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Qi, M_e, 0.0, QiM);
+ gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, M_e, QiM, 1.0, Sigma_ee);
+ }
+
+ gsl_matrix_free(M_u);
+ gsl_matrix_free(M_e);
+ gsl_matrix_free(QiM);
+ }
+
+ // Multiply both sides by VehUl.
+ gsl_matrix *M = gsl_matrix_alloc(d_size, d_size);
+
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Sigma_uu, UltVeh, 0.0, M);
+ gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, UltVeh, M, 0.0, Sigma_uu);
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Sigma_ee, UltVeh, 0.0, M);
+ gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, UltVeh, M, 0.0, Sigma_ee);
+
+ gsl_matrix_free(M);
+ return;
}
// 'R' for restricted likelihood and 'L' for likelihood.
// 'R' update B and 'L' don't.
// only calculate -0.5*\sum_{k=1}^n|H_k|-0.5yPxy.
-double MphCalcLogL (const gsl_vector *eval, const gsl_vector *xHiy,
- const gsl_vector *D_l, const gsl_matrix *UltVehiY,
- const gsl_matrix *Qi) {
- size_t n_size=eval->size, d_size=D_l->size, dc_size=Qi->size1;
- double logl=0.0, delta, dl, y, d;
-
- // Calculate yHiy+log|H_k|.
- for (size_t k=0; k<n_size; k++) {
- delta=gsl_vector_get(eval, k);
- for (size_t i=0; i<d_size; i++) {
- y=gsl_matrix_get(UltVehiY, i, k);
- dl=gsl_vector_get(D_l, i);
- d=delta*dl+1.0;
-
- logl+=y*y/d+log(d);
- }
- }
+double MphCalcLogL(const gsl_vector *eval, const gsl_vector *xHiy,
+ const gsl_vector *D_l, const gsl_matrix *UltVehiY,
+ const gsl_matrix *Qi) {
+ size_t n_size = eval->size, d_size = D_l->size, dc_size = Qi->size1;
+ double logl = 0.0, delta, dl, y, d;
+
+ // Calculate yHiy+log|H_k|.
+ for (size_t k = 0; k < n_size; k++) {
+ delta = gsl_vector_get(eval, k);
+ for (size_t i = 0; i < d_size; i++) {
+ y = gsl_matrix_get(UltVehiY, i, k);
+ dl = gsl_vector_get(D_l, i);
+ d = delta * dl + 1.0;
+
+ logl += y * y / d + log(d);
+ }
+ }
- // Calculate the rest of yPxy.
- gsl_vector *Qiv=gsl_vector_alloc(dc_size);
+ // Calculate the rest of yPxy.
+ gsl_vector *Qiv = gsl_vector_alloc(dc_size);
- gsl_blas_dgemv(CblasNoTrans, 1.0, Qi, xHiy, 0.0, Qiv);
- gsl_blas_ddot(xHiy, Qiv, &d);
+ gsl_blas_dgemv(CblasNoTrans, 1.0, Qi, xHiy, 0.0, Qiv);
+ gsl_blas_ddot(xHiy, Qiv, &d);
- logl-=d;
+ logl -= d;
- gsl_vector_free(Qiv);
+ gsl_vector_free(Qiv);
- return -0.5*logl;
+ return -0.5 * logl;
}
// Y is a dxn matrix, X is a cxn matrix, B is a dxc matrix, V_g is a
// dxd matrix, V_e is a dxd matrix, eval is a size n vector
//'R' for restricted likelihood and 'L' for likelihood.
-double MphEM (const char func_name, const size_t max_iter,
- const double max_prec, const gsl_vector *eval,
- const gsl_matrix *X, const gsl_matrix *Y, gsl_matrix *U_hat,
- gsl_matrix *E_hat, gsl_matrix *OmegaU, gsl_matrix *OmegaE,
- gsl_matrix *UltVehiY, gsl_matrix *UltVehiBX,
- gsl_matrix *UltVehiU, gsl_matrix *UltVehiE,
- gsl_matrix *V_g, gsl_matrix *V_e, gsl_matrix *B) {
- if (func_name!='R' && func_name!='L' &&
- func_name!='r' && func_name!='l') {
- cout<<"func_name only takes 'R' or 'L': 'R' for log-restricted "<<
- "likelihood, 'L' for log-likelihood."<<endl;
- return 0.0;
- }
-
- size_t n_size=eval->size, c_size=X->size1, d_size=Y->size1;
- size_t dc_size=d_size*c_size;
-
- gsl_matrix *XXt=gsl_matrix_alloc (c_size, c_size);
- gsl_matrix *XXti=gsl_matrix_alloc (c_size, c_size);
- gsl_vector *D_l=gsl_vector_alloc (d_size);
- gsl_matrix *UltVeh=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *UltVehi=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *UltVehiB=gsl_matrix_alloc (d_size, c_size);
- gsl_matrix *Qi=gsl_matrix_alloc (dc_size, dc_size);
- gsl_matrix *Sigma_uu=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *Sigma_ee=gsl_matrix_alloc (d_size, d_size);
- gsl_vector *xHiy=gsl_vector_alloc (dc_size);
- gsl_permutation * pmt=gsl_permutation_alloc (c_size);
-
- double logl_const=0.0, logl_old=0.0, logl_new=0.0;
- double logdet_Q, logdet_Ve;
- int sig;
-
- // Calculate |XXt| and (XXt)^{-1}.
- gsl_blas_dsyrk (CblasUpper, CblasNoTrans, 1.0, X, 0.0, XXt);
- for (size_t i=0; i<c_size; ++i) {
- for (size_t j=0; j<i; ++j) {
- gsl_matrix_set (XXt, i, j, gsl_matrix_get (XXt, j, i));
- }
- }
-
- LUDecomp (XXt, pmt, &sig);
- LUInvert (XXt, pmt, XXti);
-
- // Calculate the constant for logl.
- if (func_name=='R' || func_name=='r') {
- logl_const=-0.5*(double)(n_size-c_size)*
- (double)d_size*log(2.0*M_PI)+0.5*(double)d_size*LULndet (XXt);
- } else {
- logl_const=-0.5*(double)n_size*(double)d_size*log(2.0*M_PI);
- }
-
- // Start EM.
- for (size_t t=0; t<max_iter; t++) {
- logdet_Ve=EigenProc (V_g, V_e, D_l, UltVeh, UltVehi);
-
- logdet_Q=CalcQi (eval, D_l, X, Qi);
-
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, UltVehi,
- Y, 0.0, UltVehiY);
- CalcXHiY(eval, D_l, X, UltVehiY, xHiy);
-
- // Calculate log likelihood/restricted likelihood value, and
- // terminate if change is small.
- logl_new=logl_const+MphCalcLogL (eval, xHiy, D_l, UltVehiY, Qi) -
- 0.5*(double)n_size*logdet_Ve;
- if (func_name=='R' || func_name=='r') {
- logl_new+=-0.5*(logdet_Q-(double)c_size*logdet_Ve);
- }
- if (t!=0 && abs(logl_new-logl_old)<max_prec) {break;}
- logl_old=logl_new;
-
- CalcOmega (eval, D_l, OmegaU, OmegaE);
-
- // Update UltVehiB, UltVehiU.
- if (func_name=='R' || func_name=='r') {
- UpdateRL_B(xHiy, Qi, UltVehiB);
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, UltVehiB, X,
- 0.0, UltVehiBX);
- } else if (t==0) {
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, UltVehi, B,
- 0.0, UltVehiB);
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, UltVehiB, X,
- 0.0, UltVehiBX);
- }
-
- UpdateU(OmegaE, UltVehiY, UltVehiBX, UltVehiU);
-
- if (func_name=='L' || func_name=='l') {
-
- // UltVehiBX is destroyed here.
- UpdateL_B(X, XXti, UltVehiY, UltVehiU, UltVehiBX, UltVehiB);
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, UltVehiB, X,
- 0.0, UltVehiBX);
- }
-
- UpdateE(UltVehiY, UltVehiBX, UltVehiU, UltVehiE);
-
- // Calculate U_hat, E_hat and B.
- gsl_blas_dgemm(CblasTrans,CblasNoTrans,1.0,UltVeh,UltVehiU,
- 0.0,U_hat);
- gsl_blas_dgemm(CblasTrans,CblasNoTrans,1.0,UltVeh,UltVehiE,
- 0.0,E_hat);
- gsl_blas_dgemm(CblasTrans,CblasNoTrans,1.0,UltVeh,UltVehiB,0.0,B);
-
- // Calculate Sigma_uu and Sigma_ee.
- CalcSigma (func_name, eval, D_l, X, OmegaU, OmegaE, UltVeh,
- Qi, Sigma_uu, Sigma_ee);
-
- // Update V_g and V_e.
- UpdateV (eval, U_hat, E_hat, Sigma_uu, Sigma_ee, V_g, V_e);
- }
-
- gsl_matrix_free(XXt);
- gsl_matrix_free(XXti);
- gsl_vector_free(D_l);
- gsl_matrix_free(UltVeh);
- gsl_matrix_free(UltVehi);
- gsl_matrix_free(UltVehiB);
- gsl_matrix_free(Qi);
- gsl_matrix_free(Sigma_uu);
- gsl_matrix_free(Sigma_ee);
- gsl_vector_free(xHiy);
- gsl_permutation_free(pmt);
-
- return logl_new;
+double MphEM(const char func_name, const size_t max_iter, const double max_prec,
+ const gsl_vector *eval, const gsl_matrix *X, const gsl_matrix *Y,
+ gsl_matrix *U_hat, gsl_matrix *E_hat, gsl_matrix *OmegaU,
+ gsl_matrix *OmegaE, gsl_matrix *UltVehiY, gsl_matrix *UltVehiBX,
+ gsl_matrix *UltVehiU, gsl_matrix *UltVehiE, gsl_matrix *V_g,
+ gsl_matrix *V_e, gsl_matrix *B) {
+ if (func_name != 'R' && func_name != 'L' && func_name != 'r' &&
+ func_name != 'l') {
+ cout << "func_name only takes 'R' or 'L': 'R' for log-restricted "
+ << "likelihood, 'L' for log-likelihood." << endl;
+ return 0.0;
+ }
+
+ size_t n_size = eval->size, c_size = X->size1, d_size = Y->size1;
+ size_t dc_size = d_size * c_size;
+
+ gsl_matrix *XXt = gsl_matrix_alloc(c_size, c_size);
+ gsl_matrix *XXti = gsl_matrix_alloc(c_size, c_size);
+ gsl_vector *D_l = gsl_vector_alloc(d_size);
+ gsl_matrix *UltVeh = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *UltVehi = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *UltVehiB = gsl_matrix_alloc(d_size, c_size);
+ gsl_matrix *Qi = gsl_matrix_alloc(dc_size, dc_size);
+ gsl_matrix *Sigma_uu = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *Sigma_ee = gsl_matrix_alloc(d_size, d_size);
+ gsl_vector *xHiy = gsl_vector_alloc(dc_size);
+ gsl_permutation *pmt = gsl_permutation_alloc(c_size);
+
+ double logl_const = 0.0, logl_old = 0.0, logl_new = 0.0;
+ double logdet_Q, logdet_Ve;
+ int sig;
+
+ // Calculate |XXt| and (XXt)^{-1}.
+ gsl_blas_dsyrk(CblasUpper, CblasNoTrans, 1.0, X, 0.0, XXt);
+ for (size_t i = 0; i < c_size; ++i) {
+ for (size_t j = 0; j < i; ++j) {
+ gsl_matrix_set(XXt, i, j, gsl_matrix_get(XXt, j, i));
+ }
+ }
+
+ LUDecomp(XXt, pmt, &sig);
+ LUInvert(XXt, pmt, XXti);
+
+ // Calculate the constant for logl.
+ if (func_name == 'R' || func_name == 'r') {
+ logl_const =
+ -0.5 * (double)(n_size - c_size) * (double)d_size * log(2.0 * M_PI) +
+ 0.5 * (double)d_size * LULndet(XXt);
+ } else {
+ logl_const = -0.5 * (double)n_size * (double)d_size * log(2.0 * M_PI);
+ }
+
+ // Start EM.
+ for (size_t t = 0; t < max_iter; t++) {
+ logdet_Ve = EigenProc(V_g, V_e, D_l, UltVeh, UltVehi);
+
+ logdet_Q = CalcQi(eval, D_l, X, Qi);
+
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, UltVehi, Y, 0.0, UltVehiY);
+ CalcXHiY(eval, D_l, X, UltVehiY, xHiy);
+
+ // Calculate log likelihood/restricted likelihood value, and
+ // terminate if change is small.
+ logl_new = logl_const + MphCalcLogL(eval, xHiy, D_l, UltVehiY, Qi) -
+ 0.5 * (double)n_size * logdet_Ve;
+ if (func_name == 'R' || func_name == 'r') {
+ logl_new += -0.5 * (logdet_Q - (double)c_size * logdet_Ve);
+ }
+ if (t != 0 && abs(logl_new - logl_old) < max_prec) {
+ break;
+ }
+ logl_old = logl_new;
+
+ CalcOmega(eval, D_l, OmegaU, OmegaE);
+
+ // Update UltVehiB, UltVehiU.
+ if (func_name == 'R' || func_name == 'r') {
+ UpdateRL_B(xHiy, Qi, UltVehiB);
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, UltVehiB, X, 0.0,
+ UltVehiBX);
+ } else if (t == 0) {
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, UltVehi, B, 0.0,
+ UltVehiB);
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, UltVehiB, X, 0.0,
+ UltVehiBX);
+ }
+
+ UpdateU(OmegaE, UltVehiY, UltVehiBX, UltVehiU);
+
+ if (func_name == 'L' || func_name == 'l') {
+
+ // UltVehiBX is destroyed here.
+ UpdateL_B(X, XXti, UltVehiY, UltVehiU, UltVehiBX, UltVehiB);
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, UltVehiB, X, 0.0,
+ UltVehiBX);
+ }
+
+ UpdateE(UltVehiY, UltVehiBX, UltVehiU, UltVehiE);
+
+ // Calculate U_hat, E_hat and B.
+ gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, UltVeh, UltVehiU, 0.0, U_hat);
+ gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, UltVeh, UltVehiE, 0.0, E_hat);
+ gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, UltVeh, UltVehiB, 0.0, B);
+
+ // Calculate Sigma_uu and Sigma_ee.
+ CalcSigma(func_name, eval, D_l, X, OmegaU, OmegaE, UltVeh, Qi, Sigma_uu,
+ Sigma_ee);
+
+ // Update V_g and V_e.
+ UpdateV(eval, U_hat, E_hat, Sigma_uu, Sigma_ee, V_g, V_e);
+ }
+
+ gsl_matrix_free(XXt);
+ gsl_matrix_free(XXti);
+ gsl_vector_free(D_l);
+ gsl_matrix_free(UltVeh);
+ gsl_matrix_free(UltVehi);
+ gsl_matrix_free(UltVehiB);
+ gsl_matrix_free(Qi);
+ gsl_matrix_free(Sigma_uu);
+ gsl_matrix_free(Sigma_ee);
+ gsl_vector_free(xHiy);
+ gsl_permutation_free(pmt);
+
+ return logl_new;
}
// Calculate p-value, beta (d by 1 vector) and V(beta).
-double MphCalcP (const gsl_vector *eval, const gsl_vector *x_vec,
- const gsl_matrix *W, const gsl_matrix *Y,
- const gsl_matrix *V_g, const gsl_matrix *V_e,
- gsl_matrix *UltVehiY, gsl_vector *beta, gsl_matrix *Vbeta) {
- size_t n_size=eval->size, c_size=W->size1, d_size=V_g->size1;
- size_t dc_size=d_size*c_size;
- double delta, dl, d, d1, d2, dy, dx, dw, logdet_Ve, logdet_Q, p_value;
-
- gsl_vector *D_l=gsl_vector_alloc (d_size);
- gsl_matrix *UltVeh=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *UltVehi=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *Qi=gsl_matrix_alloc (dc_size, dc_size);
- gsl_matrix *WHix=gsl_matrix_alloc (dc_size, d_size);
- gsl_matrix *QiWHix=gsl_matrix_alloc(dc_size, d_size);
-
- gsl_matrix *xPx=gsl_matrix_alloc (d_size, d_size);
- gsl_vector *xPy=gsl_vector_alloc (d_size);
- gsl_vector *WHiy=gsl_vector_alloc (dc_size);
-
- gsl_matrix_set_zero (xPx);
- gsl_matrix_set_zero (WHix);
- gsl_vector_set_zero (xPy);
- gsl_vector_set_zero (WHiy);
-
- // Eigen decomposition and calculate log|Ve|.
- logdet_Ve=EigenProc (V_g, V_e, D_l, UltVeh, UltVehi);
-
- // Calculate Qi and log|Q|.
- logdet_Q=CalcQi (eval, D_l, W, Qi);
-
- // Calculate UltVehiY.
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, UltVehi, Y,
- 0.0, UltVehiY);
-
- // Calculate WHix, WHiy, xHiy, xHix.
- for (size_t i=0; i<d_size; i++) {
- dl=gsl_vector_get(D_l, i);
-
- d1=0.0; d2=0.0;
- for (size_t k=0; k<n_size; k++) {
- delta=gsl_vector_get(eval, k);
- dx=gsl_vector_get(x_vec, k);
- dy=gsl_matrix_get(UltVehiY, i, k);
-
- d1+=dx*dy/(delta*dl+1.0);
- d2+=dx*dx/(delta*dl+1.0);
- }
- gsl_vector_set (xPy, i, d1);
- gsl_matrix_set (xPx, i, i, d2);
-
- for (size_t j=0; j<c_size; j++) {
- d1=0.0; d2=0.0;
- for (size_t k=0; k<n_size; k++) {
- delta=gsl_vector_get(eval, k);
- dx=gsl_vector_get(x_vec, k);
- dw=gsl_matrix_get(W, j, k);
- dy=gsl_matrix_get(UltVehiY, i, k);
-
- d1+=dx*dw/(delta*dl+1.0);
- d2+=dy*dw/(delta*dl+1.0);
- }
- gsl_matrix_set(WHix, j*d_size+i, i, d1);
- gsl_vector_set(WHiy, j*d_size+i, d2);
- }
- }
-
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Qi, WHix, 0.0, QiWHix);
- gsl_blas_dgemm(CblasTrans, CblasNoTrans, -1.0, WHix, QiWHix, 1.0, xPx);
- gsl_blas_dgemv(CblasTrans, -1.0, QiWHix, WHiy, 1.0, xPy);
-
- // Calculate V(beta) and beta.
- int sig;
- gsl_permutation * pmt=gsl_permutation_alloc (d_size);
- LUDecomp (xPx, pmt, &sig);
- LUSolve (xPx, pmt, xPy, D_l);
- LUInvert (xPx, pmt, Vbeta);
-
- // Need to multiply UltVehi on both sides or one side.
- gsl_blas_dgemv(CblasTrans, 1.0, UltVeh, D_l, 0.0, beta);
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Vbeta, UltVeh,
- 0.0, xPx);
- gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, UltVeh, xPx, 0.0, Vbeta);
-
- // Calculate test statistic and p value.
- gsl_blas_ddot(D_l, xPy, &d);
-
- p_value=gsl_cdf_chisq_Q (d, (double)d_size);
-
- gsl_vector_free(D_l);
- gsl_matrix_free(UltVeh);
- gsl_matrix_free(UltVehi);
- gsl_matrix_free(Qi);
- gsl_matrix_free(WHix);
- gsl_matrix_free(QiWHix);
-
- gsl_matrix_free(xPx);
- gsl_vector_free(xPy);
- gsl_vector_free(WHiy);
-
- gsl_permutation_free(pmt);
-
- return p_value;
+double MphCalcP(const gsl_vector *eval, const gsl_vector *x_vec,
+ const gsl_matrix *W, const gsl_matrix *Y, const gsl_matrix *V_g,
+ const gsl_matrix *V_e, gsl_matrix *UltVehiY, gsl_vector *beta,
+ gsl_matrix *Vbeta) {
+ size_t n_size = eval->size, c_size = W->size1, d_size = V_g->size1;
+ size_t dc_size = d_size * c_size;
+ double delta, dl, d, d1, d2, dy, dx, dw, logdet_Ve, logdet_Q, p_value;
+
+ gsl_vector *D_l = gsl_vector_alloc(d_size);
+ gsl_matrix *UltVeh = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *UltVehi = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *Qi = gsl_matrix_alloc(dc_size, dc_size);
+ gsl_matrix *WHix = gsl_matrix_alloc(dc_size, d_size);
+ gsl_matrix *QiWHix = gsl_matrix_alloc(dc_size, d_size);
+
+ gsl_matrix *xPx = gsl_matrix_alloc(d_size, d_size);
+ gsl_vector *xPy = gsl_vector_alloc(d_size);
+ gsl_vector *WHiy = gsl_vector_alloc(dc_size);
+
+ gsl_matrix_set_zero(xPx);
+ gsl_matrix_set_zero(WHix);
+ gsl_vector_set_zero(xPy);
+ gsl_vector_set_zero(WHiy);
+
+ // Eigen decomposition and calculate log|Ve|.
+ logdet_Ve = EigenProc(V_g, V_e, D_l, UltVeh, UltVehi);
+
+ // Calculate Qi and log|Q|.
+ logdet_Q = CalcQi(eval, D_l, W, Qi);
+
+ // Calculate UltVehiY.
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, UltVehi, Y, 0.0, UltVehiY);
+
+ // Calculate WHix, WHiy, xHiy, xHix.
+ for (size_t i = 0; i < d_size; i++) {
+ dl = gsl_vector_get(D_l, i);
+
+ d1 = 0.0;
+ d2 = 0.0;
+ for (size_t k = 0; k < n_size; k++) {
+ delta = gsl_vector_get(eval, k);
+ dx = gsl_vector_get(x_vec, k);
+ dy = gsl_matrix_get(UltVehiY, i, k);
+
+ d1 += dx * dy / (delta * dl + 1.0);
+ d2 += dx * dx / (delta * dl + 1.0);
+ }
+ gsl_vector_set(xPy, i, d1);
+ gsl_matrix_set(xPx, i, i, d2);
+
+ for (size_t j = 0; j < c_size; j++) {
+ d1 = 0.0;
+ d2 = 0.0;
+ for (size_t k = 0; k < n_size; k++) {
+ delta = gsl_vector_get(eval, k);
+ dx = gsl_vector_get(x_vec, k);
+ dw = gsl_matrix_get(W, j, k);
+ dy = gsl_matrix_get(UltVehiY, i, k);
+
+ d1 += dx * dw / (delta * dl + 1.0);
+ d2 += dy * dw / (delta * dl + 1.0);
+ }
+ gsl_matrix_set(WHix, j * d_size + i, i, d1);
+ gsl_vector_set(WHiy, j * d_size + i, d2);
+ }
+ }
+
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Qi, WHix, 0.0, QiWHix);
+ gsl_blas_dgemm(CblasTrans, CblasNoTrans, -1.0, WHix, QiWHix, 1.0, xPx);
+ gsl_blas_dgemv(CblasTrans, -1.0, QiWHix, WHiy, 1.0, xPy);
+
+ // Calculate V(beta) and beta.
+ int sig;
+ gsl_permutation *pmt = gsl_permutation_alloc(d_size);
+ LUDecomp(xPx, pmt, &sig);
+ LUSolve(xPx, pmt, xPy, D_l);
+ LUInvert(xPx, pmt, Vbeta);
+
+ // Need to multiply UltVehi on both sides or one side.
+ gsl_blas_dgemv(CblasTrans, 1.0, UltVeh, D_l, 0.0, beta);
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Vbeta, UltVeh, 0.0, xPx);
+ gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, UltVeh, xPx, 0.0, Vbeta);
+
+ // Calculate test statistic and p value.
+ gsl_blas_ddot(D_l, xPy, &d);
+
+ p_value = gsl_cdf_chisq_Q(d, (double)d_size);
+
+ gsl_vector_free(D_l);
+ gsl_matrix_free(UltVeh);
+ gsl_matrix_free(UltVehi);
+ gsl_matrix_free(Qi);
+ gsl_matrix_free(WHix);
+ gsl_matrix_free(QiWHix);
+
+ gsl_matrix_free(xPx);
+ gsl_vector_free(xPy);
+ gsl_vector_free(WHiy);
+
+ gsl_permutation_free(pmt);
+
+ return p_value;
}
// Calculate B and its standard error (which is a matrix of the same
// dimension as B).
-void MphCalcBeta (const gsl_vector *eval, const gsl_matrix *W,
- const gsl_matrix *Y, const gsl_matrix *V_g,
- const gsl_matrix *V_e, gsl_matrix *UltVehiY,
- gsl_matrix *B, gsl_matrix *se_B) {
- size_t n_size=eval->size, c_size=W->size1, d_size=V_g->size1;
- size_t dc_size=d_size*c_size;
- double delta, dl, d, dy, dw, logdet_Ve, logdet_Q;
-
- gsl_vector *D_l=gsl_vector_alloc (d_size);
- gsl_matrix *UltVeh=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *UltVehi=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *Qi=gsl_matrix_alloc (dc_size, dc_size);
- gsl_matrix *Qi_temp=gsl_matrix_alloc (dc_size, dc_size);
- gsl_vector *WHiy=gsl_vector_alloc (dc_size);
- gsl_vector *QiWHiy=gsl_vector_alloc (dc_size);
- gsl_vector *beta=gsl_vector_alloc (dc_size);
- gsl_matrix *Vbeta=gsl_matrix_alloc (dc_size, dc_size);
-
- gsl_vector_set_zero (WHiy);
-
- // Eigen decomposition and calculate log|Ve|.
- logdet_Ve=EigenProc (V_g, V_e, D_l, UltVeh, UltVehi);
-
- // Calculate Qi and log|Q|.
- logdet_Q=CalcQi (eval, D_l, W, Qi);
-
- // Calculate UltVehiY.
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, UltVehi, Y,
- 0.0, UltVehiY);
-
- // Calculate WHiy.
- for (size_t i=0; i<d_size; i++) {
- dl=gsl_vector_get(D_l, i);
-
- for (size_t j=0; j<c_size; j++) {
- d=0.0;
- for (size_t k=0; k<n_size; k++) {
- delta=gsl_vector_get(eval, k);
- dw=gsl_matrix_get(W, j, k);
- dy=gsl_matrix_get(UltVehiY, i, k);
-
- d+=dy*dw/(delta*dl+1.0);
- }
- gsl_vector_set(WHiy, j*d_size+i, d);
- }
- }
-
- gsl_blas_dgemv(CblasNoTrans, 1.0, Qi, WHiy, 0.0, QiWHiy);
-
- // Need to multiply I_c\otimes UltVehi on both sides or one side.
- for (size_t i=0; i<c_size; i++) {
- gsl_vector_view QiWHiy_sub=
- gsl_vector_subvector(QiWHiy, i*d_size, d_size);
- gsl_vector_view beta_sub=gsl_vector_subvector(beta,i*d_size,d_size);
- gsl_blas_dgemv(CblasTrans, 1.0, UltVeh, &QiWHiy_sub.vector, 0.0,
- &beta_sub.vector);
-
- for (size_t j=0; j<c_size; j++) {
- gsl_matrix_view Qi_sub=
- gsl_matrix_submatrix (Qi, i*d_size, j*d_size, d_size, d_size);
- gsl_matrix_view Qitemp_sub=
- gsl_matrix_submatrix (Qi_temp,i*d_size,j*d_size,d_size,d_size);
- gsl_matrix_view Vbeta_sub=
- gsl_matrix_submatrix (Vbeta, i*d_size, j*d_size, d_size, d_size);
-
- if (j<i) {
- gsl_matrix_view Vbeta_sym=
- gsl_matrix_submatrix(Vbeta,j*d_size,i*d_size,d_size,d_size);
- gsl_matrix_transpose_memcpy(&Vbeta_sub.matrix,&Vbeta_sym.matrix);
- } else {
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &Qi_sub.matrix,
- UltVeh, 0.0, &Qitemp_sub.matrix);
- gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, UltVeh,
- &Qitemp_sub.matrix, 0.0, &Vbeta_sub.matrix);
- }
- }
- }
-
- // Copy beta to B, and Vbeta to se_B.
- for (size_t j=0; j<B->size2; j++) {
- for (size_t i=0; i<B->size1; i++) {
- gsl_matrix_set(B, i, j, gsl_vector_get(beta, j*d_size+i));
- gsl_matrix_set(se_B, i, j,
- sqrt(gsl_matrix_get(Vbeta,j*d_size+i,j*d_size+i)));
- }
- }
-
- // Free matrices.
- gsl_vector_free(D_l);
- gsl_matrix_free(UltVeh);
- gsl_matrix_free(UltVehi);
- gsl_matrix_free(Qi);
- gsl_matrix_free(Qi_temp);
- gsl_vector_free(WHiy);
- gsl_vector_free(QiWHiy);
- gsl_vector_free(beta);
- gsl_matrix_free(Vbeta);
-
- return;
+void MphCalcBeta(const gsl_vector *eval, const gsl_matrix *W,
+ const gsl_matrix *Y, const gsl_matrix *V_g,
+ const gsl_matrix *V_e, gsl_matrix *UltVehiY, gsl_matrix *B,
+ gsl_matrix *se_B) {
+ size_t n_size = eval->size, c_size = W->size1, d_size = V_g->size1;
+ size_t dc_size = d_size * c_size;
+ double delta, dl, d, dy, dw, logdet_Ve, logdet_Q;
+
+ gsl_vector *D_l = gsl_vector_alloc(d_size);
+ gsl_matrix *UltVeh = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *UltVehi = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *Qi = gsl_matrix_alloc(dc_size, dc_size);
+ gsl_matrix *Qi_temp = gsl_matrix_alloc(dc_size, dc_size);
+ gsl_vector *WHiy = gsl_vector_alloc(dc_size);
+ gsl_vector *QiWHiy = gsl_vector_alloc(dc_size);
+ gsl_vector *beta = gsl_vector_alloc(dc_size);
+ gsl_matrix *Vbeta = gsl_matrix_alloc(dc_size, dc_size);
+
+ gsl_vector_set_zero(WHiy);
+
+ // Eigen decomposition and calculate log|Ve|.
+ logdet_Ve = EigenProc(V_g, V_e, D_l, UltVeh, UltVehi);
+
+ // Calculate Qi and log|Q|.
+ logdet_Q = CalcQi(eval, D_l, W, Qi);
+
+ // Calculate UltVehiY.
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, UltVehi, Y, 0.0, UltVehiY);
+
+ // Calculate WHiy.
+ for (size_t i = 0; i < d_size; i++) {
+ dl = gsl_vector_get(D_l, i);
+
+ for (size_t j = 0; j < c_size; j++) {
+ d = 0.0;
+ for (size_t k = 0; k < n_size; k++) {
+ delta = gsl_vector_get(eval, k);
+ dw = gsl_matrix_get(W, j, k);
+ dy = gsl_matrix_get(UltVehiY, i, k);
+
+ d += dy * dw / (delta * dl + 1.0);
+ }
+ gsl_vector_set(WHiy, j * d_size + i, d);
+ }
+ }
+
+ gsl_blas_dgemv(CblasNoTrans, 1.0, Qi, WHiy, 0.0, QiWHiy);
+
+ // Need to multiply I_c\otimes UltVehi on both sides or one side.
+ for (size_t i = 0; i < c_size; i++) {
+ gsl_vector_view QiWHiy_sub =
+ gsl_vector_subvector(QiWHiy, i * d_size, d_size);
+ gsl_vector_view beta_sub = gsl_vector_subvector(beta, i * d_size, d_size);
+ gsl_blas_dgemv(CblasTrans, 1.0, UltVeh, &QiWHiy_sub.vector, 0.0,
+ &beta_sub.vector);
+
+ for (size_t j = 0; j < c_size; j++) {
+ gsl_matrix_view Qi_sub =
+ gsl_matrix_submatrix(Qi, i * d_size, j * d_size, d_size, d_size);
+ gsl_matrix_view Qitemp_sub =
+ gsl_matrix_submatrix(Qi_temp, i * d_size, j * d_size, d_size, d_size);
+ gsl_matrix_view Vbeta_sub =
+ gsl_matrix_submatrix(Vbeta, i * d_size, j * d_size, d_size, d_size);
+
+ if (j < i) {
+ gsl_matrix_view Vbeta_sym =
+ gsl_matrix_submatrix(Vbeta, j * d_size, i * d_size, d_size, d_size);
+ gsl_matrix_transpose_memcpy(&Vbeta_sub.matrix, &Vbeta_sym.matrix);
+ } else {
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &Qi_sub.matrix, UltVeh,
+ 0.0, &Qitemp_sub.matrix);
+ gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, UltVeh,
+ &Qitemp_sub.matrix, 0.0, &Vbeta_sub.matrix);
+ }
+ }
+ }
+
+ // Copy beta to B, and Vbeta to se_B.
+ for (size_t j = 0; j < B->size2; j++) {
+ for (size_t i = 0; i < B->size1; i++) {
+ gsl_matrix_set(B, i, j, gsl_vector_get(beta, j * d_size + i));
+ gsl_matrix_set(se_B, i, j, sqrt(gsl_matrix_get(Vbeta, j * d_size + i,
+ j * d_size + i)));
+ }
+ }
+
+ // Free matrices.
+ gsl_vector_free(D_l);
+ gsl_matrix_free(UltVeh);
+ gsl_matrix_free(UltVehi);
+ gsl_matrix_free(Qi);
+ gsl_matrix_free(Qi_temp);
+ gsl_vector_free(WHiy);
+ gsl_vector_free(QiWHiy);
+ gsl_vector_free(beta);
+ gsl_matrix_free(Vbeta);
+
+ return;
}
// Below are functions for Newton-Raphson's algorithm.
@@ -912,996 +931,962 @@ void MphCalcBeta (const gsl_vector *eval, const gsl_matrix *W,
// Calculate all Hi and return logdet_H=\sum_{k=1}^{n}log|H_k|
// and calculate Qi and return logdet_Q
// and calculate yPy.
-void CalcHiQi (const gsl_vector *eval, const gsl_matrix *X,
- const gsl_matrix *V_g, const gsl_matrix *V_e,
- gsl_matrix *Hi_all, gsl_matrix *Qi, double &logdet_H,
- double &logdet_Q) {
- gsl_matrix_set_zero (Hi_all);
- gsl_matrix_set_zero (Qi);
- logdet_H=0.0; logdet_Q=0.0;
-
- size_t n_size=eval->size, c_size=X->size1, d_size=V_g->size1;
- double logdet_Ve=0.0, delta, dl, d;
-
- gsl_matrix *mat_dd=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *UltVeh=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *UltVehi=gsl_matrix_alloc (d_size, d_size);
- gsl_vector *D_l=gsl_vector_alloc (d_size);
-
- // Calculate D_l, UltVeh and UltVehi.
- logdet_Ve=EigenProc (V_g, V_e, D_l, UltVeh, UltVehi);
-
- // Calculate each Hi and log|H_k|.
- logdet_H=(double)n_size*logdet_Ve;
- for (size_t k=0; k<n_size; k++) {
- delta=gsl_vector_get (eval, k);
-
- gsl_matrix_memcpy (mat_dd, UltVehi);
- for (size_t i=0; i<d_size; i++) {
- dl=gsl_vector_get(D_l, i);
- d=delta*dl+1.0;
-
- gsl_vector_view mat_row=gsl_matrix_row (mat_dd, i);
- gsl_vector_scale (&mat_row.vector, 1.0/d);
-
- logdet_H+=log(d);
- }
-
- gsl_matrix_view Hi_k=
- gsl_matrix_submatrix(Hi_all, 0, k*d_size, d_size, d_size);
- gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, UltVehi,
- mat_dd, 0.0, &Hi_k.matrix);
- }
-
- // Calculate Qi, and multiply I\o times UtVeh on both side and
- // calculate logdet_Q, don't forget to substract
- // c_size*logdet_Ve.
- logdet_Q=CalcQi (eval, D_l, X, Qi)-(double)c_size*logdet_Ve;
-
- for (size_t i=0; i<c_size; i++) {
- for (size_t j=0; j<c_size; j++) {
- gsl_matrix_view Qi_sub=
- gsl_matrix_submatrix(Qi,i*d_size,j*d_size,d_size,d_size);
- if (j<i) {
- gsl_matrix_view Qi_sym=
- gsl_matrix_submatrix(Qi,j*d_size,i*d_size,d_size,d_size);
- gsl_matrix_transpose_memcpy(&Qi_sub.matrix,&Qi_sym.matrix);
- } else {
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0,
- &Qi_sub.matrix, UltVeh, 0.0, mat_dd);
- gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, UltVeh,
- mat_dd, 0.0, &Qi_sub.matrix);
- }
- }
- }
-
- // Free memory.
- gsl_matrix_free(mat_dd);
- gsl_matrix_free(UltVeh);
- gsl_matrix_free(UltVehi);
- gsl_vector_free(D_l);
-
- return;
+void CalcHiQi(const gsl_vector *eval, const gsl_matrix *X,
+ const gsl_matrix *V_g, const gsl_matrix *V_e, gsl_matrix *Hi_all,
+ gsl_matrix *Qi, double &logdet_H, double &logdet_Q) {
+ gsl_matrix_set_zero(Hi_all);
+ gsl_matrix_set_zero(Qi);
+ logdet_H = 0.0;
+ logdet_Q = 0.0;
+
+ size_t n_size = eval->size, c_size = X->size1, d_size = V_g->size1;
+ double logdet_Ve = 0.0, delta, dl, d;
+
+ gsl_matrix *mat_dd = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *UltVeh = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *UltVehi = gsl_matrix_alloc(d_size, d_size);
+ gsl_vector *D_l = gsl_vector_alloc(d_size);
+
+ // Calculate D_l, UltVeh and UltVehi.
+ logdet_Ve = EigenProc(V_g, V_e, D_l, UltVeh, UltVehi);
+
+ // Calculate each Hi and log|H_k|.
+ logdet_H = (double)n_size * logdet_Ve;
+ for (size_t k = 0; k < n_size; k++) {
+ delta = gsl_vector_get(eval, k);
+
+ gsl_matrix_memcpy(mat_dd, UltVehi);
+ for (size_t i = 0; i < d_size; i++) {
+ dl = gsl_vector_get(D_l, i);
+ d = delta * dl + 1.0;
+
+ gsl_vector_view mat_row = gsl_matrix_row(mat_dd, i);
+ gsl_vector_scale(&mat_row.vector, 1.0 / d);
+
+ logdet_H += log(d);
+ }
+
+ gsl_matrix_view Hi_k =
+ gsl_matrix_submatrix(Hi_all, 0, k * d_size, d_size, d_size);
+ gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, UltVehi, mat_dd, 0.0,
+ &Hi_k.matrix);
+ }
+
+ // Calculate Qi, and multiply I\o times UtVeh on both side and
+ // calculate logdet_Q, don't forget to substract
+ // c_size*logdet_Ve.
+ logdet_Q = CalcQi(eval, D_l, X, Qi) - (double)c_size * logdet_Ve;
+
+ for (size_t i = 0; i < c_size; i++) {
+ for (size_t j = 0; j < c_size; j++) {
+ gsl_matrix_view Qi_sub =
+ gsl_matrix_submatrix(Qi, i * d_size, j * d_size, d_size, d_size);
+ if (j < i) {
+ gsl_matrix_view Qi_sym =
+ gsl_matrix_submatrix(Qi, j * d_size, i * d_size, d_size, d_size);
+ gsl_matrix_transpose_memcpy(&Qi_sub.matrix, &Qi_sym.matrix);
+ } else {
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &Qi_sub.matrix, UltVeh,
+ 0.0, mat_dd);
+ gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, UltVeh, mat_dd, 0.0,
+ &Qi_sub.matrix);
+ }
+ }
+ }
+
+ // Free memory.
+ gsl_matrix_free(mat_dd);
+ gsl_matrix_free(UltVeh);
+ gsl_matrix_free(UltVehi);
+ gsl_vector_free(D_l);
+
+ return;
}
// Calculate all Hiy.
-void Calc_Hiy_all (const gsl_matrix *Y, const gsl_matrix *Hi_all,
- gsl_matrix *Hiy_all) {
- gsl_matrix_set_zero (Hiy_all);
+void Calc_Hiy_all(const gsl_matrix *Y, const gsl_matrix *Hi_all,
+ gsl_matrix *Hiy_all) {
+ gsl_matrix_set_zero(Hiy_all);
- size_t n_size=Y->size2, d_size=Y->size1;
+ size_t n_size = Y->size2, d_size = Y->size1;
- for (size_t k=0; k<n_size; k++) {
- gsl_matrix_const_view Hi_k=
- gsl_matrix_const_submatrix(Hi_all,0,k*d_size,d_size,d_size);
- gsl_vector_const_view y_k=gsl_matrix_const_column(Y,k);
- gsl_vector_view Hiy_k=gsl_matrix_column(Hiy_all, k);
+ for (size_t k = 0; k < n_size; k++) {
+ gsl_matrix_const_view Hi_k =
+ gsl_matrix_const_submatrix(Hi_all, 0, k * d_size, d_size, d_size);
+ gsl_vector_const_view y_k = gsl_matrix_const_column(Y, k);
+ gsl_vector_view Hiy_k = gsl_matrix_column(Hiy_all, k);
- gsl_blas_dgemv(CblasNoTrans,1.0,&Hi_k.matrix,&y_k.vector,
- 0.0,&Hiy_k.vector);
- }
+ gsl_blas_dgemv(CblasNoTrans, 1.0, &Hi_k.matrix, &y_k.vector, 0.0,
+ &Hiy_k.vector);
+ }
- return;
+ return;
}
// Calculate all xHi.
-void Calc_xHi_all (const gsl_matrix *X, const gsl_matrix *Hi_all,
- gsl_matrix *xHi_all) {
- gsl_matrix_set_zero (xHi_all);
+void Calc_xHi_all(const gsl_matrix *X, const gsl_matrix *Hi_all,
+ gsl_matrix *xHi_all) {
+ gsl_matrix_set_zero(xHi_all);
- size_t n_size=X->size2, c_size=X->size1, d_size=Hi_all->size1;
+ size_t n_size = X->size2, c_size = X->size1, d_size = Hi_all->size1;
- double d;
+ double d;
- for (size_t k=0; k<n_size; k++) {
- gsl_matrix_const_view Hi_k=
- gsl_matrix_const_submatrix(Hi_all,0,k*d_size,d_size,d_size);
+ for (size_t k = 0; k < n_size; k++) {
+ gsl_matrix_const_view Hi_k =
+ gsl_matrix_const_submatrix(Hi_all, 0, k * d_size, d_size, d_size);
- for (size_t i=0; i<c_size; i++) {
- d=gsl_matrix_get (X, i, k);
- gsl_matrix_view xHi_sub=
- gsl_matrix_submatrix(xHi_all,i*d_size,k*d_size,
- d_size,d_size);
- gsl_matrix_memcpy(&xHi_sub.matrix, &Hi_k.matrix);
- gsl_matrix_scale(&xHi_sub.matrix, d);
- }
- }
+ for (size_t i = 0; i < c_size; i++) {
+ d = gsl_matrix_get(X, i, k);
+ gsl_matrix_view xHi_sub =
+ gsl_matrix_submatrix(xHi_all, i * d_size, k * d_size, d_size, d_size);
+ gsl_matrix_memcpy(&xHi_sub.matrix, &Hi_k.matrix);
+ gsl_matrix_scale(&xHi_sub.matrix, d);
+ }
+ }
- return;
+ return;
}
// Calculate scalar yHiy.
-double Calc_yHiy (const gsl_matrix *Y, const gsl_matrix *Hiy_all) {
- double yHiy=0.0, d;
- size_t n_size=Y->size2;
+double Calc_yHiy(const gsl_matrix *Y, const gsl_matrix *Hiy_all) {
+ double yHiy = 0.0, d;
+ size_t n_size = Y->size2;
- for (size_t k=0; k<n_size; k++) {
- gsl_vector_const_view y_k=gsl_matrix_const_column(Y, k);
- gsl_vector_const_view Hiy_k=gsl_matrix_const_column(Hiy_all, k);
+ for (size_t k = 0; k < n_size; k++) {
+ gsl_vector_const_view y_k = gsl_matrix_const_column(Y, k);
+ gsl_vector_const_view Hiy_k = gsl_matrix_const_column(Hiy_all, k);
- gsl_blas_ddot (&Hiy_k.vector, &y_k.vector, &d);
- yHiy+=d;
- }
+ gsl_blas_ddot(&Hiy_k.vector, &y_k.vector, &d);
+ yHiy += d;
+ }
- return yHiy;
+ return yHiy;
}
// Calculate the vector xHiy.
-void Calc_xHiy (const gsl_matrix *Y, const gsl_matrix *xHi, gsl_vector *xHiy) {
- gsl_vector_set_zero (xHiy);
+void Calc_xHiy(const gsl_matrix *Y, const gsl_matrix *xHi, gsl_vector *xHiy) {
+ gsl_vector_set_zero(xHiy);
- size_t n_size=Y->size2, d_size=Y->size1, dc_size=xHi->size1;
+ size_t n_size = Y->size2, d_size = Y->size1, dc_size = xHi->size1;
- for (size_t k=0; k<n_size; k++) {
- gsl_matrix_const_view xHi_k=
- gsl_matrix_const_submatrix(xHi,0,k*d_size,dc_size,d_size);
- gsl_vector_const_view y_k=gsl_matrix_const_column(Y, k);
+ for (size_t k = 0; k < n_size; k++) {
+ gsl_matrix_const_view xHi_k =
+ gsl_matrix_const_submatrix(xHi, 0, k * d_size, dc_size, d_size);
+ gsl_vector_const_view y_k = gsl_matrix_const_column(Y, k);
- gsl_blas_dgemv(CblasNoTrans,1.0,&xHi_k.matrix,&y_k.vector,
- 1.0,xHiy);
- }
+ gsl_blas_dgemv(CblasNoTrans, 1.0, &xHi_k.matrix, &y_k.vector, 1.0, xHiy);
+ }
- return;
+ return;
}
// 0<=i,j<d_size
-size_t GetIndex (const size_t i, const size_t j, const size_t d_size) {
- if (i>=d_size || j>=d_size) {
- cout<<"error in GetIndex."<<endl;
- return 0;
- }
-
- size_t s, l;
- if (j<i) {
- s=j;
- l=i;
- } else {
- s=i;
- l=j;
- }
-
- return (2*d_size-s+1)*s/2+l-s;
+size_t GetIndex(const size_t i, const size_t j, const size_t d_size) {
+ if (i >= d_size || j >= d_size) {
+ cout << "error in GetIndex." << endl;
+ return 0;
+ }
+
+ size_t s, l;
+ if (j < i) {
+ s = j;
+ l = i;
+ } else {
+ s = i;
+ l = j;
+ }
+
+ return (2 * d_size - s + 1) * s / 2 + l - s;
}
-void Calc_yHiDHiy (const gsl_vector *eval, const gsl_matrix *Hiy,
- const size_t i, const size_t j, double &yHiDHiy_g,
- double &yHiDHiy_e) {
- yHiDHiy_g=0.0;
- yHiDHiy_e=0.0;
+void Calc_yHiDHiy(const gsl_vector *eval, const gsl_matrix *Hiy, const size_t i,
+ const size_t j, double &yHiDHiy_g, double &yHiDHiy_e) {
+ yHiDHiy_g = 0.0;
+ yHiDHiy_e = 0.0;
- size_t n_size=eval->size;
+ size_t n_size = eval->size;
- double delta, d1, d2;
+ double delta, d1, d2;
- for (size_t k=0; k<n_size; k++) {
- delta=gsl_vector_get (eval, k);
- d1=gsl_matrix_get (Hiy, i, k);
- d2=gsl_matrix_get (Hiy, j, k);
+ for (size_t k = 0; k < n_size; k++) {
+ delta = gsl_vector_get(eval, k);
+ d1 = gsl_matrix_get(Hiy, i, k);
+ d2 = gsl_matrix_get(Hiy, j, k);
- if (i==j) {
- yHiDHiy_g+=delta*d1*d2;
- yHiDHiy_e+=d1*d2;
- } else {
- yHiDHiy_g+=delta*d1*d2*2.0;
- yHiDHiy_e+=d1*d2*2.0;
- }
- }
+ if (i == j) {
+ yHiDHiy_g += delta * d1 * d2;
+ yHiDHiy_e += d1 * d2;
+ } else {
+ yHiDHiy_g += delta * d1 * d2 * 2.0;
+ yHiDHiy_e += d1 * d2 * 2.0;
+ }
+ }
- return;
+ return;
}
-void Calc_xHiDHiy (const gsl_vector *eval, const gsl_matrix *xHi,
- const gsl_matrix *Hiy, const size_t i, const size_t j,
- gsl_vector *xHiDHiy_g, gsl_vector *xHiDHiy_e) {
- gsl_vector_set_zero(xHiDHiy_g);
- gsl_vector_set_zero(xHiDHiy_e);
+void Calc_xHiDHiy(const gsl_vector *eval, const gsl_matrix *xHi,
+ const gsl_matrix *Hiy, const size_t i, const size_t j,
+ gsl_vector *xHiDHiy_g, gsl_vector *xHiDHiy_e) {
+ gsl_vector_set_zero(xHiDHiy_g);
+ gsl_vector_set_zero(xHiDHiy_e);
+
+ size_t n_size = eval->size, d_size = Hiy->size1;
- size_t n_size=eval->size, d_size=Hiy->size1;
+ double delta, d;
- double delta, d;
+ for (size_t k = 0; k < n_size; k++) {
+ delta = gsl_vector_get(eval, k);
- for (size_t k=0; k<n_size; k++) {
- delta=gsl_vector_get (eval, k);
+ gsl_vector_const_view xHi_col_i =
+ gsl_matrix_const_column(xHi, k * d_size + i);
+ d = gsl_matrix_get(Hiy, j, k);
- gsl_vector_const_view xHi_col_i=
- gsl_matrix_const_column (xHi, k*d_size+i);
- d=gsl_matrix_get (Hiy, j, k);
+ gsl_blas_daxpy(d * delta, &xHi_col_i.vector, xHiDHiy_g);
+ gsl_blas_daxpy(d, &xHi_col_i.vector, xHiDHiy_e);
- gsl_blas_daxpy (d*delta, &xHi_col_i.vector, xHiDHiy_g);
- gsl_blas_daxpy (d, &xHi_col_i.vector, xHiDHiy_e);
+ if (i != j) {
+ gsl_vector_const_view xHi_col_j =
+ gsl_matrix_const_column(xHi, k * d_size + j);
+ d = gsl_matrix_get(Hiy, i, k);
- if (i!=j) {
- gsl_vector_const_view xHi_col_j=
- gsl_matrix_const_column (xHi, k*d_size+j);
- d=gsl_matrix_get (Hiy, i, k);
-
- gsl_blas_daxpy (d*delta, &xHi_col_j.vector, xHiDHiy_g);
- gsl_blas_daxpy (d, &xHi_col_j.vector, xHiDHiy_e);
- }
- }
+ gsl_blas_daxpy(d * delta, &xHi_col_j.vector, xHiDHiy_g);
+ gsl_blas_daxpy(d, &xHi_col_j.vector, xHiDHiy_e);
+ }
+ }
- return;
+ return;
}
-void Calc_xHiDHix (const gsl_vector *eval, const gsl_matrix *xHi,
- const size_t i, const size_t j, gsl_matrix *xHiDHix_g,
- gsl_matrix *xHiDHix_e) {
- gsl_matrix_set_zero(xHiDHix_g);
- gsl_matrix_set_zero(xHiDHix_e);
+void Calc_xHiDHix(const gsl_vector *eval, const gsl_matrix *xHi, const size_t i,
+ const size_t j, gsl_matrix *xHiDHix_g,
+ gsl_matrix *xHiDHix_e) {
+ gsl_matrix_set_zero(xHiDHix_g);
+ gsl_matrix_set_zero(xHiDHix_e);
- size_t n_size=eval->size, dc_size=xHi->size1;
- size_t d_size=xHi->size2/n_size;
+ size_t n_size = eval->size, dc_size = xHi->size1;
+ size_t d_size = xHi->size2 / n_size;
- double delta;
+ double delta;
- gsl_matrix *mat_dcdc=gsl_matrix_alloc (dc_size, dc_size);
- gsl_matrix *mat_dcdc_t=gsl_matrix_alloc (dc_size, dc_size);
+ gsl_matrix *mat_dcdc = gsl_matrix_alloc(dc_size, dc_size);
+ gsl_matrix *mat_dcdc_t = gsl_matrix_alloc(dc_size, dc_size);
- for (size_t k=0; k<n_size; k++) {
- delta=gsl_vector_get (eval, k);
+ for (size_t k = 0; k < n_size; k++) {
+ delta = gsl_vector_get(eval, k);
- gsl_vector_const_view xHi_col_i=
- gsl_matrix_const_column (xHi, k*d_size+i);
- gsl_vector_const_view xHi_col_j=
- gsl_matrix_const_column (xHi, k*d_size+j);
+ gsl_vector_const_view xHi_col_i =
+ gsl_matrix_const_column(xHi, k * d_size + i);
+ gsl_vector_const_view xHi_col_j =
+ gsl_matrix_const_column(xHi, k * d_size + j);
- gsl_matrix_set_zero (mat_dcdc);
- gsl_blas_dger(1.0,&xHi_col_i.vector,&xHi_col_j.vector,
- mat_dcdc);
+ gsl_matrix_set_zero(mat_dcdc);
+ gsl_blas_dger(1.0, &xHi_col_i.vector, &xHi_col_j.vector, mat_dcdc);
- gsl_matrix_transpose_memcpy (mat_dcdc_t, mat_dcdc);
+ gsl_matrix_transpose_memcpy(mat_dcdc_t, mat_dcdc);
- gsl_matrix_add (xHiDHix_e, mat_dcdc);
+ gsl_matrix_add(xHiDHix_e, mat_dcdc);
- gsl_matrix_scale (mat_dcdc, delta);
- gsl_matrix_add (xHiDHix_g, mat_dcdc);
+ gsl_matrix_scale(mat_dcdc, delta);
+ gsl_matrix_add(xHiDHix_g, mat_dcdc);
- if (i!=j) {
- gsl_matrix_add (xHiDHix_e, mat_dcdc_t);
+ if (i != j) {
+ gsl_matrix_add(xHiDHix_e, mat_dcdc_t);
- gsl_matrix_scale (mat_dcdc_t, delta);
- gsl_matrix_add (xHiDHix_g, mat_dcdc_t);
- }
- }
+ gsl_matrix_scale(mat_dcdc_t, delta);
+ gsl_matrix_add(xHiDHix_g, mat_dcdc_t);
+ }
+ }
- gsl_matrix_free(mat_dcdc);
- gsl_matrix_free(mat_dcdc_t);
+ gsl_matrix_free(mat_dcdc);
+ gsl_matrix_free(mat_dcdc_t);
- return;
+ return;
}
-void Calc_yHiDHiDHiy (const gsl_vector *eval, const gsl_matrix *Hi,
- const gsl_matrix *Hiy, const size_t i1,
- const size_t j1, const size_t i2, const size_t j2,
- double &yHiDHiDHiy_gg, double &yHiDHiDHiy_ee,
- double &yHiDHiDHiy_ge) {
- yHiDHiDHiy_gg=0.0;
- yHiDHiDHiy_ee=0.0;
- yHiDHiDHiy_ge=0.0;
-
- size_t n_size=eval->size, d_size=Hiy->size1;
-
- double delta, d_Hiy_i1, d_Hiy_j1, d_Hiy_i2, d_Hiy_j2;
- double d_Hi_i1i2, d_Hi_i1j2, d_Hi_j1i2, d_Hi_j1j2;
-
- for (size_t k=0; k<n_size; k++) {
- delta=gsl_vector_get (eval, k);
-
- d_Hiy_i1=gsl_matrix_get (Hiy, i1, k);
- d_Hiy_j1=gsl_matrix_get (Hiy, j1, k);
- d_Hiy_i2=gsl_matrix_get (Hiy, i2, k);
- d_Hiy_j2=gsl_matrix_get (Hiy, j2, k);
-
- d_Hi_i1i2=gsl_matrix_get (Hi, i1, k*d_size+i2);
- d_Hi_i1j2=gsl_matrix_get (Hi, i1, k*d_size+j2);
- d_Hi_j1i2=gsl_matrix_get (Hi, j1, k*d_size+i2);
- d_Hi_j1j2=gsl_matrix_get (Hi, j1, k*d_size+j2);
-
- if (i1==j1) {
- yHiDHiDHiy_gg+=delta*delta*(d_Hiy_i1*d_Hi_j1i2*d_Hiy_j2);
- yHiDHiDHiy_ee+=(d_Hiy_i1*d_Hi_j1i2*d_Hiy_j2);
- yHiDHiDHiy_ge+=delta*(d_Hiy_i1*d_Hi_j1i2*d_Hiy_j2);
-
- if (i2!=j2) {
- yHiDHiDHiy_gg+=delta*delta*(d_Hiy_i1*d_Hi_j1j2*d_Hiy_i2);
- yHiDHiDHiy_ee+=(d_Hiy_i1*d_Hi_j1j2*d_Hiy_i2);
- yHiDHiDHiy_ge+=delta*(d_Hiy_i1*d_Hi_j1j2*d_Hiy_i2);
- }
- } else {
- yHiDHiDHiy_gg+=
- delta*delta*(d_Hiy_i1*d_Hi_j1i2*d_Hiy_j2 +
- d_Hiy_j1*d_Hi_i1i2*d_Hiy_j2);
- yHiDHiDHiy_ee+=
- (d_Hiy_i1*d_Hi_j1i2*d_Hiy_j2+d_Hiy_j1*d_Hi_i1i2*d_Hiy_j2);
- yHiDHiDHiy_ge+=
- delta*(d_Hiy_i1*d_Hi_j1i2*d_Hiy_j2 +
- d_Hiy_j1*d_Hi_i1i2*d_Hiy_j2);
-
- if (i2!=j2) {
- yHiDHiDHiy_gg+=
- delta*delta*(d_Hiy_i1*d_Hi_j1j2*d_Hiy_i2 +
- d_Hiy_j1*d_Hi_i1j2*d_Hiy_i2);
- yHiDHiDHiy_ee+=(d_Hiy_i1*d_Hi_j1j2*d_Hiy_i2 +
- d_Hiy_j1*d_Hi_i1j2*d_Hiy_i2);
- yHiDHiDHiy_ge+=delta*(d_Hiy_i1*d_Hi_j1j2*d_Hiy_i2 +
- d_Hiy_j1*d_Hi_i1j2*d_Hiy_i2);
- }
- }
- }
-
- return;
+void Calc_yHiDHiDHiy(const gsl_vector *eval, const gsl_matrix *Hi,
+ const gsl_matrix *Hiy, const size_t i1, const size_t j1,
+ const size_t i2, const size_t j2, double &yHiDHiDHiy_gg,
+ double &yHiDHiDHiy_ee, double &yHiDHiDHiy_ge) {
+ yHiDHiDHiy_gg = 0.0;
+ yHiDHiDHiy_ee = 0.0;
+ yHiDHiDHiy_ge = 0.0;
+
+ size_t n_size = eval->size, d_size = Hiy->size1;
+
+ double delta, d_Hiy_i1, d_Hiy_j1, d_Hiy_i2, d_Hiy_j2;
+ double d_Hi_i1i2, d_Hi_i1j2, d_Hi_j1i2, d_Hi_j1j2;
+
+ for (size_t k = 0; k < n_size; k++) {
+ delta = gsl_vector_get(eval, k);
+
+ d_Hiy_i1 = gsl_matrix_get(Hiy, i1, k);
+ d_Hiy_j1 = gsl_matrix_get(Hiy, j1, k);
+ d_Hiy_i2 = gsl_matrix_get(Hiy, i2, k);
+ d_Hiy_j2 = gsl_matrix_get(Hiy, j2, k);
+
+ d_Hi_i1i2 = gsl_matrix_get(Hi, i1, k * d_size + i2);
+ d_Hi_i1j2 = gsl_matrix_get(Hi, i1, k * d_size + j2);
+ d_Hi_j1i2 = gsl_matrix_get(Hi, j1, k * d_size + i2);
+ d_Hi_j1j2 = gsl_matrix_get(Hi, j1, k * d_size + j2);
+
+ if (i1 == j1) {
+ yHiDHiDHiy_gg += delta * delta * (d_Hiy_i1 * d_Hi_j1i2 * d_Hiy_j2);
+ yHiDHiDHiy_ee += (d_Hiy_i1 * d_Hi_j1i2 * d_Hiy_j2);
+ yHiDHiDHiy_ge += delta * (d_Hiy_i1 * d_Hi_j1i2 * d_Hiy_j2);
+
+ if (i2 != j2) {
+ yHiDHiDHiy_gg += delta * delta * (d_Hiy_i1 * d_Hi_j1j2 * d_Hiy_i2);
+ yHiDHiDHiy_ee += (d_Hiy_i1 * d_Hi_j1j2 * d_Hiy_i2);
+ yHiDHiDHiy_ge += delta * (d_Hiy_i1 * d_Hi_j1j2 * d_Hiy_i2);
+ }
+ } else {
+ yHiDHiDHiy_gg += delta * delta * (d_Hiy_i1 * d_Hi_j1i2 * d_Hiy_j2 +
+ d_Hiy_j1 * d_Hi_i1i2 * d_Hiy_j2);
+ yHiDHiDHiy_ee +=
+ (d_Hiy_i1 * d_Hi_j1i2 * d_Hiy_j2 + d_Hiy_j1 * d_Hi_i1i2 * d_Hiy_j2);
+ yHiDHiDHiy_ge += delta * (d_Hiy_i1 * d_Hi_j1i2 * d_Hiy_j2 +
+ d_Hiy_j1 * d_Hi_i1i2 * d_Hiy_j2);
+
+ if (i2 != j2) {
+ yHiDHiDHiy_gg += delta * delta * (d_Hiy_i1 * d_Hi_j1j2 * d_Hiy_i2 +
+ d_Hiy_j1 * d_Hi_i1j2 * d_Hiy_i2);
+ yHiDHiDHiy_ee +=
+ (d_Hiy_i1 * d_Hi_j1j2 * d_Hiy_i2 + d_Hiy_j1 * d_Hi_i1j2 * d_Hiy_i2);
+ yHiDHiDHiy_ge += delta * (d_Hiy_i1 * d_Hi_j1j2 * d_Hiy_i2 +
+ d_Hiy_j1 * d_Hi_i1j2 * d_Hiy_i2);
+ }
+ }
+ }
+
+ return;
}
-void Calc_xHiDHiDHiy (const gsl_vector *eval, const gsl_matrix *Hi,
- const gsl_matrix *xHi, const gsl_matrix *Hiy,
- const size_t i1, const size_t j1, const size_t i2,
- const size_t j2, gsl_vector *xHiDHiDHiy_gg,
- gsl_vector *xHiDHiDHiy_ee, gsl_vector *xHiDHiDHiy_ge) {
- gsl_vector_set_zero(xHiDHiDHiy_gg);
- gsl_vector_set_zero(xHiDHiDHiy_ee);
- gsl_vector_set_zero(xHiDHiDHiy_ge);
-
- size_t n_size=eval->size, d_size=Hiy->size1;
-
- double delta, d_Hiy_i, d_Hiy_j, d_Hi_i1i2, d_Hi_i1j2;
- double d_Hi_j1i2, d_Hi_j1j2;
-
- for (size_t k=0; k<n_size; k++) {
- delta=gsl_vector_get (eval, k);
-
- gsl_vector_const_view xHi_col_i=
- gsl_matrix_const_column (xHi, k*d_size+i1);
- gsl_vector_const_view xHi_col_j=
- gsl_matrix_const_column (xHi, k*d_size+j1);
-
- d_Hiy_i=gsl_matrix_get (Hiy, i2, k);
- d_Hiy_j=gsl_matrix_get (Hiy, j2, k);
-
- d_Hi_i1i2=gsl_matrix_get (Hi, i1, k*d_size+i2);
- d_Hi_i1j2=gsl_matrix_get (Hi, i1, k*d_size+j2);
- d_Hi_j1i2=gsl_matrix_get (Hi, j1, k*d_size+i2);
- d_Hi_j1j2=gsl_matrix_get (Hi, j1, k*d_size+j2);
-
- if (i1==j1) {
- gsl_blas_daxpy (delta*delta*d_Hi_j1i2*d_Hiy_j, &xHi_col_i.vector,
- xHiDHiDHiy_gg);
- gsl_blas_daxpy (d_Hi_j1i2*d_Hiy_j, &xHi_col_i.vector,
- xHiDHiDHiy_ee);
- gsl_blas_daxpy (delta*d_Hi_j1i2*d_Hiy_j, &xHi_col_i.vector,
- xHiDHiDHiy_ge);
-
- if (i2!=j2) {
- gsl_blas_daxpy (delta*delta*d_Hi_j1j2*d_Hiy_i,
- &xHi_col_i.vector, xHiDHiDHiy_gg);
- gsl_blas_daxpy (d_Hi_j1j2*d_Hiy_i, &xHi_col_i.vector,
- xHiDHiDHiy_ee);
- gsl_blas_daxpy (delta*d_Hi_j1j2*d_Hiy_i, &xHi_col_i.vector,
- xHiDHiDHiy_ge);
- }
- } else {
- gsl_blas_daxpy (delta*delta*d_Hi_j1i2*d_Hiy_j, &xHi_col_i.vector,
- xHiDHiDHiy_gg);
- gsl_blas_daxpy (d_Hi_j1i2*d_Hiy_j, &xHi_col_i.vector,
- xHiDHiDHiy_ee);
- gsl_blas_daxpy (delta*d_Hi_j1i2*d_Hiy_j, &xHi_col_i.vector,
- xHiDHiDHiy_ge);
-
- gsl_blas_daxpy (delta*delta*d_Hi_i1i2*d_Hiy_j, &xHi_col_j.vector,
- xHiDHiDHiy_gg);
- gsl_blas_daxpy (d_Hi_i1i2*d_Hiy_j, &xHi_col_j.vector,
- xHiDHiDHiy_ee);
- gsl_blas_daxpy (delta*d_Hi_i1i2*d_Hiy_j, &xHi_col_j.vector,
- xHiDHiDHiy_ge);
-
- if (i2!=j2) {
- gsl_blas_daxpy (delta*delta*d_Hi_j1j2*d_Hiy_i,
- &xHi_col_i.vector, xHiDHiDHiy_gg);
- gsl_blas_daxpy (d_Hi_j1j2*d_Hiy_i, &xHi_col_i.vector,
- xHiDHiDHiy_ee);
- gsl_blas_daxpy (delta*d_Hi_j1j2*d_Hiy_i, &xHi_col_i.vector,
- xHiDHiDHiy_ge);
-
- gsl_blas_daxpy (delta*delta*d_Hi_i1j2*d_Hiy_i,
- &xHi_col_j.vector, xHiDHiDHiy_gg);
- gsl_blas_daxpy (d_Hi_i1j2*d_Hiy_i, &xHi_col_j.vector,
- xHiDHiDHiy_ee);
- gsl_blas_daxpy (delta*d_Hi_i1j2*d_Hiy_i, &xHi_col_j.vector,
- xHiDHiDHiy_ge);
- }
- }
- }
-
- return;
+void Calc_xHiDHiDHiy(const gsl_vector *eval, const gsl_matrix *Hi,
+ const gsl_matrix *xHi, const gsl_matrix *Hiy,
+ const size_t i1, const size_t j1, const size_t i2,
+ const size_t j2, gsl_vector *xHiDHiDHiy_gg,
+ gsl_vector *xHiDHiDHiy_ee, gsl_vector *xHiDHiDHiy_ge) {
+ gsl_vector_set_zero(xHiDHiDHiy_gg);
+ gsl_vector_set_zero(xHiDHiDHiy_ee);
+ gsl_vector_set_zero(xHiDHiDHiy_ge);
+
+ size_t n_size = eval->size, d_size = Hiy->size1;
+
+ double delta, d_Hiy_i, d_Hiy_j, d_Hi_i1i2, d_Hi_i1j2;
+ double d_Hi_j1i2, d_Hi_j1j2;
+
+ for (size_t k = 0; k < n_size; k++) {
+ delta = gsl_vector_get(eval, k);
+
+ gsl_vector_const_view xHi_col_i =
+ gsl_matrix_const_column(xHi, k * d_size + i1);
+ gsl_vector_const_view xHi_col_j =
+ gsl_matrix_const_column(xHi, k * d_size + j1);
+
+ d_Hiy_i = gsl_matrix_get(Hiy, i2, k);
+ d_Hiy_j = gsl_matrix_get(Hiy, j2, k);
+
+ d_Hi_i1i2 = gsl_matrix_get(Hi, i1, k * d_size + i2);
+ d_Hi_i1j2 = gsl_matrix_get(Hi, i1, k * d_size + j2);
+ d_Hi_j1i2 = gsl_matrix_get(Hi, j1, k * d_size + i2);
+ d_Hi_j1j2 = gsl_matrix_get(Hi, j1, k * d_size + j2);
+
+ if (i1 == j1) {
+ gsl_blas_daxpy(delta * delta * d_Hi_j1i2 * d_Hiy_j, &xHi_col_i.vector,
+ xHiDHiDHiy_gg);
+ gsl_blas_daxpy(d_Hi_j1i2 * d_Hiy_j, &xHi_col_i.vector, xHiDHiDHiy_ee);
+ gsl_blas_daxpy(delta * d_Hi_j1i2 * d_Hiy_j, &xHi_col_i.vector,
+ xHiDHiDHiy_ge);
+
+ if (i2 != j2) {
+ gsl_blas_daxpy(delta * delta * d_Hi_j1j2 * d_Hiy_i, &xHi_col_i.vector,
+ xHiDHiDHiy_gg);
+ gsl_blas_daxpy(d_Hi_j1j2 * d_Hiy_i, &xHi_col_i.vector, xHiDHiDHiy_ee);
+ gsl_blas_daxpy(delta * d_Hi_j1j2 * d_Hiy_i, &xHi_col_i.vector,
+ xHiDHiDHiy_ge);
+ }
+ } else {
+ gsl_blas_daxpy(delta * delta * d_Hi_j1i2 * d_Hiy_j, &xHi_col_i.vector,
+ xHiDHiDHiy_gg);
+ gsl_blas_daxpy(d_Hi_j1i2 * d_Hiy_j, &xHi_col_i.vector, xHiDHiDHiy_ee);
+ gsl_blas_daxpy(delta * d_Hi_j1i2 * d_Hiy_j, &xHi_col_i.vector,
+ xHiDHiDHiy_ge);
+
+ gsl_blas_daxpy(delta * delta * d_Hi_i1i2 * d_Hiy_j, &xHi_col_j.vector,
+ xHiDHiDHiy_gg);
+ gsl_blas_daxpy(d_Hi_i1i2 * d_Hiy_j, &xHi_col_j.vector, xHiDHiDHiy_ee);
+ gsl_blas_daxpy(delta * d_Hi_i1i2 * d_Hiy_j, &xHi_col_j.vector,
+ xHiDHiDHiy_ge);
+
+ if (i2 != j2) {
+ gsl_blas_daxpy(delta * delta * d_Hi_j1j2 * d_Hiy_i, &xHi_col_i.vector,
+ xHiDHiDHiy_gg);
+ gsl_blas_daxpy(d_Hi_j1j2 * d_Hiy_i, &xHi_col_i.vector, xHiDHiDHiy_ee);
+ gsl_blas_daxpy(delta * d_Hi_j1j2 * d_Hiy_i, &xHi_col_i.vector,
+ xHiDHiDHiy_ge);
+
+ gsl_blas_daxpy(delta * delta * d_Hi_i1j2 * d_Hiy_i, &xHi_col_j.vector,
+ xHiDHiDHiy_gg);
+ gsl_blas_daxpy(d_Hi_i1j2 * d_Hiy_i, &xHi_col_j.vector, xHiDHiDHiy_ee);
+ gsl_blas_daxpy(delta * d_Hi_i1j2 * d_Hiy_i, &xHi_col_j.vector,
+ xHiDHiDHiy_ge);
+ }
+ }
+ }
+
+ return;
}
+void Calc_xHiDHiDHix(const gsl_vector *eval, const gsl_matrix *Hi,
+ const gsl_matrix *xHi, const size_t i1, const size_t j1,
+ const size_t i2, const size_t j2,
+ gsl_matrix *xHiDHiDHix_gg, gsl_matrix *xHiDHiDHix_ee,
+ gsl_matrix *xHiDHiDHix_ge) {
+ gsl_matrix_set_zero(xHiDHiDHix_gg);
+ gsl_matrix_set_zero(xHiDHiDHix_ee);
+ gsl_matrix_set_zero(xHiDHiDHix_ge);
+
+ size_t n_size = eval->size, d_size = Hi->size1, dc_size = xHi->size1;
+
+ double delta, d_Hi_i1i2, d_Hi_i1j2, d_Hi_j1i2, d_Hi_j1j2;
+
+ gsl_matrix *mat_dcdc = gsl_matrix_alloc(dc_size, dc_size);
+
+ for (size_t k = 0; k < n_size; k++) {
+ delta = gsl_vector_get(eval, k);
+
+ gsl_vector_const_view xHi_col_i1 =
+ gsl_matrix_const_column(xHi, k * d_size + i1);
+ gsl_vector_const_view xHi_col_j1 =
+ gsl_matrix_const_column(xHi, k * d_size + j1);
+ gsl_vector_const_view xHi_col_i2 =
+ gsl_matrix_const_column(xHi, k * d_size + i2);
+ gsl_vector_const_view xHi_col_j2 =
+ gsl_matrix_const_column(xHi, k * d_size + j2);
+
+ d_Hi_i1i2 = gsl_matrix_get(Hi, i1, k * d_size + i2);
+ d_Hi_i1j2 = gsl_matrix_get(Hi, i1, k * d_size + j2);
+ d_Hi_j1i2 = gsl_matrix_get(Hi, j1, k * d_size + i2);
+ d_Hi_j1j2 = gsl_matrix_get(Hi, j1, k * d_size + j2);
+
+ if (i1 == j1) {
+ gsl_matrix_set_zero(mat_dcdc);
+ gsl_blas_dger(d_Hi_j1i2, &xHi_col_i1.vector, &xHi_col_j2.vector,
+ mat_dcdc);
+
+ gsl_matrix_add(xHiDHiDHix_ee, mat_dcdc);
+ gsl_matrix_scale(mat_dcdc, delta);
+ gsl_matrix_add(xHiDHiDHix_ge, mat_dcdc);
+ gsl_matrix_scale(mat_dcdc, delta);
+ gsl_matrix_add(xHiDHiDHix_gg, mat_dcdc);
+
+ if (i2 != j2) {
+ gsl_matrix_set_zero(mat_dcdc);
+ gsl_blas_dger(d_Hi_j1j2, &xHi_col_i1.vector, &xHi_col_i2.vector,
+ mat_dcdc);
+
+ gsl_matrix_add(xHiDHiDHix_ee, mat_dcdc);
+ gsl_matrix_scale(mat_dcdc, delta);
+ gsl_matrix_add(xHiDHiDHix_ge, mat_dcdc);
+ gsl_matrix_scale(mat_dcdc, delta);
+ gsl_matrix_add(xHiDHiDHix_gg, mat_dcdc);
+ }
+ } else {
+ gsl_matrix_set_zero(mat_dcdc);
+ gsl_blas_dger(d_Hi_j1i2, &xHi_col_i1.vector, &xHi_col_j2.vector,
+ mat_dcdc);
+
+ gsl_matrix_add(xHiDHiDHix_ee, mat_dcdc);
+ gsl_matrix_scale(mat_dcdc, delta);
+ gsl_matrix_add(xHiDHiDHix_ge, mat_dcdc);
+ gsl_matrix_scale(mat_dcdc, delta);
+ gsl_matrix_add(xHiDHiDHix_gg, mat_dcdc);
+
+ gsl_matrix_set_zero(mat_dcdc);
+ gsl_blas_dger(d_Hi_i1i2, &xHi_col_j1.vector, &xHi_col_j2.vector,
+ mat_dcdc);
+
+ gsl_matrix_add(xHiDHiDHix_ee, mat_dcdc);
+ gsl_matrix_scale(mat_dcdc, delta);
+ gsl_matrix_add(xHiDHiDHix_ge, mat_dcdc);
+ gsl_matrix_scale(mat_dcdc, delta);
+ gsl_matrix_add(xHiDHiDHix_gg, mat_dcdc);
+
+ if (i2 != j2) {
+ gsl_matrix_set_zero(mat_dcdc);
+ gsl_blas_dger(d_Hi_j1j2, &xHi_col_i1.vector, &xHi_col_i2.vector,
+ mat_dcdc);
+
+ gsl_matrix_add(xHiDHiDHix_ee, mat_dcdc);
+ gsl_matrix_scale(mat_dcdc, delta);
+ gsl_matrix_add(xHiDHiDHix_ge, mat_dcdc);
+ gsl_matrix_scale(mat_dcdc, delta);
+ gsl_matrix_add(xHiDHiDHix_gg, mat_dcdc);
+
+ gsl_matrix_set_zero(mat_dcdc);
+ gsl_blas_dger(d_Hi_i1j2, &xHi_col_j1.vector, &xHi_col_i2.vector,
+ mat_dcdc);
+
+ gsl_matrix_add(xHiDHiDHix_ee, mat_dcdc);
+ gsl_matrix_scale(mat_dcdc, delta);
+ gsl_matrix_add(xHiDHiDHix_ge, mat_dcdc);
+ gsl_matrix_scale(mat_dcdc, delta);
+ gsl_matrix_add(xHiDHiDHix_gg, mat_dcdc);
+ }
+ }
+ }
+
+ gsl_matrix_free(mat_dcdc);
-void Calc_xHiDHiDHix (const gsl_vector *eval, const gsl_matrix *Hi,
- const gsl_matrix *xHi, const size_t i1, const size_t j1,
- const size_t i2, const size_t j2,
- gsl_matrix *xHiDHiDHix_gg, gsl_matrix *xHiDHiDHix_ee,
- gsl_matrix *xHiDHiDHix_ge) {
- gsl_matrix_set_zero(xHiDHiDHix_gg);
- gsl_matrix_set_zero(xHiDHiDHix_ee);
- gsl_matrix_set_zero(xHiDHiDHix_ge);
-
- size_t n_size=eval->size, d_size=Hi->size1, dc_size=xHi->size1;
-
- double delta, d_Hi_i1i2, d_Hi_i1j2, d_Hi_j1i2, d_Hi_j1j2;
-
- gsl_matrix *mat_dcdc=gsl_matrix_alloc (dc_size, dc_size);
-
- for (size_t k=0; k<n_size; k++) {
- delta=gsl_vector_get (eval, k);
-
- gsl_vector_const_view xHi_col_i1=
- gsl_matrix_const_column (xHi, k*d_size+i1);
- gsl_vector_const_view xHi_col_j1=
- gsl_matrix_const_column (xHi, k*d_size+j1);
- gsl_vector_const_view xHi_col_i2=
- gsl_matrix_const_column (xHi, k*d_size+i2);
- gsl_vector_const_view xHi_col_j2=
- gsl_matrix_const_column (xHi, k*d_size+j2);
-
- d_Hi_i1i2=gsl_matrix_get (Hi, i1, k*d_size+i2);
- d_Hi_i1j2=gsl_matrix_get (Hi, i1, k*d_size+j2);
- d_Hi_j1i2=gsl_matrix_get (Hi, j1, k*d_size+i2);
- d_Hi_j1j2=gsl_matrix_get (Hi, j1, k*d_size+j2);
-
- if (i1==j1) {
- gsl_matrix_set_zero (mat_dcdc);
- gsl_blas_dger (d_Hi_j1i2, &xHi_col_i1.vector,
- &xHi_col_j2.vector, mat_dcdc);
-
- gsl_matrix_add(xHiDHiDHix_ee, mat_dcdc);
- gsl_matrix_scale(mat_dcdc, delta);
- gsl_matrix_add(xHiDHiDHix_ge, mat_dcdc);
- gsl_matrix_scale(mat_dcdc, delta);
- gsl_matrix_add(xHiDHiDHix_gg, mat_dcdc);
-
- if (i2!=j2) {
- gsl_matrix_set_zero (mat_dcdc);
- gsl_blas_dger (d_Hi_j1j2, &xHi_col_i1.vector,
- &xHi_col_i2.vector, mat_dcdc);
-
- gsl_matrix_add(xHiDHiDHix_ee, mat_dcdc);
- gsl_matrix_scale(mat_dcdc, delta);
- gsl_matrix_add(xHiDHiDHix_ge, mat_dcdc);
- gsl_matrix_scale(mat_dcdc, delta);
- gsl_matrix_add(xHiDHiDHix_gg, mat_dcdc);
- }
- } else {
- gsl_matrix_set_zero (mat_dcdc);
- gsl_blas_dger (d_Hi_j1i2, &xHi_col_i1.vector,
- &xHi_col_j2.vector, mat_dcdc);
-
- gsl_matrix_add(xHiDHiDHix_ee, mat_dcdc);
- gsl_matrix_scale(mat_dcdc, delta);
- gsl_matrix_add(xHiDHiDHix_ge, mat_dcdc);
- gsl_matrix_scale(mat_dcdc, delta);
- gsl_matrix_add(xHiDHiDHix_gg, mat_dcdc);
-
- gsl_matrix_set_zero (mat_dcdc);
- gsl_blas_dger (d_Hi_i1i2, &xHi_col_j1.vector,
- &xHi_col_j2.vector, mat_dcdc);
-
- gsl_matrix_add(xHiDHiDHix_ee, mat_dcdc);
- gsl_matrix_scale(mat_dcdc, delta);
- gsl_matrix_add(xHiDHiDHix_ge, mat_dcdc);
- gsl_matrix_scale(mat_dcdc, delta);
- gsl_matrix_add(xHiDHiDHix_gg, mat_dcdc);
-
- if (i2!=j2) {
- gsl_matrix_set_zero (mat_dcdc);
- gsl_blas_dger (d_Hi_j1j2, &xHi_col_i1.vector,
- &xHi_col_i2.vector, mat_dcdc);
-
- gsl_matrix_add(xHiDHiDHix_ee, mat_dcdc);
- gsl_matrix_scale(mat_dcdc, delta);
- gsl_matrix_add(xHiDHiDHix_ge, mat_dcdc);
- gsl_matrix_scale(mat_dcdc, delta);
- gsl_matrix_add(xHiDHiDHix_gg, mat_dcdc);
-
- gsl_matrix_set_zero (mat_dcdc);
- gsl_blas_dger (d_Hi_i1j2, &xHi_col_j1.vector,
- &xHi_col_i2.vector, mat_dcdc);
-
- gsl_matrix_add(xHiDHiDHix_ee, mat_dcdc);
- gsl_matrix_scale(mat_dcdc, delta);
- gsl_matrix_add(xHiDHiDHix_ge, mat_dcdc);
- gsl_matrix_scale(mat_dcdc, delta);
- gsl_matrix_add(xHiDHiDHix_gg, mat_dcdc);
- }
- }
- }
-
- gsl_matrix_free(mat_dcdc);
-
- return;
+ return;
}
-void Calc_traceHiD (const gsl_vector *eval, const gsl_matrix *Hi,
- const size_t i, const size_t j, double &tHiD_g,
- double &tHiD_e) {
- tHiD_g=0.0;
- tHiD_e=0.0;
-
- size_t n_size=eval->size, d_size=Hi->size1;
- double delta, d;
-
- for (size_t k=0; k<n_size; k++) {
- delta=gsl_vector_get (eval, k);
- d=gsl_matrix_get (Hi, j, k*d_size+i);
-
- if (i==j) {
- tHiD_g+=delta*d;
- tHiD_e+=d;
- } else {
- tHiD_g+=delta*d*2.0;
- tHiD_e+=d*2.0;
- }
- }
-
- return;
+void Calc_traceHiD(const gsl_vector *eval, const gsl_matrix *Hi, const size_t i,
+ const size_t j, double &tHiD_g, double &tHiD_e) {
+ tHiD_g = 0.0;
+ tHiD_e = 0.0;
+
+ size_t n_size = eval->size, d_size = Hi->size1;
+ double delta, d;
+
+ for (size_t k = 0; k < n_size; k++) {
+ delta = gsl_vector_get(eval, k);
+ d = gsl_matrix_get(Hi, j, k * d_size + i);
+
+ if (i == j) {
+ tHiD_g += delta * d;
+ tHiD_e += d;
+ } else {
+ tHiD_g += delta * d * 2.0;
+ tHiD_e += d * 2.0;
+ }
+ }
+
+ return;
}
-void Calc_traceHiDHiD (const gsl_vector *eval, const gsl_matrix *Hi,
- const size_t i1, const size_t j1, const size_t i2,
- const size_t j2, double &tHiDHiD_gg, double &tHiDHiD_ee,
- double &tHiDHiD_ge) {
- tHiDHiD_gg=0.0;
- tHiDHiD_ee=0.0;
- tHiDHiD_ge=0.0;
-
- size_t n_size=eval->size, d_size=Hi->size1;
- double delta, d_Hi_i1i2, d_Hi_i1j2, d_Hi_j1i2, d_Hi_j1j2;
-
- for (size_t k=0; k<n_size; k++) {
- delta=gsl_vector_get (eval, k);
-
- d_Hi_i1i2=gsl_matrix_get (Hi, i1, k*d_size+i2);
- d_Hi_i1j2=gsl_matrix_get (Hi, i1, k*d_size+j2);
- d_Hi_j1i2=gsl_matrix_get (Hi, j1, k*d_size+i2);
- d_Hi_j1j2=gsl_matrix_get (Hi, j1, k*d_size+j2);
-
- if (i1==j1) {
- tHiDHiD_gg+=delta*delta*d_Hi_i1j2*d_Hi_j1i2;
- tHiDHiD_ee+=d_Hi_i1j2*d_Hi_j1i2;
- tHiDHiD_ge+=delta*d_Hi_i1j2*d_Hi_j1i2;
-
- if (i2!=j2) {
- tHiDHiD_gg+=delta*delta*d_Hi_i1i2*d_Hi_j1j2;
- tHiDHiD_ee+=d_Hi_i1i2*d_Hi_j1j2;
- tHiDHiD_ge+=delta*d_Hi_i1i2*d_Hi_j1j2;
- }
- } else {
- tHiDHiD_gg+=delta*delta*(d_Hi_i1j2*d_Hi_j1i2+d_Hi_j1j2*
- d_Hi_i1i2);
- tHiDHiD_ee+=(d_Hi_i1j2*d_Hi_j1i2+d_Hi_j1j2*d_Hi_i1i2);
- tHiDHiD_ge+=delta*(d_Hi_i1j2*d_Hi_j1i2+d_Hi_j1j2*d_Hi_i1i2);
-
- if (i2!=j2) {
- tHiDHiD_gg+=delta*delta*(d_Hi_i1i2*d_Hi_j1j2+d_Hi_j1i2*
- d_Hi_i1j2);
- tHiDHiD_ee+=(d_Hi_i1i2*d_Hi_j1j2+d_Hi_j1i2*d_Hi_i1j2);
- tHiDHiD_ge+=delta*(d_Hi_i1i2*d_Hi_j1j2 +
- d_Hi_j1i2*d_Hi_i1j2);
- }
- }
- }
-
- return;
+void Calc_traceHiDHiD(const gsl_vector *eval, const gsl_matrix *Hi,
+ const size_t i1, const size_t j1, const size_t i2,
+ const size_t j2, double &tHiDHiD_gg, double &tHiDHiD_ee,
+ double &tHiDHiD_ge) {
+ tHiDHiD_gg = 0.0;
+ tHiDHiD_ee = 0.0;
+ tHiDHiD_ge = 0.0;
+
+ size_t n_size = eval->size, d_size = Hi->size1;
+ double delta, d_Hi_i1i2, d_Hi_i1j2, d_Hi_j1i2, d_Hi_j1j2;
+
+ for (size_t k = 0; k < n_size; k++) {
+ delta = gsl_vector_get(eval, k);
+
+ d_Hi_i1i2 = gsl_matrix_get(Hi, i1, k * d_size + i2);
+ d_Hi_i1j2 = gsl_matrix_get(Hi, i1, k * d_size + j2);
+ d_Hi_j1i2 = gsl_matrix_get(Hi, j1, k * d_size + i2);
+ d_Hi_j1j2 = gsl_matrix_get(Hi, j1, k * d_size + j2);
+
+ if (i1 == j1) {
+ tHiDHiD_gg += delta * delta * d_Hi_i1j2 * d_Hi_j1i2;
+ tHiDHiD_ee += d_Hi_i1j2 * d_Hi_j1i2;
+ tHiDHiD_ge += delta * d_Hi_i1j2 * d_Hi_j1i2;
+
+ if (i2 != j2) {
+ tHiDHiD_gg += delta * delta * d_Hi_i1i2 * d_Hi_j1j2;
+ tHiDHiD_ee += d_Hi_i1i2 * d_Hi_j1j2;
+ tHiDHiD_ge += delta * d_Hi_i1i2 * d_Hi_j1j2;
+ }
+ } else {
+ tHiDHiD_gg +=
+ delta * delta * (d_Hi_i1j2 * d_Hi_j1i2 + d_Hi_j1j2 * d_Hi_i1i2);
+ tHiDHiD_ee += (d_Hi_i1j2 * d_Hi_j1i2 + d_Hi_j1j2 * d_Hi_i1i2);
+ tHiDHiD_ge += delta * (d_Hi_i1j2 * d_Hi_j1i2 + d_Hi_j1j2 * d_Hi_i1i2);
+
+ if (i2 != j2) {
+ tHiDHiD_gg +=
+ delta * delta * (d_Hi_i1i2 * d_Hi_j1j2 + d_Hi_j1i2 * d_Hi_i1j2);
+ tHiDHiD_ee += (d_Hi_i1i2 * d_Hi_j1j2 + d_Hi_j1i2 * d_Hi_i1j2);
+ tHiDHiD_ge += delta * (d_Hi_i1i2 * d_Hi_j1j2 + d_Hi_j1i2 * d_Hi_i1j2);
+ }
+ }
+ }
+
+ return;
}
// trace(PD) = trace((Hi-HixQixHi)D)=trace(HiD) - trace(HixQixHiD)
-void Calc_tracePD (const gsl_vector *eval, const gsl_matrix *Qi,
- const gsl_matrix *Hi, const gsl_matrix *xHiDHix_all_g,
- const gsl_matrix *xHiDHix_all_e, const size_t i,
- const size_t j, double &tPD_g, double &tPD_e) {
- size_t dc_size=Qi->size1, d_size=Hi->size1;
- size_t v=GetIndex(i, j, d_size);
-
- double d;
-
- // Calculate the first part: trace(HiD).
- Calc_traceHiD (eval, Hi, i, j, tPD_g, tPD_e);
-
- // Calculate the second part: -trace(HixQixHiD).
- for (size_t k=0; k<dc_size; k++) {
- gsl_vector_const_view Qi_row=gsl_matrix_const_row (Qi, k);
- gsl_vector_const_view xHiDHix_g_col =
- gsl_matrix_const_column (xHiDHix_all_g, v*dc_size+k);
- gsl_vector_const_view xHiDHix_e_col =
- gsl_matrix_const_column (xHiDHix_all_e, v*dc_size+k);
-
- gsl_blas_ddot(&Qi_row.vector, &xHiDHix_g_col.vector, &d);
- tPD_g-=d;
- gsl_blas_ddot(&Qi_row.vector, &xHiDHix_e_col.vector, &d);
- tPD_e-=d;
- }
-
- return;
+void Calc_tracePD(const gsl_vector *eval, const gsl_matrix *Qi,
+ const gsl_matrix *Hi, const gsl_matrix *xHiDHix_all_g,
+ const gsl_matrix *xHiDHix_all_e, const size_t i,
+ const size_t j, double &tPD_g, double &tPD_e) {
+ size_t dc_size = Qi->size1, d_size = Hi->size1;
+ size_t v = GetIndex(i, j, d_size);
+
+ double d;
+
+ // Calculate the first part: trace(HiD).
+ Calc_traceHiD(eval, Hi, i, j, tPD_g, tPD_e);
+
+ // Calculate the second part: -trace(HixQixHiD).
+ for (size_t k = 0; k < dc_size; k++) {
+ gsl_vector_const_view Qi_row = gsl_matrix_const_row(Qi, k);
+ gsl_vector_const_view xHiDHix_g_col =
+ gsl_matrix_const_column(xHiDHix_all_g, v * dc_size + k);
+ gsl_vector_const_view xHiDHix_e_col =
+ gsl_matrix_const_column(xHiDHix_all_e, v * dc_size + k);
+
+ gsl_blas_ddot(&Qi_row.vector, &xHiDHix_g_col.vector, &d);
+ tPD_g -= d;
+ gsl_blas_ddot(&Qi_row.vector, &xHiDHix_e_col.vector, &d);
+ tPD_e -= d;
+ }
+
+ return;
}
// trace(PDPD) = trace((Hi-HixQixHi)D(Hi-HixQixHi)D)
// = trace(HiDHiD) - trace(HixQixHiDHiD)
// - trace(HiDHixQixHiD) + trace(HixQixHiDHixQixHiD)
-void Calc_tracePDPD (const gsl_vector *eval, const gsl_matrix *Qi,
- const gsl_matrix *Hi, const gsl_matrix *xHi,
- const gsl_matrix *QixHiDHix_all_g,
- const gsl_matrix *QixHiDHix_all_e,
- const gsl_matrix *xHiDHiDHix_all_gg,
- const gsl_matrix *xHiDHiDHix_all_ee,
- const gsl_matrix *xHiDHiDHix_all_ge,
- const size_t i1, const size_t j1,
- const size_t i2, const size_t j2,
- double &tPDPD_gg, double &tPDPD_ee,
- double &tPDPD_ge) {
- size_t dc_size=Qi->size1, d_size=Hi->size1;
- size_t v_size=d_size*(d_size+1)/2;
- size_t v1=GetIndex(i1, j1, d_size), v2=GetIndex(i2, j2, d_size);
-
- double d;
-
- // Calculate the first part: trace(HiDHiD).
- Calc_traceHiDHiD (eval, Hi, i1, j1, i2, j2, tPDPD_gg, tPDPD_ee,
- tPDPD_ge);
-
- // Calculate the second and third parts:
- // -trace(HixQixHiDHiD) - trace(HiDHixQixHiD)
- for (size_t i=0; i<dc_size; i++) {
- gsl_vector_const_view Qi_row=gsl_matrix_const_row (Qi, i);
- gsl_vector_const_view xHiDHiDHix_gg_col=
- gsl_matrix_const_column(xHiDHiDHix_all_gg,
- (v1*v_size+v2)*dc_size+i);
- gsl_vector_const_view xHiDHiDHix_ee_col =
- gsl_matrix_const_column(xHiDHiDHix_all_ee,
- (v1*v_size+v2)*dc_size+i);
- gsl_vector_const_view xHiDHiDHix_ge_col =
- gsl_matrix_const_column(xHiDHiDHix_all_ge,
- (v1*v_size+v2)*dc_size+i);
-
- gsl_blas_ddot(&Qi_row.vector, &xHiDHiDHix_gg_col.vector, &d);
- tPDPD_gg-=d*2.0;
- gsl_blas_ddot(&Qi_row.vector, &xHiDHiDHix_ee_col.vector, &d);
- tPDPD_ee-=d*2.0;
- gsl_blas_ddot(&Qi_row.vector, &xHiDHiDHix_ge_col.vector, &d);
- tPDPD_ge-=d*2.0;
- }
-
- // Calculate the fourth part: trace(HixQixHiDHixQixHiD).
- for (size_t i=0; i<dc_size; i++) {
-
- gsl_vector_const_view QixHiDHix_g_fullrow1 =
- gsl_matrix_const_row (QixHiDHix_all_g, i);
- gsl_vector_const_view QixHiDHix_e_fullrow1 =
- gsl_matrix_const_row (QixHiDHix_all_e, i);
- gsl_vector_const_view QixHiDHix_g_row1 =
- gsl_vector_const_subvector (&QixHiDHix_g_fullrow1.vector,
- v1*dc_size, dc_size);
- gsl_vector_const_view QixHiDHix_e_row1 =
- gsl_vector_const_subvector (&QixHiDHix_e_fullrow1.vector,
- v1*dc_size, dc_size);
-
- gsl_vector_const_view QixHiDHix_g_col2 =
- gsl_matrix_const_column (QixHiDHix_all_g, v2*dc_size+i);
- gsl_vector_const_view QixHiDHix_e_col2 =
- gsl_matrix_const_column (QixHiDHix_all_e, v2*dc_size+i);
-
- gsl_blas_ddot(&QixHiDHix_g_row1.vector,&QixHiDHix_g_col2.vector,&d);
- tPDPD_gg+=d;
- gsl_blas_ddot(&QixHiDHix_e_row1.vector,&QixHiDHix_e_col2.vector,&d);
- tPDPD_ee+=d;
- gsl_blas_ddot(&QixHiDHix_g_row1.vector,&QixHiDHix_e_col2.vector,&d);
- tPDPD_ge+=d;
- }
-
- return;
+void Calc_tracePDPD(const gsl_vector *eval, const gsl_matrix *Qi,
+ const gsl_matrix *Hi, const gsl_matrix *xHi,
+ const gsl_matrix *QixHiDHix_all_g,
+ const gsl_matrix *QixHiDHix_all_e,
+ const gsl_matrix *xHiDHiDHix_all_gg,
+ const gsl_matrix *xHiDHiDHix_all_ee,
+ const gsl_matrix *xHiDHiDHix_all_ge, const size_t i1,
+ const size_t j1, const size_t i2, const size_t j2,
+ double &tPDPD_gg, double &tPDPD_ee, double &tPDPD_ge) {
+ size_t dc_size = Qi->size1, d_size = Hi->size1;
+ size_t v_size = d_size * (d_size + 1) / 2;
+ size_t v1 = GetIndex(i1, j1, d_size), v2 = GetIndex(i2, j2, d_size);
+
+ double d;
+
+ // Calculate the first part: trace(HiDHiD).
+ Calc_traceHiDHiD(eval, Hi, i1, j1, i2, j2, tPDPD_gg, tPDPD_ee, tPDPD_ge);
+
+ // Calculate the second and third parts:
+ // -trace(HixQixHiDHiD) - trace(HiDHixQixHiD)
+ for (size_t i = 0; i < dc_size; i++) {
+ gsl_vector_const_view Qi_row = gsl_matrix_const_row(Qi, i);
+ gsl_vector_const_view xHiDHiDHix_gg_col = gsl_matrix_const_column(
+ xHiDHiDHix_all_gg, (v1 * v_size + v2) * dc_size + i);
+ gsl_vector_const_view xHiDHiDHix_ee_col = gsl_matrix_const_column(
+ xHiDHiDHix_all_ee, (v1 * v_size + v2) * dc_size + i);
+ gsl_vector_const_view xHiDHiDHix_ge_col = gsl_matrix_const_column(
+ xHiDHiDHix_all_ge, (v1 * v_size + v2) * dc_size + i);
+
+ gsl_blas_ddot(&Qi_row.vector, &xHiDHiDHix_gg_col.vector, &d);
+ tPDPD_gg -= d * 2.0;
+ gsl_blas_ddot(&Qi_row.vector, &xHiDHiDHix_ee_col.vector, &d);
+ tPDPD_ee -= d * 2.0;
+ gsl_blas_ddot(&Qi_row.vector, &xHiDHiDHix_ge_col.vector, &d);
+ tPDPD_ge -= d * 2.0;
+ }
+
+ // Calculate the fourth part: trace(HixQixHiDHixQixHiD).
+ for (size_t i = 0; i < dc_size; i++) {
+
+ gsl_vector_const_view QixHiDHix_g_fullrow1 =
+ gsl_matrix_const_row(QixHiDHix_all_g, i);
+ gsl_vector_const_view QixHiDHix_e_fullrow1 =
+ gsl_matrix_const_row(QixHiDHix_all_e, i);
+ gsl_vector_const_view QixHiDHix_g_row1 = gsl_vector_const_subvector(
+ &QixHiDHix_g_fullrow1.vector, v1 * dc_size, dc_size);
+ gsl_vector_const_view QixHiDHix_e_row1 = gsl_vector_const_subvector(
+ &QixHiDHix_e_fullrow1.vector, v1 * dc_size, dc_size);
+
+ gsl_vector_const_view QixHiDHix_g_col2 =
+ gsl_matrix_const_column(QixHiDHix_all_g, v2 * dc_size + i);
+ gsl_vector_const_view QixHiDHix_e_col2 =
+ gsl_matrix_const_column(QixHiDHix_all_e, v2 * dc_size + i);
+
+ gsl_blas_ddot(&QixHiDHix_g_row1.vector, &QixHiDHix_g_col2.vector, &d);
+ tPDPD_gg += d;
+ gsl_blas_ddot(&QixHiDHix_e_row1.vector, &QixHiDHix_e_col2.vector, &d);
+ tPDPD_ee += d;
+ gsl_blas_ddot(&QixHiDHix_g_row1.vector, &QixHiDHix_e_col2.vector, &d);
+ tPDPD_ge += d;
+ }
+
+ return;
}
// Calculate (xHiDHiy) for every pair (i,j).
-void Calc_xHiDHiy_all (const gsl_vector *eval, const gsl_matrix *xHi,
- const gsl_matrix *Hiy, gsl_matrix *xHiDHiy_all_g,
- gsl_matrix *xHiDHiy_all_e) {
- gsl_matrix_set_zero(xHiDHiy_all_g);
- gsl_matrix_set_zero(xHiDHiy_all_e);
-
- size_t d_size=Hiy->size1;
- size_t v;
-
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<d_size; j++) {
- if (j<i) {continue;}
- v=GetIndex(i, j, d_size);
-
- gsl_vector_view xHiDHiy_g=gsl_matrix_column (xHiDHiy_all_g, v);
- gsl_vector_view xHiDHiy_e=gsl_matrix_column (xHiDHiy_all_e, v);
-
- Calc_xHiDHiy (eval, xHi, Hiy, i, j, &xHiDHiy_g.vector,
- &xHiDHiy_e.vector);
- }
- }
- return;
+void Calc_xHiDHiy_all(const gsl_vector *eval, const gsl_matrix *xHi,
+ const gsl_matrix *Hiy, gsl_matrix *xHiDHiy_all_g,
+ gsl_matrix *xHiDHiy_all_e) {
+ gsl_matrix_set_zero(xHiDHiy_all_g);
+ gsl_matrix_set_zero(xHiDHiy_all_e);
+
+ size_t d_size = Hiy->size1;
+ size_t v;
+
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j < d_size; j++) {
+ if (j < i) {
+ continue;
+ }
+ v = GetIndex(i, j, d_size);
+
+ gsl_vector_view xHiDHiy_g = gsl_matrix_column(xHiDHiy_all_g, v);
+ gsl_vector_view xHiDHiy_e = gsl_matrix_column(xHiDHiy_all_e, v);
+
+ Calc_xHiDHiy(eval, xHi, Hiy, i, j, &xHiDHiy_g.vector, &xHiDHiy_e.vector);
+ }
+ }
+ return;
}
// Calculate (xHiDHix) for every pair (i,j).
-void Calc_xHiDHix_all (const gsl_vector *eval, const gsl_matrix *xHi,
- gsl_matrix *xHiDHix_all_g, gsl_matrix *xHiDHix_all_e) {
+void Calc_xHiDHix_all(const gsl_vector *eval, const gsl_matrix *xHi,
+ gsl_matrix *xHiDHix_all_g, gsl_matrix *xHiDHix_all_e) {
gsl_matrix_set_zero(xHiDHix_all_g);
gsl_matrix_set_zero(xHiDHix_all_e);
-
- size_t d_size=xHi->size2/eval->size, dc_size=xHi->size1;
+
+ size_t d_size = xHi->size2 / eval->size, dc_size = xHi->size1;
size_t v;
-
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<d_size; j++) {
- if (j<i) {continue;}
- v=GetIndex(i, j, d_size);
-
+
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j < d_size; j++) {
+ if (j < i) {
+ continue;
+ }
+ v = GetIndex(i, j, d_size);
+
gsl_matrix_view xHiDHix_g =
- gsl_matrix_submatrix (xHiDHix_all_g, 0, v*dc_size, dc_size, dc_size);
+ gsl_matrix_submatrix(xHiDHix_all_g, 0, v * dc_size, dc_size, dc_size);
gsl_matrix_view xHiDHix_e =
- gsl_matrix_submatrix (xHiDHix_all_e, 0, v*dc_size, dc_size, dc_size);
-
- Calc_xHiDHix (eval, xHi, i, j, &xHiDHix_g.matrix, &xHiDHix_e.matrix);
+ gsl_matrix_submatrix(xHiDHix_all_e, 0, v * dc_size, dc_size, dc_size);
+
+ Calc_xHiDHix(eval, xHi, i, j, &xHiDHix_g.matrix, &xHiDHix_e.matrix);
}
}
return;
}
// Calculate (xHiDHiy) for every pair (i,j).
-void Calc_xHiDHiDHiy_all (const size_t v_size, const gsl_vector *eval,
- const gsl_matrix *Hi, const gsl_matrix *xHi,
- const gsl_matrix *Hiy, gsl_matrix *xHiDHiDHiy_all_gg,
- gsl_matrix *xHiDHiDHiy_all_ee,
- gsl_matrix *xHiDHiDHiy_all_ge) {
- gsl_matrix_set_zero(xHiDHiDHiy_all_gg);
- gsl_matrix_set_zero(xHiDHiDHiy_all_ee);
- gsl_matrix_set_zero(xHiDHiDHiy_all_ge);
-
- size_t d_size=Hiy->size1;
- size_t v1, v2;
-
- for (size_t i1=0; i1<d_size; i1++) {
- for (size_t j1=0; j1<d_size; j1++) {
- if (j1<i1) {continue;}
- v1=GetIndex(i1, j1, d_size);
-
- for (size_t i2=0; i2<d_size; i2++) {
- for (size_t j2=0; j2<d_size; j2++) {
- if (j2<i2) {continue;}
- v2=GetIndex(i2, j2, d_size);
-
- gsl_vector_view xHiDHiDHiy_gg =
- gsl_matrix_column (xHiDHiDHiy_all_gg, v1*v_size+v2);
- gsl_vector_view xHiDHiDHiy_ee =
- gsl_matrix_column (xHiDHiDHiy_all_ee, v1*v_size+v2);
- gsl_vector_view xHiDHiDHiy_ge =
- gsl_matrix_column (xHiDHiDHiy_all_ge, v1*v_size+v2);
-
- Calc_xHiDHiDHiy (eval, Hi, xHi, Hiy, i1, j1, i2, j2, &xHiDHiDHiy_gg.vector, &xHiDHiDHiy_ee.vector, &xHiDHiDHiy_ge.vector);
- }
- }
- }
- }
- return;
+void Calc_xHiDHiDHiy_all(const size_t v_size, const gsl_vector *eval,
+ const gsl_matrix *Hi, const gsl_matrix *xHi,
+ const gsl_matrix *Hiy, gsl_matrix *xHiDHiDHiy_all_gg,
+ gsl_matrix *xHiDHiDHiy_all_ee,
+ gsl_matrix *xHiDHiDHiy_all_ge) {
+ gsl_matrix_set_zero(xHiDHiDHiy_all_gg);
+ gsl_matrix_set_zero(xHiDHiDHiy_all_ee);
+ gsl_matrix_set_zero(xHiDHiDHiy_all_ge);
+
+ size_t d_size = Hiy->size1;
+ size_t v1, v2;
+
+ for (size_t i1 = 0; i1 < d_size; i1++) {
+ for (size_t j1 = 0; j1 < d_size; j1++) {
+ if (j1 < i1) {
+ continue;
+ }
+ v1 = GetIndex(i1, j1, d_size);
+
+ for (size_t i2 = 0; i2 < d_size; i2++) {
+ for (size_t j2 = 0; j2 < d_size; j2++) {
+ if (j2 < i2) {
+ continue;
+ }
+ v2 = GetIndex(i2, j2, d_size);
+
+ gsl_vector_view xHiDHiDHiy_gg =
+ gsl_matrix_column(xHiDHiDHiy_all_gg, v1 * v_size + v2);
+ gsl_vector_view xHiDHiDHiy_ee =
+ gsl_matrix_column(xHiDHiDHiy_all_ee, v1 * v_size + v2);
+ gsl_vector_view xHiDHiDHiy_ge =
+ gsl_matrix_column(xHiDHiDHiy_all_ge, v1 * v_size + v2);
+
+ Calc_xHiDHiDHiy(eval, Hi, xHi, Hiy, i1, j1, i2, j2,
+ &xHiDHiDHiy_gg.vector, &xHiDHiDHiy_ee.vector,
+ &xHiDHiDHiy_ge.vector);
+ }
+ }
+ }
+ }
+ return;
}
// Calculate (xHiDHix) for every pair (i,j).
-void Calc_xHiDHiDHix_all (const size_t v_size, const gsl_vector *eval,
- const gsl_matrix *Hi, const gsl_matrix *xHi,
- gsl_matrix *xHiDHiDHix_all_gg,
- gsl_matrix *xHiDHiDHix_all_ee,
- gsl_matrix *xHiDHiDHix_all_ge) {
- gsl_matrix_set_zero(xHiDHiDHix_all_gg);
- gsl_matrix_set_zero(xHiDHiDHix_all_ee);
- gsl_matrix_set_zero(xHiDHiDHix_all_ge);
-
- size_t d_size=xHi->size2/eval->size, dc_size=xHi->size1;
- size_t v1, v2;
-
- for (size_t i1=0; i1<d_size; i1++) {
- for (size_t j1=0; j1<d_size; j1++) {
- if (j1<i1) {continue;}
- v1=GetIndex(i1, j1, d_size);
-
- for (size_t i2=0; i2<d_size; i2++) {
- for (size_t j2=0; j2<d_size; j2++) {
- if (j2<i2) {continue;}
- v2=GetIndex(i2, j2, d_size);
-
- if (v2<v1) {continue;}
-
- gsl_matrix_view xHiDHiDHix_gg1 =
- gsl_matrix_submatrix (xHiDHiDHix_all_gg, 0,
- (v1*v_size+v2)*dc_size,
- dc_size, dc_size);
- gsl_matrix_view xHiDHiDHix_ee1 =
- gsl_matrix_submatrix (xHiDHiDHix_all_ee, 0,
- (v1*v_size+v2)*dc_size,
- dc_size, dc_size);
- gsl_matrix_view xHiDHiDHix_ge1 =
- gsl_matrix_submatrix (xHiDHiDHix_all_ge, 0,
- (v1*v_size+v2)*dc_size,
- dc_size, dc_size);
-
- Calc_xHiDHiDHix (eval, Hi, xHi, i1, j1, i2, j2,
- &xHiDHiDHix_gg1.matrix,
- &xHiDHiDHix_ee1.matrix,
- &xHiDHiDHix_ge1.matrix);
-
- if (v2!=v1) {
- gsl_matrix_view xHiDHiDHix_gg2 =
- gsl_matrix_submatrix (xHiDHiDHix_all_gg, 0,
- (v2*v_size+v1)*dc_size,
- dc_size, dc_size);
- gsl_matrix_view xHiDHiDHix_ee2 =
- gsl_matrix_submatrix (xHiDHiDHix_all_ee, 0,
- (v2*v_size+v1)*dc_size,
- dc_size, dc_size);
- gsl_matrix_view xHiDHiDHix_ge2 =
- gsl_matrix_submatrix (xHiDHiDHix_all_ge, 0,
- (v2*v_size+v1)*dc_size,
- dc_size, dc_size);
-
- gsl_matrix_memcpy (&xHiDHiDHix_gg2.matrix,
- &xHiDHiDHix_gg1.matrix);
- gsl_matrix_memcpy (&xHiDHiDHix_ee2.matrix,
- &xHiDHiDHix_ee1.matrix);
- gsl_matrix_memcpy (&xHiDHiDHix_ge2.matrix,
- &xHiDHiDHix_ge1.matrix);
- }
- }
- }
- }
- }
-
- return;
+void Calc_xHiDHiDHix_all(const size_t v_size, const gsl_vector *eval,
+ const gsl_matrix *Hi, const gsl_matrix *xHi,
+ gsl_matrix *xHiDHiDHix_all_gg,
+ gsl_matrix *xHiDHiDHix_all_ee,
+ gsl_matrix *xHiDHiDHix_all_ge) {
+ gsl_matrix_set_zero(xHiDHiDHix_all_gg);
+ gsl_matrix_set_zero(xHiDHiDHix_all_ee);
+ gsl_matrix_set_zero(xHiDHiDHix_all_ge);
+
+ size_t d_size = xHi->size2 / eval->size, dc_size = xHi->size1;
+ size_t v1, v2;
+
+ for (size_t i1 = 0; i1 < d_size; i1++) {
+ for (size_t j1 = 0; j1 < d_size; j1++) {
+ if (j1 < i1) {
+ continue;
+ }
+ v1 = GetIndex(i1, j1, d_size);
+
+ for (size_t i2 = 0; i2 < d_size; i2++) {
+ for (size_t j2 = 0; j2 < d_size; j2++) {
+ if (j2 < i2) {
+ continue;
+ }
+ v2 = GetIndex(i2, j2, d_size);
+
+ if (v2 < v1) {
+ continue;
+ }
+
+ gsl_matrix_view xHiDHiDHix_gg1 = gsl_matrix_submatrix(
+ xHiDHiDHix_all_gg, 0, (v1 * v_size + v2) * dc_size, dc_size,
+ dc_size);
+ gsl_matrix_view xHiDHiDHix_ee1 = gsl_matrix_submatrix(
+ xHiDHiDHix_all_ee, 0, (v1 * v_size + v2) * dc_size, dc_size,
+ dc_size);
+ gsl_matrix_view xHiDHiDHix_ge1 = gsl_matrix_submatrix(
+ xHiDHiDHix_all_ge, 0, (v1 * v_size + v2) * dc_size, dc_size,
+ dc_size);
+
+ Calc_xHiDHiDHix(eval, Hi, xHi, i1, j1, i2, j2, &xHiDHiDHix_gg1.matrix,
+ &xHiDHiDHix_ee1.matrix, &xHiDHiDHix_ge1.matrix);
+
+ if (v2 != v1) {
+ gsl_matrix_view xHiDHiDHix_gg2 = gsl_matrix_submatrix(
+ xHiDHiDHix_all_gg, 0, (v2 * v_size + v1) * dc_size, dc_size,
+ dc_size);
+ gsl_matrix_view xHiDHiDHix_ee2 = gsl_matrix_submatrix(
+ xHiDHiDHix_all_ee, 0, (v2 * v_size + v1) * dc_size, dc_size,
+ dc_size);
+ gsl_matrix_view xHiDHiDHix_ge2 = gsl_matrix_submatrix(
+ xHiDHiDHix_all_ge, 0, (v2 * v_size + v1) * dc_size, dc_size,
+ dc_size);
+
+ gsl_matrix_memcpy(&xHiDHiDHix_gg2.matrix, &xHiDHiDHix_gg1.matrix);
+ gsl_matrix_memcpy(&xHiDHiDHix_ee2.matrix, &xHiDHiDHix_ee1.matrix);
+ gsl_matrix_memcpy(&xHiDHiDHix_ge2.matrix, &xHiDHiDHix_ge1.matrix);
+ }
+ }
+ }
+ }
+ }
+
+ return;
}
// Calculate (xHiDHix)Qi(xHiy) for every pair (i,j).
-void Calc_xHiDHixQixHiy_all (const gsl_matrix *xHiDHix_all_g,
- const gsl_matrix *xHiDHix_all_e,
- const gsl_vector *QixHiy,
- gsl_matrix *xHiDHixQixHiy_all_g,
- gsl_matrix *xHiDHixQixHiy_all_e) {
- size_t dc_size=xHiDHix_all_g->size1;
- size_t v_size=xHiDHix_all_g->size2/dc_size;
-
- for (size_t i=0; i<v_size; i++) {
- gsl_matrix_const_view xHiDHix_g =
- gsl_matrix_const_submatrix (xHiDHix_all_g, 0, i*dc_size,
- dc_size, dc_size);
- gsl_matrix_const_view xHiDHix_e =
- gsl_matrix_const_submatrix (xHiDHix_all_e, 0, i*dc_size,
- dc_size, dc_size);
-
- gsl_vector_view xHiDHixQixHiy_g =
- gsl_matrix_column (xHiDHixQixHiy_all_g, i);
- gsl_vector_view xHiDHixQixHiy_e =
- gsl_matrix_column (xHiDHixQixHiy_all_e, i);
-
- gsl_blas_dgemv (CblasNoTrans, 1.0, &xHiDHix_g.matrix,
- QixHiy, 0.0, &xHiDHixQixHiy_g.vector);
- gsl_blas_dgemv (CblasNoTrans, 1.0, &xHiDHix_e.matrix,
- QixHiy, 0.0, &xHiDHixQixHiy_e.vector);
- }
-
- return;
+void Calc_xHiDHixQixHiy_all(const gsl_matrix *xHiDHix_all_g,
+ const gsl_matrix *xHiDHix_all_e,
+ const gsl_vector *QixHiy,
+ gsl_matrix *xHiDHixQixHiy_all_g,
+ gsl_matrix *xHiDHixQixHiy_all_e) {
+ size_t dc_size = xHiDHix_all_g->size1;
+ size_t v_size = xHiDHix_all_g->size2 / dc_size;
+
+ for (size_t i = 0; i < v_size; i++) {
+ gsl_matrix_const_view xHiDHix_g = gsl_matrix_const_submatrix(
+ xHiDHix_all_g, 0, i * dc_size, dc_size, dc_size);
+ gsl_matrix_const_view xHiDHix_e = gsl_matrix_const_submatrix(
+ xHiDHix_all_e, 0, i * dc_size, dc_size, dc_size);
+
+ gsl_vector_view xHiDHixQixHiy_g = gsl_matrix_column(xHiDHixQixHiy_all_g, i);
+ gsl_vector_view xHiDHixQixHiy_e = gsl_matrix_column(xHiDHixQixHiy_all_e, i);
+
+ gsl_blas_dgemv(CblasNoTrans, 1.0, &xHiDHix_g.matrix, QixHiy, 0.0,
+ &xHiDHixQixHiy_g.vector);
+ gsl_blas_dgemv(CblasNoTrans, 1.0, &xHiDHix_e.matrix, QixHiy, 0.0,
+ &xHiDHixQixHiy_e.vector);
+ }
+
+ return;
}
// Calculate Qi(xHiDHiy) and Qi(xHiDHix)Qi(xHiy) for each pair of i,j (i<=j).
-void Calc_QiVec_all (const gsl_matrix *Qi, const gsl_matrix *vec_all_g,
- const gsl_matrix *vec_all_e, gsl_matrix *Qivec_all_g,
- gsl_matrix *Qivec_all_e) {
- for (size_t i=0; i<vec_all_g->size2; i++) {
- gsl_vector_const_view vec_g=gsl_matrix_const_column (vec_all_g, i);
- gsl_vector_const_view vec_e=gsl_matrix_const_column (vec_all_e, i);
-
- gsl_vector_view Qivec_g=gsl_matrix_column (Qivec_all_g, i);
- gsl_vector_view Qivec_e=gsl_matrix_column (Qivec_all_e, i);
-
- gsl_blas_dgemv(CblasNoTrans,1.0,Qi,&vec_g.vector,0.0,
- &Qivec_g.vector);
- gsl_blas_dgemv(CblasNoTrans,1.0,Qi,&vec_e.vector,0.0,
- &Qivec_e.vector);
- }
-
- return;
+void Calc_QiVec_all(const gsl_matrix *Qi, const gsl_matrix *vec_all_g,
+ const gsl_matrix *vec_all_e, gsl_matrix *Qivec_all_g,
+ gsl_matrix *Qivec_all_e) {
+ for (size_t i = 0; i < vec_all_g->size2; i++) {
+ gsl_vector_const_view vec_g = gsl_matrix_const_column(vec_all_g, i);
+ gsl_vector_const_view vec_e = gsl_matrix_const_column(vec_all_e, i);
+
+ gsl_vector_view Qivec_g = gsl_matrix_column(Qivec_all_g, i);
+ gsl_vector_view Qivec_e = gsl_matrix_column(Qivec_all_e, i);
+
+ gsl_blas_dgemv(CblasNoTrans, 1.0, Qi, &vec_g.vector, 0.0, &Qivec_g.vector);
+ gsl_blas_dgemv(CblasNoTrans, 1.0, Qi, &vec_e.vector, 0.0, &Qivec_e.vector);
+ }
+
+ return;
}
// Calculate Qi(xHiDHix) for each pair of i,j (i<=j).
-void Calc_QiMat_all (const gsl_matrix *Qi, const gsl_matrix *mat_all_g,
- const gsl_matrix *mat_all_e, gsl_matrix *Qimat_all_g,
- gsl_matrix *Qimat_all_e) {
- size_t dc_size=Qi->size1;
- size_t v_size=mat_all_g->size2/mat_all_g->size1;
-
- for (size_t i=0; i<v_size; i++) {
- gsl_matrix_const_view mat_g =
- gsl_matrix_const_submatrix (mat_all_g, 0, i*dc_size,
- dc_size, dc_size);
- gsl_matrix_const_view mat_e =
- gsl_matrix_const_submatrix (mat_all_e, 0, i*dc_size,
- dc_size, dc_size);
-
- gsl_matrix_view Qimat_g =
- gsl_matrix_submatrix (Qimat_all_g, 0, i*dc_size, dc_size,
- dc_size);
- gsl_matrix_view Qimat_e =
- gsl_matrix_submatrix (Qimat_all_e, 0, i*dc_size, dc_size,
- dc_size);
-
- gsl_blas_dgemm (CblasNoTrans, CblasNoTrans, 1.0, Qi,
- &mat_g.matrix, 0.0, &Qimat_g.matrix);
- gsl_blas_dgemm (CblasNoTrans, CblasNoTrans, 1.0, Qi,
- &mat_e.matrix, 0.0, &Qimat_e.matrix);
- }
-
- return;
+void Calc_QiMat_all(const gsl_matrix *Qi, const gsl_matrix *mat_all_g,
+ const gsl_matrix *mat_all_e, gsl_matrix *Qimat_all_g,
+ gsl_matrix *Qimat_all_e) {
+ size_t dc_size = Qi->size1;
+ size_t v_size = mat_all_g->size2 / mat_all_g->size1;
+
+ for (size_t i = 0; i < v_size; i++) {
+ gsl_matrix_const_view mat_g =
+ gsl_matrix_const_submatrix(mat_all_g, 0, i * dc_size, dc_size, dc_size);
+ gsl_matrix_const_view mat_e =
+ gsl_matrix_const_submatrix(mat_all_e, 0, i * dc_size, dc_size, dc_size);
+
+ gsl_matrix_view Qimat_g =
+ gsl_matrix_submatrix(Qimat_all_g, 0, i * dc_size, dc_size, dc_size);
+ gsl_matrix_view Qimat_e =
+ gsl_matrix_submatrix(Qimat_all_e, 0, i * dc_size, dc_size, dc_size);
+
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Qi, &mat_g.matrix, 0.0,
+ &Qimat_g.matrix);
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Qi, &mat_e.matrix, 0.0,
+ &Qimat_e.matrix);
+ }
+
+ return;
}
// Calculate yPDPy
// yPDPy = y(Hi-HixQixHi)D(Hi-HixQixHi)y
// = ytHiDHiy - (yHix)Qi(xHiDHiy) - (yHiDHix)Qi(xHiy)
// + (yHix)Qi(xHiDHix)Qi(xtHiy)
-void Calc_yPDPy (const gsl_vector *eval, const gsl_matrix *Hiy,
- const gsl_vector *QixHiy, const gsl_matrix *xHiDHiy_all_g,
- const gsl_matrix *xHiDHiy_all_e,
- const gsl_matrix *xHiDHixQixHiy_all_g,
- const gsl_matrix *xHiDHixQixHiy_all_e,
- const size_t i, const size_t j,
- double &yPDPy_g, double &yPDPy_e) {
- size_t d_size=Hiy->size1;
- size_t v=GetIndex(i, j, d_size);
-
- double d;
-
- // First part: ytHiDHiy.
- Calc_yHiDHiy (eval, Hiy, i, j, yPDPy_g, yPDPy_e);
-
- // Second and third parts: -(yHix)Qi(xHiDHiy)-(yHiDHix)Qi(xHiy)
- gsl_vector_const_view xHiDHiy_g =
- gsl_matrix_const_column (xHiDHiy_all_g, v);
- gsl_vector_const_view xHiDHiy_e =
- gsl_matrix_const_column (xHiDHiy_all_e, v);
-
- gsl_blas_ddot(QixHiy, &xHiDHiy_g.vector, &d);
- yPDPy_g-=d*2.0;
- gsl_blas_ddot(QixHiy, &xHiDHiy_e.vector, &d);
- yPDPy_e-=d*2.0;
-
- // Fourth part: +(yHix)Qi(xHiDHix)Qi(xHiy).
- gsl_vector_const_view xHiDHixQixHiy_g =
- gsl_matrix_const_column (xHiDHixQixHiy_all_g, v);
- gsl_vector_const_view xHiDHixQixHiy_e =
- gsl_matrix_const_column (xHiDHixQixHiy_all_e, v);
-
- gsl_blas_ddot(QixHiy, &xHiDHixQixHiy_g.vector, &d);
- yPDPy_g+=d;
- gsl_blas_ddot(QixHiy, &xHiDHixQixHiy_e.vector, &d);
- yPDPy_e+=d;
-
- return;
+void Calc_yPDPy(const gsl_vector *eval, const gsl_matrix *Hiy,
+ const gsl_vector *QixHiy, const gsl_matrix *xHiDHiy_all_g,
+ const gsl_matrix *xHiDHiy_all_e,
+ const gsl_matrix *xHiDHixQixHiy_all_g,
+ const gsl_matrix *xHiDHixQixHiy_all_e, const size_t i,
+ const size_t j, double &yPDPy_g, double &yPDPy_e) {
+ size_t d_size = Hiy->size1;
+ size_t v = GetIndex(i, j, d_size);
+
+ double d;
+
+ // First part: ytHiDHiy.
+ Calc_yHiDHiy(eval, Hiy, i, j, yPDPy_g, yPDPy_e);
+
+ // Second and third parts: -(yHix)Qi(xHiDHiy)-(yHiDHix)Qi(xHiy)
+ gsl_vector_const_view xHiDHiy_g = gsl_matrix_const_column(xHiDHiy_all_g, v);
+ gsl_vector_const_view xHiDHiy_e = gsl_matrix_const_column(xHiDHiy_all_e, v);
+
+ gsl_blas_ddot(QixHiy, &xHiDHiy_g.vector, &d);
+ yPDPy_g -= d * 2.0;
+ gsl_blas_ddot(QixHiy, &xHiDHiy_e.vector, &d);
+ yPDPy_e -= d * 2.0;
+
+ // Fourth part: +(yHix)Qi(xHiDHix)Qi(xHiy).
+ gsl_vector_const_view xHiDHixQixHiy_g =
+ gsl_matrix_const_column(xHiDHixQixHiy_all_g, v);
+ gsl_vector_const_view xHiDHixQixHiy_e =
+ gsl_matrix_const_column(xHiDHixQixHiy_all_e, v);
+
+ gsl_blas_ddot(QixHiy, &xHiDHixQixHiy_g.vector, &d);
+ yPDPy_g += d;
+ gsl_blas_ddot(QixHiy, &xHiDHixQixHiy_e.vector, &d);
+ yPDPy_e += d;
+
+ return;
}
// calculate yPDPDPy = y(Hi-HixQixHi)D(Hi-HixQixHi)D(Hi-HixQixHi)y
@@ -1912,3445 +1897,3503 @@ void Calc_yPDPy (const gsl_vector *eval, const gsl_matrix *Hiy,
// + (yHiDHix)Qi(xHiDHix)Qi(xHiy)
// + (yHix)Qi(xHiDHiDHix)Qi(xHiy)
// - (yHix)Qi(xHiDHix)Qi(xHiDHix)Qi(xHiy)
-void Calc_yPDPDPy (const gsl_vector *eval, const gsl_matrix *Hi,
- const gsl_matrix *xHi, const gsl_matrix *Hiy,
- const gsl_vector *QixHiy, const gsl_matrix *xHiDHiy_all_g,
- const gsl_matrix *xHiDHiy_all_e,
- const gsl_matrix *QixHiDHiy_all_g,
- const gsl_matrix *QixHiDHiy_all_e,
- const gsl_matrix *xHiDHixQixHiy_all_g,
- const gsl_matrix *xHiDHixQixHiy_all_e,
- const gsl_matrix *QixHiDHixQixHiy_all_g,
- const gsl_matrix *QixHiDHixQixHiy_all_e,
- const gsl_matrix *xHiDHiDHiy_all_gg,
- const gsl_matrix *xHiDHiDHiy_all_ee,
- const gsl_matrix *xHiDHiDHiy_all_ge,
- const gsl_matrix *xHiDHiDHix_all_gg,
- const gsl_matrix *xHiDHiDHix_all_ee,
- const gsl_matrix *xHiDHiDHix_all_ge,
- const size_t i1, const size_t j1, const size_t i2,
- const size_t j2, double &yPDPDPy_gg, double &yPDPDPy_ee,
- double &yPDPDPy_ge) {
- size_t d_size=Hi->size1, dc_size=xHi->size1;
- size_t v1=GetIndex(i1, j1, d_size), v2=GetIndex(i2, j2, d_size);
- size_t v_size=d_size*(d_size+1)/2;
-
- double d;
-
- gsl_vector *xHiDHiDHixQixHiy=gsl_vector_alloc (dc_size);
-
- // First part: yHiDHiDHiy.
- Calc_yHiDHiDHiy (eval, Hi, Hiy, i1, j1, i2, j2, yPDPDPy_gg,
- yPDPDPy_ee, yPDPDPy_ge);
-
- // Second and third parts:
- // -(yHix)Qi(xHiDHiDHiy) - (yHiDHiDHix)Qi(xHiy).
- gsl_vector_const_view xHiDHiDHiy_gg1 =
- gsl_matrix_const_column (xHiDHiDHiy_all_gg, v1*v_size+v2);
- gsl_vector_const_view xHiDHiDHiy_ee1 =
- gsl_matrix_const_column (xHiDHiDHiy_all_ee, v1*v_size+v2);
- gsl_vector_const_view xHiDHiDHiy_ge1 =
- gsl_matrix_const_column (xHiDHiDHiy_all_ge, v1*v_size+v2);
-
- gsl_vector_const_view xHiDHiDHiy_gg2 =
- gsl_matrix_const_column (xHiDHiDHiy_all_gg, v2*v_size+v1);
- gsl_vector_const_view xHiDHiDHiy_ee2 =
- gsl_matrix_const_column (xHiDHiDHiy_all_ee, v2*v_size+v1);
- gsl_vector_const_view xHiDHiDHiy_ge2 =
- gsl_matrix_const_column (xHiDHiDHiy_all_ge, v2*v_size+v1);
-
- gsl_blas_ddot(QixHiy, &xHiDHiDHiy_gg1.vector, &d);
- yPDPDPy_gg-=d;
- gsl_blas_ddot(QixHiy, &xHiDHiDHiy_ee1.vector, &d);
- yPDPDPy_ee-=d;
- gsl_blas_ddot(QixHiy, &xHiDHiDHiy_ge1.vector, &d);
- yPDPDPy_ge-=d;
-
- gsl_blas_ddot(QixHiy, &xHiDHiDHiy_gg2.vector, &d);
- yPDPDPy_gg-=d;
- gsl_blas_ddot(QixHiy, &xHiDHiDHiy_ee2.vector, &d);
- yPDPDPy_ee-=d;
- gsl_blas_ddot(QixHiy, &xHiDHiDHiy_ge2.vector, &d);
- yPDPDPy_ge-=d;
-
- // Fourth part: - (yHiDHix)Qi(xHiDHiy).
- gsl_vector_const_view xHiDHiy_g1 =
- gsl_matrix_const_column (xHiDHiy_all_g, v1);
- gsl_vector_const_view xHiDHiy_e1 =
- gsl_matrix_const_column (xHiDHiy_all_e, v1);
- gsl_vector_const_view QixHiDHiy_g2 =
- gsl_matrix_const_column (QixHiDHiy_all_g, v2);
- gsl_vector_const_view QixHiDHiy_e2 =
- gsl_matrix_const_column (QixHiDHiy_all_e, v2);
-
- gsl_blas_ddot(&xHiDHiy_g1.vector, &QixHiDHiy_g2.vector, &d);
- yPDPDPy_gg-=d;
- gsl_blas_ddot(&xHiDHiy_e1.vector, &QixHiDHiy_e2.vector, &d);
- yPDPDPy_ee-=d;
- gsl_blas_ddot(&xHiDHiy_g1.vector, &QixHiDHiy_e2.vector, &d);
- yPDPDPy_ge-=d;
-
- // Fifth and sixth parts:
- // + (yHix)Qi(xHiDHix)Qi(xHiDHiy) +
- // (yHiDHix)Qi(xHiDHix)Qi(xHiy)
- gsl_vector_const_view QixHiDHiy_g1 =
- gsl_matrix_const_column (QixHiDHiy_all_g, v1);
- gsl_vector_const_view QixHiDHiy_e1 =
- gsl_matrix_const_column (QixHiDHiy_all_e, v1);
-
- gsl_vector_const_view xHiDHixQixHiy_g1 =
- gsl_matrix_const_column (xHiDHixQixHiy_all_g, v1);
- gsl_vector_const_view xHiDHixQixHiy_e1 =
- gsl_matrix_const_column (xHiDHixQixHiy_all_e, v1);
- gsl_vector_const_view xHiDHixQixHiy_g2 =
- gsl_matrix_const_column (xHiDHixQixHiy_all_g, v2);
- gsl_vector_const_view xHiDHixQixHiy_e2 =
- gsl_matrix_const_column (xHiDHixQixHiy_all_e, v2);
-
- gsl_blas_ddot(&xHiDHixQixHiy_g1.vector, &QixHiDHiy_g2.vector, &d);
- yPDPDPy_gg+=d;
- gsl_blas_ddot(&xHiDHixQixHiy_g2.vector, &QixHiDHiy_g1.vector, &d);
- yPDPDPy_gg+=d;
-
- gsl_blas_ddot(&xHiDHixQixHiy_e1.vector, &QixHiDHiy_e2.vector, &d);
- yPDPDPy_ee+=d;
- gsl_blas_ddot(&xHiDHixQixHiy_e2.vector, &QixHiDHiy_e1.vector, &d);
- yPDPDPy_ee+=d;
-
- gsl_blas_ddot(&xHiDHixQixHiy_g1.vector, &QixHiDHiy_e2.vector, &d);
- yPDPDPy_ge+=d;
- gsl_blas_ddot(&xHiDHixQixHiy_e2.vector, &QixHiDHiy_g1.vector, &d);
- yPDPDPy_ge+=d;
-
- // Seventh part: + (yHix)Qi(xHiDHiDHix)Qi(xHiy)
- gsl_matrix_const_view xHiDHiDHix_gg =
- gsl_matrix_const_submatrix (xHiDHiDHix_all_gg, 0,
- (v1*v_size+v2)*dc_size,
- dc_size, dc_size);
- gsl_matrix_const_view xHiDHiDHix_ee =
- gsl_matrix_const_submatrix (xHiDHiDHix_all_ee, 0,
- (v1*v_size+v2)*dc_size,
- dc_size, dc_size);
- gsl_matrix_const_view xHiDHiDHix_ge =
- gsl_matrix_const_submatrix (xHiDHiDHix_all_ge, 0,
- (v1*v_size+v2)*dc_size,
- dc_size, dc_size);
-
- gsl_blas_dgemv (CblasNoTrans, 1.0, &xHiDHiDHix_gg.matrix,
- QixHiy, 0.0, xHiDHiDHixQixHiy);
- gsl_blas_ddot(xHiDHiDHixQixHiy, QixHiy, &d);
- yPDPDPy_gg+=d;
- gsl_blas_dgemv (CblasNoTrans, 1.0, &xHiDHiDHix_ee.matrix,
- QixHiy, 0.0, xHiDHiDHixQixHiy);
- gsl_blas_ddot(xHiDHiDHixQixHiy, QixHiy, &d);
- yPDPDPy_ee+=d;
- gsl_blas_dgemv (CblasNoTrans, 1.0, &xHiDHiDHix_ge.matrix,
- QixHiy, 0.0, xHiDHiDHixQixHiy);
- gsl_blas_ddot(xHiDHiDHixQixHiy, QixHiy, &d);
- yPDPDPy_ge+=d;
-
- // Eighth part: - (yHix)Qi(xHiDHix)Qi(xHiDHix)Qi(xHiy).
- gsl_vector_const_view QixHiDHixQixHiy_g1 =
- gsl_matrix_const_column (QixHiDHixQixHiy_all_g, v1);
- gsl_vector_const_view QixHiDHixQixHiy_e1 =
- gsl_matrix_const_column (QixHiDHixQixHiy_all_e, v1);
-
- gsl_blas_ddot(&QixHiDHixQixHiy_g1.vector,&xHiDHixQixHiy_g2.vector,&d);
- yPDPDPy_gg-=d;
- gsl_blas_ddot(&QixHiDHixQixHiy_e1.vector,&xHiDHixQixHiy_e2.vector,&d);
- yPDPDPy_ee-=d;
- gsl_blas_ddot(&QixHiDHixQixHiy_g1.vector,&xHiDHixQixHiy_e2.vector,&d);
- yPDPDPy_ge-=d;
-
- // Free memory.
- gsl_vector_free(xHiDHiDHixQixHiy);
-
- return;
+void Calc_yPDPDPy(
+ const gsl_vector *eval, const gsl_matrix *Hi, const gsl_matrix *xHi,
+ const gsl_matrix *Hiy, const gsl_vector *QixHiy,
+ const gsl_matrix *xHiDHiy_all_g, const gsl_matrix *xHiDHiy_all_e,
+ const gsl_matrix *QixHiDHiy_all_g, const gsl_matrix *QixHiDHiy_all_e,
+ const gsl_matrix *xHiDHixQixHiy_all_g,
+ const gsl_matrix *xHiDHixQixHiy_all_e,
+ const gsl_matrix *QixHiDHixQixHiy_all_g,
+ const gsl_matrix *QixHiDHixQixHiy_all_e,
+ const gsl_matrix *xHiDHiDHiy_all_gg, const gsl_matrix *xHiDHiDHiy_all_ee,
+ const gsl_matrix *xHiDHiDHiy_all_ge, const gsl_matrix *xHiDHiDHix_all_gg,
+ const gsl_matrix *xHiDHiDHix_all_ee, const gsl_matrix *xHiDHiDHix_all_ge,
+ const size_t i1, const size_t j1, const size_t i2, const size_t j2,
+ double &yPDPDPy_gg, double &yPDPDPy_ee, double &yPDPDPy_ge) {
+ size_t d_size = Hi->size1, dc_size = xHi->size1;
+ size_t v1 = GetIndex(i1, j1, d_size), v2 = GetIndex(i2, j2, d_size);
+ size_t v_size = d_size * (d_size + 1) / 2;
+
+ double d;
+
+ gsl_vector *xHiDHiDHixQixHiy = gsl_vector_alloc(dc_size);
+
+ // First part: yHiDHiDHiy.
+ Calc_yHiDHiDHiy(eval, Hi, Hiy, i1, j1, i2, j2, yPDPDPy_gg, yPDPDPy_ee,
+ yPDPDPy_ge);
+
+ // Second and third parts:
+ // -(yHix)Qi(xHiDHiDHiy) - (yHiDHiDHix)Qi(xHiy).
+ gsl_vector_const_view xHiDHiDHiy_gg1 =
+ gsl_matrix_const_column(xHiDHiDHiy_all_gg, v1 * v_size + v2);
+ gsl_vector_const_view xHiDHiDHiy_ee1 =
+ gsl_matrix_const_column(xHiDHiDHiy_all_ee, v1 * v_size + v2);
+ gsl_vector_const_view xHiDHiDHiy_ge1 =
+ gsl_matrix_const_column(xHiDHiDHiy_all_ge, v1 * v_size + v2);
+
+ gsl_vector_const_view xHiDHiDHiy_gg2 =
+ gsl_matrix_const_column(xHiDHiDHiy_all_gg, v2 * v_size + v1);
+ gsl_vector_const_view xHiDHiDHiy_ee2 =
+ gsl_matrix_const_column(xHiDHiDHiy_all_ee, v2 * v_size + v1);
+ gsl_vector_const_view xHiDHiDHiy_ge2 =
+ gsl_matrix_const_column(xHiDHiDHiy_all_ge, v2 * v_size + v1);
+
+ gsl_blas_ddot(QixHiy, &xHiDHiDHiy_gg1.vector, &d);
+ yPDPDPy_gg -= d;
+ gsl_blas_ddot(QixHiy, &xHiDHiDHiy_ee1.vector, &d);
+ yPDPDPy_ee -= d;
+ gsl_blas_ddot(QixHiy, &xHiDHiDHiy_ge1.vector, &d);
+ yPDPDPy_ge -= d;
+
+ gsl_blas_ddot(QixHiy, &xHiDHiDHiy_gg2.vector, &d);
+ yPDPDPy_gg -= d;
+ gsl_blas_ddot(QixHiy, &xHiDHiDHiy_ee2.vector, &d);
+ yPDPDPy_ee -= d;
+ gsl_blas_ddot(QixHiy, &xHiDHiDHiy_ge2.vector, &d);
+ yPDPDPy_ge -= d;
+
+ // Fourth part: - (yHiDHix)Qi(xHiDHiy).
+ gsl_vector_const_view xHiDHiy_g1 = gsl_matrix_const_column(xHiDHiy_all_g, v1);
+ gsl_vector_const_view xHiDHiy_e1 = gsl_matrix_const_column(xHiDHiy_all_e, v1);
+ gsl_vector_const_view QixHiDHiy_g2 =
+ gsl_matrix_const_column(QixHiDHiy_all_g, v2);
+ gsl_vector_const_view QixHiDHiy_e2 =
+ gsl_matrix_const_column(QixHiDHiy_all_e, v2);
+
+ gsl_blas_ddot(&xHiDHiy_g1.vector, &QixHiDHiy_g2.vector, &d);
+ yPDPDPy_gg -= d;
+ gsl_blas_ddot(&xHiDHiy_e1.vector, &QixHiDHiy_e2.vector, &d);
+ yPDPDPy_ee -= d;
+ gsl_blas_ddot(&xHiDHiy_g1.vector, &QixHiDHiy_e2.vector, &d);
+ yPDPDPy_ge -= d;
+
+ // Fifth and sixth parts:
+ // + (yHix)Qi(xHiDHix)Qi(xHiDHiy) +
+ // (yHiDHix)Qi(xHiDHix)Qi(xHiy)
+ gsl_vector_const_view QixHiDHiy_g1 =
+ gsl_matrix_const_column(QixHiDHiy_all_g, v1);
+ gsl_vector_const_view QixHiDHiy_e1 =
+ gsl_matrix_const_column(QixHiDHiy_all_e, v1);
+
+ gsl_vector_const_view xHiDHixQixHiy_g1 =
+ gsl_matrix_const_column(xHiDHixQixHiy_all_g, v1);
+ gsl_vector_const_view xHiDHixQixHiy_e1 =
+ gsl_matrix_const_column(xHiDHixQixHiy_all_e, v1);
+ gsl_vector_const_view xHiDHixQixHiy_g2 =
+ gsl_matrix_const_column(xHiDHixQixHiy_all_g, v2);
+ gsl_vector_const_view xHiDHixQixHiy_e2 =
+ gsl_matrix_const_column(xHiDHixQixHiy_all_e, v2);
+
+ gsl_blas_ddot(&xHiDHixQixHiy_g1.vector, &QixHiDHiy_g2.vector, &d);
+ yPDPDPy_gg += d;
+ gsl_blas_ddot(&xHiDHixQixHiy_g2.vector, &QixHiDHiy_g1.vector, &d);
+ yPDPDPy_gg += d;
+
+ gsl_blas_ddot(&xHiDHixQixHiy_e1.vector, &QixHiDHiy_e2.vector, &d);
+ yPDPDPy_ee += d;
+ gsl_blas_ddot(&xHiDHixQixHiy_e2.vector, &QixHiDHiy_e1.vector, &d);
+ yPDPDPy_ee += d;
+
+ gsl_blas_ddot(&xHiDHixQixHiy_g1.vector, &QixHiDHiy_e2.vector, &d);
+ yPDPDPy_ge += d;
+ gsl_blas_ddot(&xHiDHixQixHiy_e2.vector, &QixHiDHiy_g1.vector, &d);
+ yPDPDPy_ge += d;
+
+ // Seventh part: + (yHix)Qi(xHiDHiDHix)Qi(xHiy)
+ gsl_matrix_const_view xHiDHiDHix_gg = gsl_matrix_const_submatrix(
+ xHiDHiDHix_all_gg, 0, (v1 * v_size + v2) * dc_size, dc_size, dc_size);
+ gsl_matrix_const_view xHiDHiDHix_ee = gsl_matrix_const_submatrix(
+ xHiDHiDHix_all_ee, 0, (v1 * v_size + v2) * dc_size, dc_size, dc_size);
+ gsl_matrix_const_view xHiDHiDHix_ge = gsl_matrix_const_submatrix(
+ xHiDHiDHix_all_ge, 0, (v1 * v_size + v2) * dc_size, dc_size, dc_size);
+
+ gsl_blas_dgemv(CblasNoTrans, 1.0, &xHiDHiDHix_gg.matrix, QixHiy, 0.0,
+ xHiDHiDHixQixHiy);
+ gsl_blas_ddot(xHiDHiDHixQixHiy, QixHiy, &d);
+ yPDPDPy_gg += d;
+ gsl_blas_dgemv(CblasNoTrans, 1.0, &xHiDHiDHix_ee.matrix, QixHiy, 0.0,
+ xHiDHiDHixQixHiy);
+ gsl_blas_ddot(xHiDHiDHixQixHiy, QixHiy, &d);
+ yPDPDPy_ee += d;
+ gsl_blas_dgemv(CblasNoTrans, 1.0, &xHiDHiDHix_ge.matrix, QixHiy, 0.0,
+ xHiDHiDHixQixHiy);
+ gsl_blas_ddot(xHiDHiDHixQixHiy, QixHiy, &d);
+ yPDPDPy_ge += d;
+
+ // Eighth part: - (yHix)Qi(xHiDHix)Qi(xHiDHix)Qi(xHiy).
+ gsl_vector_const_view QixHiDHixQixHiy_g1 =
+ gsl_matrix_const_column(QixHiDHixQixHiy_all_g, v1);
+ gsl_vector_const_view QixHiDHixQixHiy_e1 =
+ gsl_matrix_const_column(QixHiDHixQixHiy_all_e, v1);
+
+ gsl_blas_ddot(&QixHiDHixQixHiy_g1.vector, &xHiDHixQixHiy_g2.vector, &d);
+ yPDPDPy_gg -= d;
+ gsl_blas_ddot(&QixHiDHixQixHiy_e1.vector, &xHiDHixQixHiy_e2.vector, &d);
+ yPDPDPy_ee -= d;
+ gsl_blas_ddot(&QixHiDHixQixHiy_g1.vector, &xHiDHixQixHiy_e2.vector, &d);
+ yPDPDPy_ge -= d;
+
+ // Free memory.
+ gsl_vector_free(xHiDHiDHixQixHiy);
+
+ return;
}
// Calculate Edgeworth correctation factors for small samples notation
// and method follows Thomas J. Rothenberg, Econometirca 1984; 52 (4)
// M=xHiDHix
-void CalcCRT (const gsl_matrix *Hessian_inv, const gsl_matrix *Qi,
- const gsl_matrix *QixHiDHix_all_g,
- const gsl_matrix *QixHiDHix_all_e,
- const gsl_matrix *xHiDHiDHix_all_gg,
- const gsl_matrix *xHiDHiDHix_all_ee,
- const gsl_matrix *xHiDHiDHix_all_ge,
- const size_t d_size, double &crt_a,
- double &crt_b, double &crt_c) {
- crt_a=0.0; crt_b=0.0; crt_c=0.0;
-
- size_t dc_size=Qi->size1, v_size=Hessian_inv->size1/2;
- size_t c_size=dc_size/d_size;
- double h_gg, h_ge, h_ee, d, B=0.0, C=0.0, D=0.0;
- double trCg1, trCe1, trCg2, trCe2, trB_gg, trB_ge, trB_ee;
- double trCC_gg, trCC_ge, trCC_ee, trD_gg=0.0, trD_ge=0.0, trD_ee=0.0;
-
- gsl_matrix *QiMQi_g1=gsl_matrix_alloc (dc_size, dc_size);
- gsl_matrix *QiMQi_e1=gsl_matrix_alloc (dc_size, dc_size);
- gsl_matrix *QiMQi_g2=gsl_matrix_alloc (dc_size, dc_size);
- gsl_matrix *QiMQi_e2=gsl_matrix_alloc (dc_size, dc_size);
-
- gsl_matrix *QiMQisQisi_g1=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *QiMQisQisi_e1=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *QiMQisQisi_g2=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *QiMQisQisi_e2=gsl_matrix_alloc (d_size, d_size);
-
- gsl_matrix *QiMQiMQi_gg=gsl_matrix_alloc (dc_size, dc_size);
- gsl_matrix *QiMQiMQi_ge=gsl_matrix_alloc (dc_size, dc_size);
- gsl_matrix *QiMQiMQi_ee=gsl_matrix_alloc (dc_size, dc_size);
-
- gsl_matrix *QiMMQi_gg=gsl_matrix_alloc (dc_size, dc_size);
- gsl_matrix *QiMMQi_ge=gsl_matrix_alloc (dc_size, dc_size);
- gsl_matrix *QiMMQi_ee=gsl_matrix_alloc (dc_size, dc_size);
-
- gsl_matrix *Qi_si=gsl_matrix_alloc (d_size, d_size);
-
- gsl_matrix *M_dd=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *M_dcdc=gsl_matrix_alloc (dc_size, dc_size);
-
- // Invert Qi_sub to Qi_si.
- gsl_matrix *Qi_sub=gsl_matrix_alloc (d_size, d_size);
-
- gsl_matrix_const_view Qi_s =
- gsl_matrix_const_submatrix (Qi, (c_size-1)*d_size,
- (c_size-1)*d_size, d_size, d_size);
-
- int sig;
- gsl_permutation * pmt=gsl_permutation_alloc (d_size);
-
- gsl_matrix_memcpy (Qi_sub, &Qi_s.matrix);
- LUDecomp (Qi_sub, pmt, &sig);
- LUInvert (Qi_sub, pmt, Qi_si);
-
- gsl_permutation_free(pmt);
- gsl_matrix_free(Qi_sub);
-
- // Calculate correction factors.
- for (size_t v1=0; v1<v_size; v1++) {
-
- // Calculate Qi(xHiDHix)Qi, and subpart of it.
- gsl_matrix_const_view QiM_g1 =
- gsl_matrix_const_submatrix (QixHiDHix_all_g, 0, v1*dc_size,
- dc_size, dc_size);
- gsl_matrix_const_view QiM_e1 =
- gsl_matrix_const_submatrix (QixHiDHix_all_e, 0, v1*dc_size,
- dc_size, dc_size);
-
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiM_g1.matrix,
- Qi, 0.0, QiMQi_g1);
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiM_e1.matrix,
- Qi, 0.0, QiMQi_e1);
-
- gsl_matrix_view QiMQi_g1_s =
- gsl_matrix_submatrix (QiMQi_g1, (c_size-1)*d_size,
- (c_size-1)*d_size, d_size, d_size);
- gsl_matrix_view QiMQi_e1_s =
- gsl_matrix_submatrix (QiMQi_e1, (c_size-1)*d_size,
- (c_size-1)*d_size, d_size, d_size);
-
- // Calculate trCg1 and trCe1.
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiMQi_g1_s.matrix,
- Qi_si, 0.0, QiMQisQisi_g1);
- trCg1=0.0;
- for (size_t k=0; k<d_size; k++) {
- trCg1-=gsl_matrix_get (QiMQisQisi_g1, k, k);
- }
-
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiMQi_e1_s.matrix,
- Qi_si, 0.0, QiMQisQisi_e1);
- trCe1=0.0;
- for (size_t k=0; k<d_size; k++) {
- trCe1-=gsl_matrix_get (QiMQisQisi_e1, k, k);
- }
-
- for (size_t v2=0; v2<v_size; v2++) {
- if (v2<v1) {continue;}
-
- // Calculate Qi(xHiDHix)Qi, and subpart of it.
- gsl_matrix_const_view QiM_g2 =
- gsl_matrix_const_submatrix (QixHiDHix_all_g, 0, v2*dc_size,
- dc_size, dc_size);
- gsl_matrix_const_view QiM_e2 =
- gsl_matrix_const_submatrix (QixHiDHix_all_e, 0, v2*dc_size,
- dc_size, dc_size);
-
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiM_g2.matrix,
- Qi, 0.0, QiMQi_g2);
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiM_e2.matrix,
- Qi, 0.0, QiMQi_e2);
-
- gsl_matrix_view QiMQi_g2_s =
- gsl_matrix_submatrix (QiMQi_g2, (c_size-1)*d_size,
- (c_size-1)*d_size, d_size, d_size);
- gsl_matrix_view QiMQi_e2_s =
- gsl_matrix_submatrix (QiMQi_e2, (c_size-1)*d_size,
- (c_size-1)*d_size, d_size, d_size);
-
- // Calculate trCg2 and trCe2.
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0,
- &QiMQi_g2_s.matrix, Qi_si, 0.0, QiMQisQisi_g2);
- trCg2=0.0;
- for (size_t k=0; k<d_size; k++) {
- trCg2-=gsl_matrix_get (QiMQisQisi_g2, k, k);
- }
-
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0,
- &QiMQi_e2_s.matrix, Qi_si, 0.0, QiMQisQisi_e2);
- trCe2=0.0;
- for (size_t k=0; k<d_size; k++) {
- trCe2-=gsl_matrix_get (QiMQisQisi_e2, k, k);
- }
-
- // Calculate trCC_gg, trCC_ge, trCC_ee.
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0,
- QiMQisQisi_g1, QiMQisQisi_g2, 0.0, M_dd);
- trCC_gg=0.0;
- for (size_t k=0; k<d_size; k++) {
- trCC_gg+=gsl_matrix_get (M_dd, k, k);
- }
-
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, QiMQisQisi_g1,
- QiMQisQisi_e2, 0.0, M_dd);
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, QiMQisQisi_e1,
- QiMQisQisi_g2, 1.0, M_dd);
- trCC_ge=0.0;
- for (size_t k=0; k<d_size; k++) {
- trCC_ge+=gsl_matrix_get (M_dd, k, k);
- }
-
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, QiMQisQisi_e1,
- QiMQisQisi_e2, 0.0, M_dd);
- trCC_ee=0.0;
- for (size_t k=0; k<d_size; k++) {
- trCC_ee+=gsl_matrix_get (M_dd, k, k);
- }
-
- // Calculate Qi(xHiDHix)Qi(xHiDHix)Qi, and subpart of it.
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiM_g1.matrix,
- QiMQi_g2, 0.0, QiMQiMQi_gg);
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiM_g1.matrix,
- QiMQi_e2, 0.0, QiMQiMQi_ge);
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiM_e1.matrix,
- QiMQi_g2, 1.0, QiMQiMQi_ge);
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiM_e1.matrix,
- QiMQi_e2, 0.0, QiMQiMQi_ee);
-
- gsl_matrix_view QiMQiMQi_gg_s =
- gsl_matrix_submatrix (QiMQiMQi_gg, (c_size-1)*d_size,
- (c_size-1)*d_size, d_size, d_size);
- gsl_matrix_view QiMQiMQi_ge_s =
- gsl_matrix_submatrix (QiMQiMQi_ge, (c_size-1)*d_size,
- (c_size-1)*d_size, d_size, d_size);
- gsl_matrix_view QiMQiMQi_ee_s =
- gsl_matrix_submatrix (QiMQiMQi_ee, (c_size-1)*d_size,
- (c_size-1)*d_size, d_size, d_size);
-
- // and part of trB_gg, trB_ge, trB_ee.
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0,
- &QiMQiMQi_gg_s.matrix, Qi_si, 0.0, M_dd);
- trB_gg=0.0;
- for (size_t k=0; k<d_size; k++) {
- d=gsl_matrix_get (M_dd, k, k);
- trB_gg-=d;
- }
-
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0,
- &QiMQiMQi_ge_s.matrix, Qi_si, 0.0, M_dd);
- trB_ge=0.0;
- for (size_t k=0; k<d_size; k++) {
- d=gsl_matrix_get (M_dd, k, k);
- trB_ge-=d;
- }
-
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0,
- &QiMQiMQi_ee_s.matrix, Qi_si, 0.0, M_dd);
- trB_ee=0.0;
- for (size_t k=0; k<d_size; k++) {
- d=gsl_matrix_get (M_dd, k, k);
- trB_ee-=d;
- }
-
- // Calculate Qi(xHiDHiDHix)Qi, and subpart of it.
- gsl_matrix_const_view MM_gg =
- gsl_matrix_const_submatrix (xHiDHiDHix_all_gg, 0,
- (v1*v_size+v2)*dc_size, dc_size,
- dc_size);
- gsl_matrix_const_view MM_ge =
- gsl_matrix_const_submatrix (xHiDHiDHix_all_ge, 0,
- (v1*v_size+v2)*dc_size, dc_size,
- dc_size);
- gsl_matrix_const_view MM_ee =
- gsl_matrix_const_submatrix (xHiDHiDHix_all_ee, 0,
- (v1*v_size+v2)*dc_size, dc_size,
- dc_size);
-
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Qi,
- &MM_gg.matrix, 0.0, M_dcdc);
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, M_dcdc, Qi, 0.0,
- QiMMQi_gg);
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Qi,
- &MM_ge.matrix, 0.0, M_dcdc);
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, M_dcdc,
- Qi, 0.0, QiMMQi_ge);
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Qi,
- &MM_ee.matrix, 0.0, M_dcdc);
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, M_dcdc, Qi,
- 0.0, QiMMQi_ee);
-
- gsl_matrix_view QiMMQi_gg_s =
- gsl_matrix_submatrix (QiMMQi_gg, (c_size-1)*d_size,
- (c_size-1)*d_size, d_size, d_size);
- gsl_matrix_view QiMMQi_ge_s =
- gsl_matrix_submatrix (QiMMQi_ge, (c_size-1)*d_size,
- (c_size-1)*d_size, d_size, d_size);
- gsl_matrix_view QiMMQi_ee_s =
- gsl_matrix_submatrix (QiMMQi_ee, (c_size-1)*d_size,
- (c_size-1)*d_size, d_size, d_size);
-
- // Calculate the other part of trB_gg, trB_ge, trB_ee.
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0,
- &QiMMQi_gg_s.matrix, Qi_si, 0.0, M_dd);
- for (size_t k=0; k<d_size; k++) {
- trB_gg+=gsl_matrix_get (M_dd, k, k);
- }
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0,
- &QiMMQi_ge_s.matrix, Qi_si, 0.0, M_dd);
- for (size_t k=0; k<d_size; k++) {
- trB_ge+=2.0*gsl_matrix_get (M_dd, k, k);
- }
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0,
- &QiMMQi_ee_s.matrix, Qi_si, 0.0, M_dd);
- for (size_t k=0; k<d_size; k++) {
- trB_ee+=gsl_matrix_get (M_dd, k, k);
- }
-
- // Calculate trD_gg, trD_ge, trD_ee.
- trD_gg=2.0*trB_gg;
- trD_ge=2.0*trB_ge;
- trD_ee=2.0*trB_ee;
-
- //calculate B, C and D
- h_gg=-1.0*gsl_matrix_get (Hessian_inv, v1, v2);
- h_ge=-1.0*gsl_matrix_get (Hessian_inv, v1, v2+v_size);
- h_ee=-1.0*gsl_matrix_get (Hessian_inv, v1+v_size, v2+v_size);
-
- B+=h_gg*trB_gg+h_ge*trB_ge+h_ee*trB_ee;
- C+=h_gg*(trCC_gg+0.5*trCg1*trCg2) +
- h_ge*(trCC_ge+0.5*trCg1*trCe2+0.5*trCe1*trCg2) +
- h_ee*(trCC_ee+0.5*trCe1*trCe2);
- D+=h_gg*(trCC_gg+0.5*trD_gg) +
- h_ge*(trCC_ge+0.5*trD_ge) + h_ee*(trCC_ee+0.5*trD_ee);
-
- if (v1!=v2) {
- B+=h_gg*trB_gg+h_ge*trB_ge+h_ee*trB_ee;
- C+=h_gg*(trCC_gg+0.5*trCg1*trCg2) +
- h_ge*(trCC_ge+0.5*trCg1*trCe2+0.5*trCe1*trCg2) +
- h_ee*(trCC_ee+0.5*trCe1*trCe2);
- D+=h_gg*(trCC_gg+0.5*trD_gg) +
- h_ge*(trCC_ge+0.5*trD_ge) +
- h_ee*(trCC_ee+0.5*trD_ee);
- }
- }
- }
-
- // Calculate a, b, c from B C D.
- crt_a=2.0*D-C;
- crt_b=2.0*B;
- crt_c=C;
-
- // Free matrix memory.
- gsl_matrix_free(QiMQi_g1);
- gsl_matrix_free(QiMQi_e1);
- gsl_matrix_free(QiMQi_g2);
- gsl_matrix_free(QiMQi_e2);
-
- gsl_matrix_free(QiMQisQisi_g1);
- gsl_matrix_free(QiMQisQisi_e1);
- gsl_matrix_free(QiMQisQisi_g2);
- gsl_matrix_free(QiMQisQisi_e2);
-
- gsl_matrix_free(QiMQiMQi_gg);
- gsl_matrix_free(QiMQiMQi_ge);
- gsl_matrix_free(QiMQiMQi_ee);
-
- gsl_matrix_free(QiMMQi_gg);
- gsl_matrix_free(QiMMQi_ge);
- gsl_matrix_free(QiMMQi_ee);
-
- gsl_matrix_free(Qi_si);
-
- gsl_matrix_free(M_dd);
- gsl_matrix_free(M_dcdc);
-
- return;
+void CalcCRT(const gsl_matrix *Hessian_inv, const gsl_matrix *Qi,
+ const gsl_matrix *QixHiDHix_all_g,
+ const gsl_matrix *QixHiDHix_all_e,
+ const gsl_matrix *xHiDHiDHix_all_gg,
+ const gsl_matrix *xHiDHiDHix_all_ee,
+ const gsl_matrix *xHiDHiDHix_all_ge, const size_t d_size,
+ double &crt_a, double &crt_b, double &crt_c) {
+ crt_a = 0.0;
+ crt_b = 0.0;
+ crt_c = 0.0;
+
+ size_t dc_size = Qi->size1, v_size = Hessian_inv->size1 / 2;
+ size_t c_size = dc_size / d_size;
+ double h_gg, h_ge, h_ee, d, B = 0.0, C = 0.0, D = 0.0;
+ double trCg1, trCe1, trCg2, trCe2, trB_gg, trB_ge, trB_ee;
+ double trCC_gg, trCC_ge, trCC_ee, trD_gg = 0.0, trD_ge = 0.0, trD_ee = 0.0;
+
+ gsl_matrix *QiMQi_g1 = gsl_matrix_alloc(dc_size, dc_size);
+ gsl_matrix *QiMQi_e1 = gsl_matrix_alloc(dc_size, dc_size);
+ gsl_matrix *QiMQi_g2 = gsl_matrix_alloc(dc_size, dc_size);
+ gsl_matrix *QiMQi_e2 = gsl_matrix_alloc(dc_size, dc_size);
+
+ gsl_matrix *QiMQisQisi_g1 = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *QiMQisQisi_e1 = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *QiMQisQisi_g2 = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *QiMQisQisi_e2 = gsl_matrix_alloc(d_size, d_size);
+
+ gsl_matrix *QiMQiMQi_gg = gsl_matrix_alloc(dc_size, dc_size);
+ gsl_matrix *QiMQiMQi_ge = gsl_matrix_alloc(dc_size, dc_size);
+ gsl_matrix *QiMQiMQi_ee = gsl_matrix_alloc(dc_size, dc_size);
+
+ gsl_matrix *QiMMQi_gg = gsl_matrix_alloc(dc_size, dc_size);
+ gsl_matrix *QiMMQi_ge = gsl_matrix_alloc(dc_size, dc_size);
+ gsl_matrix *QiMMQi_ee = gsl_matrix_alloc(dc_size, dc_size);
+
+ gsl_matrix *Qi_si = gsl_matrix_alloc(d_size, d_size);
+
+ gsl_matrix *M_dd = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *M_dcdc = gsl_matrix_alloc(dc_size, dc_size);
+
+ // Invert Qi_sub to Qi_si.
+ gsl_matrix *Qi_sub = gsl_matrix_alloc(d_size, d_size);
+
+ gsl_matrix_const_view Qi_s = gsl_matrix_const_submatrix(
+ Qi, (c_size - 1) * d_size, (c_size - 1) * d_size, d_size, d_size);
+
+ int sig;
+ gsl_permutation *pmt = gsl_permutation_alloc(d_size);
+
+ gsl_matrix_memcpy(Qi_sub, &Qi_s.matrix);
+ LUDecomp(Qi_sub, pmt, &sig);
+ LUInvert(Qi_sub, pmt, Qi_si);
+
+ gsl_permutation_free(pmt);
+ gsl_matrix_free(Qi_sub);
+
+ // Calculate correction factors.
+ for (size_t v1 = 0; v1 < v_size; v1++) {
+
+ // Calculate Qi(xHiDHix)Qi, and subpart of it.
+ gsl_matrix_const_view QiM_g1 = gsl_matrix_const_submatrix(
+ QixHiDHix_all_g, 0, v1 * dc_size, dc_size, dc_size);
+ gsl_matrix_const_view QiM_e1 = gsl_matrix_const_submatrix(
+ QixHiDHix_all_e, 0, v1 * dc_size, dc_size, dc_size);
+
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiM_g1.matrix, Qi, 0.0,
+ QiMQi_g1);
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiM_e1.matrix, Qi, 0.0,
+ QiMQi_e1);
+
+ gsl_matrix_view QiMQi_g1_s = gsl_matrix_submatrix(
+ QiMQi_g1, (c_size - 1) * d_size, (c_size - 1) * d_size, d_size, d_size);
+ gsl_matrix_view QiMQi_e1_s = gsl_matrix_submatrix(
+ QiMQi_e1, (c_size - 1) * d_size, (c_size - 1) * d_size, d_size, d_size);
+
+ // Calculate trCg1 and trCe1.
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiMQi_g1_s.matrix, Qi_si,
+ 0.0, QiMQisQisi_g1);
+ trCg1 = 0.0;
+ for (size_t k = 0; k < d_size; k++) {
+ trCg1 -= gsl_matrix_get(QiMQisQisi_g1, k, k);
+ }
+
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiMQi_e1_s.matrix, Qi_si,
+ 0.0, QiMQisQisi_e1);
+ trCe1 = 0.0;
+ for (size_t k = 0; k < d_size; k++) {
+ trCe1 -= gsl_matrix_get(QiMQisQisi_e1, k, k);
+ }
+
+ for (size_t v2 = 0; v2 < v_size; v2++) {
+ if (v2 < v1) {
+ continue;
+ }
+
+ // Calculate Qi(xHiDHix)Qi, and subpart of it.
+ gsl_matrix_const_view QiM_g2 = gsl_matrix_const_submatrix(
+ QixHiDHix_all_g, 0, v2 * dc_size, dc_size, dc_size);
+ gsl_matrix_const_view QiM_e2 = gsl_matrix_const_submatrix(
+ QixHiDHix_all_e, 0, v2 * dc_size, dc_size, dc_size);
+
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiM_g2.matrix, Qi, 0.0,
+ QiMQi_g2);
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiM_e2.matrix, Qi, 0.0,
+ QiMQi_e2);
+
+ gsl_matrix_view QiMQi_g2_s =
+ gsl_matrix_submatrix(QiMQi_g2, (c_size - 1) * d_size,
+ (c_size - 1) * d_size, d_size, d_size);
+ gsl_matrix_view QiMQi_e2_s =
+ gsl_matrix_submatrix(QiMQi_e2, (c_size - 1) * d_size,
+ (c_size - 1) * d_size, d_size, d_size);
+
+ // Calculate trCg2 and trCe2.
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiMQi_g2_s.matrix, Qi_si,
+ 0.0, QiMQisQisi_g2);
+ trCg2 = 0.0;
+ for (size_t k = 0; k < d_size; k++) {
+ trCg2 -= gsl_matrix_get(QiMQisQisi_g2, k, k);
+ }
+
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiMQi_e2_s.matrix, Qi_si,
+ 0.0, QiMQisQisi_e2);
+ trCe2 = 0.0;
+ for (size_t k = 0; k < d_size; k++) {
+ trCe2 -= gsl_matrix_get(QiMQisQisi_e2, k, k);
+ }
+
+ // Calculate trCC_gg, trCC_ge, trCC_ee.
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, QiMQisQisi_g1,
+ QiMQisQisi_g2, 0.0, M_dd);
+ trCC_gg = 0.0;
+ for (size_t k = 0; k < d_size; k++) {
+ trCC_gg += gsl_matrix_get(M_dd, k, k);
+ }
+
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, QiMQisQisi_g1,
+ QiMQisQisi_e2, 0.0, M_dd);
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, QiMQisQisi_e1,
+ QiMQisQisi_g2, 1.0, M_dd);
+ trCC_ge = 0.0;
+ for (size_t k = 0; k < d_size; k++) {
+ trCC_ge += gsl_matrix_get(M_dd, k, k);
+ }
+
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, QiMQisQisi_e1,
+ QiMQisQisi_e2, 0.0, M_dd);
+ trCC_ee = 0.0;
+ for (size_t k = 0; k < d_size; k++) {
+ trCC_ee += gsl_matrix_get(M_dd, k, k);
+ }
+
+ // Calculate Qi(xHiDHix)Qi(xHiDHix)Qi, and subpart of it.
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiM_g1.matrix, QiMQi_g2,
+ 0.0, QiMQiMQi_gg);
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiM_g1.matrix, QiMQi_e2,
+ 0.0, QiMQiMQi_ge);
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiM_e1.matrix, QiMQi_g2,
+ 1.0, QiMQiMQi_ge);
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiM_e1.matrix, QiMQi_e2,
+ 0.0, QiMQiMQi_ee);
+
+ gsl_matrix_view QiMQiMQi_gg_s =
+ gsl_matrix_submatrix(QiMQiMQi_gg, (c_size - 1) * d_size,
+ (c_size - 1) * d_size, d_size, d_size);
+ gsl_matrix_view QiMQiMQi_ge_s =
+ gsl_matrix_submatrix(QiMQiMQi_ge, (c_size - 1) * d_size,
+ (c_size - 1) * d_size, d_size, d_size);
+ gsl_matrix_view QiMQiMQi_ee_s =
+ gsl_matrix_submatrix(QiMQiMQi_ee, (c_size - 1) * d_size,
+ (c_size - 1) * d_size, d_size, d_size);
+
+ // and part of trB_gg, trB_ge, trB_ee.
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiMQiMQi_gg_s.matrix,
+ Qi_si, 0.0, M_dd);
+ trB_gg = 0.0;
+ for (size_t k = 0; k < d_size; k++) {
+ d = gsl_matrix_get(M_dd, k, k);
+ trB_gg -= d;
+ }
+
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiMQiMQi_ge_s.matrix,
+ Qi_si, 0.0, M_dd);
+ trB_ge = 0.0;
+ for (size_t k = 0; k < d_size; k++) {
+ d = gsl_matrix_get(M_dd, k, k);
+ trB_ge -= d;
+ }
+
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiMQiMQi_ee_s.matrix,
+ Qi_si, 0.0, M_dd);
+ trB_ee = 0.0;
+ for (size_t k = 0; k < d_size; k++) {
+ d = gsl_matrix_get(M_dd, k, k);
+ trB_ee -= d;
+ }
+
+ // Calculate Qi(xHiDHiDHix)Qi, and subpart of it.
+ gsl_matrix_const_view MM_gg = gsl_matrix_const_submatrix(
+ xHiDHiDHix_all_gg, 0, (v1 * v_size + v2) * dc_size, dc_size, dc_size);
+ gsl_matrix_const_view MM_ge = gsl_matrix_const_submatrix(
+ xHiDHiDHix_all_ge, 0, (v1 * v_size + v2) * dc_size, dc_size, dc_size);
+ gsl_matrix_const_view MM_ee = gsl_matrix_const_submatrix(
+ xHiDHiDHix_all_ee, 0, (v1 * v_size + v2) * dc_size, dc_size, dc_size);
+
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Qi, &MM_gg.matrix, 0.0,
+ M_dcdc);
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, M_dcdc, Qi, 0.0,
+ QiMMQi_gg);
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Qi, &MM_ge.matrix, 0.0,
+ M_dcdc);
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, M_dcdc, Qi, 0.0,
+ QiMMQi_ge);
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Qi, &MM_ee.matrix, 0.0,
+ M_dcdc);
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, M_dcdc, Qi, 0.0,
+ QiMMQi_ee);
+
+ gsl_matrix_view QiMMQi_gg_s =
+ gsl_matrix_submatrix(QiMMQi_gg, (c_size - 1) * d_size,
+ (c_size - 1) * d_size, d_size, d_size);
+ gsl_matrix_view QiMMQi_ge_s =
+ gsl_matrix_submatrix(QiMMQi_ge, (c_size - 1) * d_size,
+ (c_size - 1) * d_size, d_size, d_size);
+ gsl_matrix_view QiMMQi_ee_s =
+ gsl_matrix_submatrix(QiMMQi_ee, (c_size - 1) * d_size,
+ (c_size - 1) * d_size, d_size, d_size);
+
+ // Calculate the other part of trB_gg, trB_ge, trB_ee.
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiMMQi_gg_s.matrix,
+ Qi_si, 0.0, M_dd);
+ for (size_t k = 0; k < d_size; k++) {
+ trB_gg += gsl_matrix_get(M_dd, k, k);
+ }
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiMMQi_ge_s.matrix,
+ Qi_si, 0.0, M_dd);
+ for (size_t k = 0; k < d_size; k++) {
+ trB_ge += 2.0 * gsl_matrix_get(M_dd, k, k);
+ }
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiMMQi_ee_s.matrix,
+ Qi_si, 0.0, M_dd);
+ for (size_t k = 0; k < d_size; k++) {
+ trB_ee += gsl_matrix_get(M_dd, k, k);
+ }
+
+ // Calculate trD_gg, trD_ge, trD_ee.
+ trD_gg = 2.0 * trB_gg;
+ trD_ge = 2.0 * trB_ge;
+ trD_ee = 2.0 * trB_ee;
+
+ // calculate B, C and D
+ h_gg = -1.0 * gsl_matrix_get(Hessian_inv, v1, v2);
+ h_ge = -1.0 * gsl_matrix_get(Hessian_inv, v1, v2 + v_size);
+ h_ee = -1.0 * gsl_matrix_get(Hessian_inv, v1 + v_size, v2 + v_size);
+
+ B += h_gg * trB_gg + h_ge * trB_ge + h_ee * trB_ee;
+ C += h_gg * (trCC_gg + 0.5 * trCg1 * trCg2) +
+ h_ge * (trCC_ge + 0.5 * trCg1 * trCe2 + 0.5 * trCe1 * trCg2) +
+ h_ee * (trCC_ee + 0.5 * trCe1 * trCe2);
+ D += h_gg * (trCC_gg + 0.5 * trD_gg) + h_ge * (trCC_ge + 0.5 * trD_ge) +
+ h_ee * (trCC_ee + 0.5 * trD_ee);
+
+ if (v1 != v2) {
+ B += h_gg * trB_gg + h_ge * trB_ge + h_ee * trB_ee;
+ C += h_gg * (trCC_gg + 0.5 * trCg1 * trCg2) +
+ h_ge * (trCC_ge + 0.5 * trCg1 * trCe2 + 0.5 * trCe1 * trCg2) +
+ h_ee * (trCC_ee + 0.5 * trCe1 * trCe2);
+ D += h_gg * (trCC_gg + 0.5 * trD_gg) + h_ge * (trCC_ge + 0.5 * trD_ge) +
+ h_ee * (trCC_ee + 0.5 * trD_ee);
+ }
+ }
+ }
+
+ // Calculate a, b, c from B C D.
+ crt_a = 2.0 * D - C;
+ crt_b = 2.0 * B;
+ crt_c = C;
+
+ // Free matrix memory.
+ gsl_matrix_free(QiMQi_g1);
+ gsl_matrix_free(QiMQi_e1);
+ gsl_matrix_free(QiMQi_g2);
+ gsl_matrix_free(QiMQi_e2);
+
+ gsl_matrix_free(QiMQisQisi_g1);
+ gsl_matrix_free(QiMQisQisi_e1);
+ gsl_matrix_free(QiMQisQisi_g2);
+ gsl_matrix_free(QiMQisQisi_e2);
+
+ gsl_matrix_free(QiMQiMQi_gg);
+ gsl_matrix_free(QiMQiMQi_ge);
+ gsl_matrix_free(QiMQiMQi_ee);
+
+ gsl_matrix_free(QiMMQi_gg);
+ gsl_matrix_free(QiMMQi_ge);
+ gsl_matrix_free(QiMMQi_ee);
+
+ gsl_matrix_free(Qi_si);
+
+ gsl_matrix_free(M_dd);
+ gsl_matrix_free(M_dcdc);
+
+ return;
}
// Calculate first-order and second-order derivatives.
-void CalcDev (const char func_name, const gsl_vector *eval,
- const gsl_matrix *Qi, const gsl_matrix *Hi,
- const gsl_matrix *xHi, const gsl_matrix *Hiy,
- const gsl_vector *QixHiy, gsl_vector *gradient,
- gsl_matrix *Hessian_inv, double &crt_a, double &crt_b,
- double &crt_c) {
- if (func_name!='R' && func_name!='L' && func_name!='r' &&
- func_name!='l') {
- cout<<"func_name only takes 'R' or 'L': 'R' for " <<
- "log-restricted likelihood, 'L' for log-likelihood."<<endl;
- return;
- }
-
- size_t dc_size=Qi->size1, d_size=Hi->size1;
- size_t c_size=dc_size/d_size;
- size_t v_size=d_size*(d_size+1)/2;
- size_t v1, v2;
- double dev1_g, dev1_e, dev2_gg, dev2_ee, dev2_ge;
-
- gsl_matrix *Hessian=gsl_matrix_alloc (v_size*2, v_size*2);
-
- gsl_matrix *xHiDHiy_all_g=gsl_matrix_alloc (dc_size, v_size);
- gsl_matrix *xHiDHiy_all_e=gsl_matrix_alloc (dc_size, v_size);
- gsl_matrix *xHiDHix_all_g=gsl_matrix_alloc (dc_size, v_size*dc_size);
- gsl_matrix *xHiDHix_all_e=gsl_matrix_alloc (dc_size, v_size*dc_size);
- gsl_matrix *xHiDHixQixHiy_all_g=gsl_matrix_alloc (dc_size, v_size);
- gsl_matrix *xHiDHixQixHiy_all_e=gsl_matrix_alloc (dc_size, v_size);
-
- gsl_matrix *QixHiDHiy_all_g=gsl_matrix_alloc (dc_size, v_size);
- gsl_matrix *QixHiDHiy_all_e=gsl_matrix_alloc (dc_size, v_size);
- gsl_matrix *QixHiDHix_all_g=gsl_matrix_alloc (dc_size, v_size*dc_size);
- gsl_matrix *QixHiDHix_all_e=gsl_matrix_alloc (dc_size, v_size*dc_size);
- gsl_matrix *QixHiDHixQixHiy_all_g=gsl_matrix_alloc (dc_size, v_size);
- gsl_matrix *QixHiDHixQixHiy_all_e=gsl_matrix_alloc (dc_size, v_size);
-
- gsl_matrix *xHiDHiDHiy_all_gg =
- gsl_matrix_alloc (dc_size, v_size*v_size);
- gsl_matrix *xHiDHiDHiy_all_ee =
- gsl_matrix_alloc (dc_size, v_size*v_size);
- gsl_matrix *xHiDHiDHiy_all_ge =
- gsl_matrix_alloc (dc_size, v_size*v_size);
- gsl_matrix *xHiDHiDHix_all_gg =
- gsl_matrix_alloc (dc_size, v_size*v_size*dc_size);
- gsl_matrix *xHiDHiDHix_all_ee =
- gsl_matrix_alloc (dc_size, v_size*v_size*dc_size);
- gsl_matrix *xHiDHiDHix_all_ge =
- gsl_matrix_alloc (dc_size, v_size*v_size*dc_size);
-
- // Calculate xHiDHiy_all, xHiDHix_all and xHiDHixQixHiy_all.
- Calc_xHiDHiy_all (eval, xHi, Hiy, xHiDHiy_all_g, xHiDHiy_all_e);
- Calc_xHiDHix_all (eval, xHi, xHiDHix_all_g, xHiDHix_all_e);
- Calc_xHiDHixQixHiy_all (xHiDHix_all_g, xHiDHix_all_e, QixHiy,
- xHiDHixQixHiy_all_g, xHiDHixQixHiy_all_e);
-
- Calc_xHiDHiDHiy_all (v_size, eval, Hi, xHi, Hiy, xHiDHiDHiy_all_gg,
- xHiDHiDHiy_all_ee, xHiDHiDHiy_all_ge);
- Calc_xHiDHiDHix_all (v_size, eval, Hi, xHi, xHiDHiDHix_all_gg,
- xHiDHiDHix_all_ee, xHiDHiDHix_all_ge);
-
- // Calculate QixHiDHiy_all, QixHiDHix_all and QixHiDHixQixHiy_all.
- Calc_QiVec_all (Qi, xHiDHiy_all_g, xHiDHiy_all_e, QixHiDHiy_all_g,
- QixHiDHiy_all_e);
- Calc_QiVec_all (Qi, xHiDHixQixHiy_all_g, xHiDHixQixHiy_all_e,
- QixHiDHixQixHiy_all_g, QixHiDHixQixHiy_all_e);
- Calc_QiMat_all (Qi, xHiDHix_all_g, xHiDHix_all_e, QixHiDHix_all_g,
- QixHiDHix_all_e);
-
- double tHiD_g, tHiD_e, tPD_g, tPD_e, tHiDHiD_gg, tHiDHiD_ee;
- double tHiDHiD_ge, tPDPD_gg, tPDPD_ee, tPDPD_ge;
- double yPDPy_g, yPDPy_e, yPDPDPy_gg, yPDPDPy_ee, yPDPDPy_ge;
-
- // Calculate gradient and Hessian for Vg.
- for (size_t i1=0; i1<d_size; i1++) {
- for (size_t j1=0; j1<d_size; j1++) {
- if (j1<i1) {continue;}
- v1=GetIndex (i1, j1, d_size);
-
- Calc_yPDPy (eval, Hiy, QixHiy, xHiDHiy_all_g, xHiDHiy_all_e,
- xHiDHixQixHiy_all_g, xHiDHixQixHiy_all_e, i1, j1,
- yPDPy_g, yPDPy_e);
-
- if (func_name=='R' || func_name=='r') {
- Calc_tracePD (eval, Qi, Hi, xHiDHix_all_g, xHiDHix_all_e,
- i1, j1, tPD_g, tPD_e);
-
- dev1_g=-0.5*tPD_g+0.5*yPDPy_g;
- dev1_e=-0.5*tPD_e+0.5*yPDPy_e;
- } else {
- Calc_traceHiD (eval, Hi, i1, j1, tHiD_g, tHiD_e);
-
- dev1_g=-0.5*tHiD_g+0.5*yPDPy_g;
- dev1_e=-0.5*tHiD_e+0.5*yPDPy_e;
- }
-
- gsl_vector_set (gradient, v1, dev1_g);
- gsl_vector_set (gradient, v1+v_size, dev1_e);
-
- for (size_t i2=0; i2<d_size; i2++) {
- for (size_t j2=0; j2<d_size; j2++) {
- if (j2<i2) {continue;}
- v2=GetIndex (i2, j2, d_size);
-
- if (v2<v1) {continue;}
-
- Calc_yPDPDPy (eval, Hi, xHi, Hiy, QixHiy, xHiDHiy_all_g,
- xHiDHiy_all_e, QixHiDHiy_all_g, QixHiDHiy_all_e,
- xHiDHixQixHiy_all_g, xHiDHixQixHiy_all_e,
- QixHiDHixQixHiy_all_g, QixHiDHixQixHiy_all_e,
- xHiDHiDHiy_all_gg, xHiDHiDHiy_all_ee,
- xHiDHiDHiy_all_ge, xHiDHiDHix_all_gg,
- xHiDHiDHix_all_ee, xHiDHiDHix_all_ge, i1, j1,
- i2, j2, yPDPDPy_gg, yPDPDPy_ee, yPDPDPy_ge);
-
- // AI for REML.
- if (func_name=='R' || func_name=='r') {
- Calc_tracePDPD (eval, Qi, Hi, xHi, QixHiDHix_all_g,
- QixHiDHix_all_e, xHiDHiDHix_all_gg,
- xHiDHiDHix_all_ee, xHiDHiDHix_all_ge, i1, j1,
- i2, j2, tPDPD_gg, tPDPD_ee, tPDPD_ge);
-
- dev2_gg=0.5*tPDPD_gg-yPDPDPy_gg;
- dev2_ee=0.5*tPDPD_ee-yPDPDPy_ee;
- dev2_ge=0.5*tPDPD_ge-yPDPDPy_ge;
- } else {
- Calc_traceHiDHiD (eval, Hi, i1, j1, i2, j2, tHiDHiD_gg,
- tHiDHiD_ee, tHiDHiD_ge);
-
- dev2_gg=0.5*tHiDHiD_gg-yPDPDPy_gg;
- dev2_ee=0.5*tHiDHiD_ee-yPDPDPy_ee;
- dev2_ge=0.5*tHiDHiD_ge-yPDPDPy_ge;
- }
-
- // Set up Hessian.
- gsl_matrix_set (Hessian, v1, v2, dev2_gg);
- gsl_matrix_set (Hessian, v1+v_size, v2+v_size, dev2_ee);
- gsl_matrix_set (Hessian, v1, v2+v_size, dev2_ge);
- gsl_matrix_set (Hessian, v2+v_size, v1, dev2_ge);
-
- if (v1!=v2) {
- gsl_matrix_set (Hessian, v2, v1, dev2_gg);
- gsl_matrix_set (Hessian, v2+v_size, v1+v_size, dev2_ee);
- gsl_matrix_set (Hessian, v2, v1+v_size, dev2_ge);
- gsl_matrix_set (Hessian, v1+v_size, v2, dev2_ge);
- }
- }
- }
- }
- }
-
- // Invert Hessian.
- int sig;
- gsl_permutation * pmt=gsl_permutation_alloc (v_size*2);
-
- LUDecomp (Hessian, pmt, &sig);
- LUInvert (Hessian, pmt, Hessian_inv);
-
- gsl_permutation_free(pmt);
- gsl_matrix_free(Hessian);
-
- // Calculate Edgeworth correction factors after inverting
- // Hessian.
- if (c_size>1) {
- CalcCRT(Hessian_inv, Qi, QixHiDHix_all_g, QixHiDHix_all_e,
- xHiDHiDHix_all_gg, xHiDHiDHix_all_ee, xHiDHiDHix_all_ge,
- d_size, crt_a, crt_b, crt_c);
- } else {
- crt_a=0.0; crt_b=0.0; crt_c=0.0;
- }
-
- gsl_matrix_free(xHiDHiy_all_g);
- gsl_matrix_free(xHiDHiy_all_e);
- gsl_matrix_free(xHiDHix_all_g);
- gsl_matrix_free(xHiDHix_all_e);
- gsl_matrix_free(xHiDHixQixHiy_all_g);
- gsl_matrix_free(xHiDHixQixHiy_all_e);
-
- gsl_matrix_free(QixHiDHiy_all_g);
- gsl_matrix_free(QixHiDHiy_all_e);
- gsl_matrix_free(QixHiDHix_all_g);
- gsl_matrix_free(QixHiDHix_all_e);
- gsl_matrix_free(QixHiDHixQixHiy_all_g);
- gsl_matrix_free(QixHiDHixQixHiy_all_e);
-
- gsl_matrix_free(xHiDHiDHiy_all_gg);
- gsl_matrix_free(xHiDHiDHiy_all_ee);
- gsl_matrix_free(xHiDHiDHiy_all_ge);
- gsl_matrix_free(xHiDHiDHix_all_gg);
- gsl_matrix_free(xHiDHiDHix_all_ee);
- gsl_matrix_free(xHiDHiDHix_all_ge);
-
- return;
+void CalcDev(const char func_name, const gsl_vector *eval, const gsl_matrix *Qi,
+ const gsl_matrix *Hi, const gsl_matrix *xHi, const gsl_matrix *Hiy,
+ const gsl_vector *QixHiy, gsl_vector *gradient,
+ gsl_matrix *Hessian_inv, double &crt_a, double &crt_b,
+ double &crt_c) {
+ if (func_name != 'R' && func_name != 'L' && func_name != 'r' &&
+ func_name != 'l') {
+ cout << "func_name only takes 'R' or 'L': 'R' for "
+ << "log-restricted likelihood, 'L' for log-likelihood." << endl;
+ return;
+ }
+
+ size_t dc_size = Qi->size1, d_size = Hi->size1;
+ size_t c_size = dc_size / d_size;
+ size_t v_size = d_size * (d_size + 1) / 2;
+ size_t v1, v2;
+ double dev1_g, dev1_e, dev2_gg, dev2_ee, dev2_ge;
+
+ gsl_matrix *Hessian = gsl_matrix_alloc(v_size * 2, v_size * 2);
+
+ gsl_matrix *xHiDHiy_all_g = gsl_matrix_alloc(dc_size, v_size);
+ gsl_matrix *xHiDHiy_all_e = gsl_matrix_alloc(dc_size, v_size);
+ gsl_matrix *xHiDHix_all_g = gsl_matrix_alloc(dc_size, v_size * dc_size);
+ gsl_matrix *xHiDHix_all_e = gsl_matrix_alloc(dc_size, v_size * dc_size);
+ gsl_matrix *xHiDHixQixHiy_all_g = gsl_matrix_alloc(dc_size, v_size);
+ gsl_matrix *xHiDHixQixHiy_all_e = gsl_matrix_alloc(dc_size, v_size);
+
+ gsl_matrix *QixHiDHiy_all_g = gsl_matrix_alloc(dc_size, v_size);
+ gsl_matrix *QixHiDHiy_all_e = gsl_matrix_alloc(dc_size, v_size);
+ gsl_matrix *QixHiDHix_all_g = gsl_matrix_alloc(dc_size, v_size * dc_size);
+ gsl_matrix *QixHiDHix_all_e = gsl_matrix_alloc(dc_size, v_size * dc_size);
+ gsl_matrix *QixHiDHixQixHiy_all_g = gsl_matrix_alloc(dc_size, v_size);
+ gsl_matrix *QixHiDHixQixHiy_all_e = gsl_matrix_alloc(dc_size, v_size);
+
+ gsl_matrix *xHiDHiDHiy_all_gg = gsl_matrix_alloc(dc_size, v_size * v_size);
+ gsl_matrix *xHiDHiDHiy_all_ee = gsl_matrix_alloc(dc_size, v_size * v_size);
+ gsl_matrix *xHiDHiDHiy_all_ge = gsl_matrix_alloc(dc_size, v_size * v_size);
+ gsl_matrix *xHiDHiDHix_all_gg =
+ gsl_matrix_alloc(dc_size, v_size * v_size * dc_size);
+ gsl_matrix *xHiDHiDHix_all_ee =
+ gsl_matrix_alloc(dc_size, v_size * v_size * dc_size);
+ gsl_matrix *xHiDHiDHix_all_ge =
+ gsl_matrix_alloc(dc_size, v_size * v_size * dc_size);
+
+ // Calculate xHiDHiy_all, xHiDHix_all and xHiDHixQixHiy_all.
+ Calc_xHiDHiy_all(eval, xHi, Hiy, xHiDHiy_all_g, xHiDHiy_all_e);
+ Calc_xHiDHix_all(eval, xHi, xHiDHix_all_g, xHiDHix_all_e);
+ Calc_xHiDHixQixHiy_all(xHiDHix_all_g, xHiDHix_all_e, QixHiy,
+ xHiDHixQixHiy_all_g, xHiDHixQixHiy_all_e);
+
+ Calc_xHiDHiDHiy_all(v_size, eval, Hi, xHi, Hiy, xHiDHiDHiy_all_gg,
+ xHiDHiDHiy_all_ee, xHiDHiDHiy_all_ge);
+ Calc_xHiDHiDHix_all(v_size, eval, Hi, xHi, xHiDHiDHix_all_gg,
+ xHiDHiDHix_all_ee, xHiDHiDHix_all_ge);
+
+ // Calculate QixHiDHiy_all, QixHiDHix_all and QixHiDHixQixHiy_all.
+ Calc_QiVec_all(Qi, xHiDHiy_all_g, xHiDHiy_all_e, QixHiDHiy_all_g,
+ QixHiDHiy_all_e);
+ Calc_QiVec_all(Qi, xHiDHixQixHiy_all_g, xHiDHixQixHiy_all_e,
+ QixHiDHixQixHiy_all_g, QixHiDHixQixHiy_all_e);
+ Calc_QiMat_all(Qi, xHiDHix_all_g, xHiDHix_all_e, QixHiDHix_all_g,
+ QixHiDHix_all_e);
+
+ double tHiD_g, tHiD_e, tPD_g, tPD_e, tHiDHiD_gg, tHiDHiD_ee;
+ double tHiDHiD_ge, tPDPD_gg, tPDPD_ee, tPDPD_ge;
+ double yPDPy_g, yPDPy_e, yPDPDPy_gg, yPDPDPy_ee, yPDPDPy_ge;
+
+ // Calculate gradient and Hessian for Vg.
+ for (size_t i1 = 0; i1 < d_size; i1++) {
+ for (size_t j1 = 0; j1 < d_size; j1++) {
+ if (j1 < i1) {
+ continue;
+ }
+ v1 = GetIndex(i1, j1, d_size);
+
+ Calc_yPDPy(eval, Hiy, QixHiy, xHiDHiy_all_g, xHiDHiy_all_e,
+ xHiDHixQixHiy_all_g, xHiDHixQixHiy_all_e, i1, j1, yPDPy_g,
+ yPDPy_e);
+
+ if (func_name == 'R' || func_name == 'r') {
+ Calc_tracePD(eval, Qi, Hi, xHiDHix_all_g, xHiDHix_all_e, i1, j1, tPD_g,
+ tPD_e);
+
+ dev1_g = -0.5 * tPD_g + 0.5 * yPDPy_g;
+ dev1_e = -0.5 * tPD_e + 0.5 * yPDPy_e;
+ } else {
+ Calc_traceHiD(eval, Hi, i1, j1, tHiD_g, tHiD_e);
+
+ dev1_g = -0.5 * tHiD_g + 0.5 * yPDPy_g;
+ dev1_e = -0.5 * tHiD_e + 0.5 * yPDPy_e;
+ }
+
+ gsl_vector_set(gradient, v1, dev1_g);
+ gsl_vector_set(gradient, v1 + v_size, dev1_e);
+
+ for (size_t i2 = 0; i2 < d_size; i2++) {
+ for (size_t j2 = 0; j2 < d_size; j2++) {
+ if (j2 < i2) {
+ continue;
+ }
+ v2 = GetIndex(i2, j2, d_size);
+
+ if (v2 < v1) {
+ continue;
+ }
+
+ Calc_yPDPDPy(eval, Hi, xHi, Hiy, QixHiy, xHiDHiy_all_g, xHiDHiy_all_e,
+ QixHiDHiy_all_g, QixHiDHiy_all_e, xHiDHixQixHiy_all_g,
+ xHiDHixQixHiy_all_e, QixHiDHixQixHiy_all_g,
+ QixHiDHixQixHiy_all_e, xHiDHiDHiy_all_gg,
+ xHiDHiDHiy_all_ee, xHiDHiDHiy_all_ge, xHiDHiDHix_all_gg,
+ xHiDHiDHix_all_ee, xHiDHiDHix_all_ge, i1, j1, i2, j2,
+ yPDPDPy_gg, yPDPDPy_ee, yPDPDPy_ge);
+
+ // AI for REML.
+ if (func_name == 'R' || func_name == 'r') {
+ Calc_tracePDPD(eval, Qi, Hi, xHi, QixHiDHix_all_g, QixHiDHix_all_e,
+ xHiDHiDHix_all_gg, xHiDHiDHix_all_ee,
+ xHiDHiDHix_all_ge, i1, j1, i2, j2, tPDPD_gg,
+ tPDPD_ee, tPDPD_ge);
+
+ dev2_gg = 0.5 * tPDPD_gg - yPDPDPy_gg;
+ dev2_ee = 0.5 * tPDPD_ee - yPDPDPy_ee;
+ dev2_ge = 0.5 * tPDPD_ge - yPDPDPy_ge;
+ } else {
+ Calc_traceHiDHiD(eval, Hi, i1, j1, i2, j2, tHiDHiD_gg, tHiDHiD_ee,
+ tHiDHiD_ge);
+
+ dev2_gg = 0.5 * tHiDHiD_gg - yPDPDPy_gg;
+ dev2_ee = 0.5 * tHiDHiD_ee - yPDPDPy_ee;
+ dev2_ge = 0.5 * tHiDHiD_ge - yPDPDPy_ge;
+ }
+
+ // Set up Hessian.
+ gsl_matrix_set(Hessian, v1, v2, dev2_gg);
+ gsl_matrix_set(Hessian, v1 + v_size, v2 + v_size, dev2_ee);
+ gsl_matrix_set(Hessian, v1, v2 + v_size, dev2_ge);
+ gsl_matrix_set(Hessian, v2 + v_size, v1, dev2_ge);
+
+ if (v1 != v2) {
+ gsl_matrix_set(Hessian, v2, v1, dev2_gg);
+ gsl_matrix_set(Hessian, v2 + v_size, v1 + v_size, dev2_ee);
+ gsl_matrix_set(Hessian, v2, v1 + v_size, dev2_ge);
+ gsl_matrix_set(Hessian, v1 + v_size, v2, dev2_ge);
+ }
+ }
+ }
+ }
+ }
+
+ // Invert Hessian.
+ int sig;
+ gsl_permutation *pmt = gsl_permutation_alloc(v_size * 2);
+
+ LUDecomp(Hessian, pmt, &sig);
+ LUInvert(Hessian, pmt, Hessian_inv);
+
+ gsl_permutation_free(pmt);
+ gsl_matrix_free(Hessian);
+
+ // Calculate Edgeworth correction factors after inverting
+ // Hessian.
+ if (c_size > 1) {
+ CalcCRT(Hessian_inv, Qi, QixHiDHix_all_g, QixHiDHix_all_e,
+ xHiDHiDHix_all_gg, xHiDHiDHix_all_ee, xHiDHiDHix_all_ge, d_size,
+ crt_a, crt_b, crt_c);
+ } else {
+ crt_a = 0.0;
+ crt_b = 0.0;
+ crt_c = 0.0;
+ }
+
+ gsl_matrix_free(xHiDHiy_all_g);
+ gsl_matrix_free(xHiDHiy_all_e);
+ gsl_matrix_free(xHiDHix_all_g);
+ gsl_matrix_free(xHiDHix_all_e);
+ gsl_matrix_free(xHiDHixQixHiy_all_g);
+ gsl_matrix_free(xHiDHixQixHiy_all_e);
+
+ gsl_matrix_free(QixHiDHiy_all_g);
+ gsl_matrix_free(QixHiDHiy_all_e);
+ gsl_matrix_free(QixHiDHix_all_g);
+ gsl_matrix_free(QixHiDHix_all_e);
+ gsl_matrix_free(QixHiDHixQixHiy_all_g);
+ gsl_matrix_free(QixHiDHixQixHiy_all_e);
+
+ gsl_matrix_free(xHiDHiDHiy_all_gg);
+ gsl_matrix_free(xHiDHiDHiy_all_ee);
+ gsl_matrix_free(xHiDHiDHiy_all_ge);
+ gsl_matrix_free(xHiDHiDHix_all_gg);
+ gsl_matrix_free(xHiDHiDHix_all_ee);
+ gsl_matrix_free(xHiDHiDHix_all_ge);
+
+ return;
}
// Update Vg, Ve.
-void UpdateVgVe (const gsl_matrix *Hessian_inv, const gsl_vector *gradient,
- const double step_scale, gsl_matrix *V_g, gsl_matrix *V_e) {
- size_t v_size=gradient->size/2, d_size=V_g->size1;
- size_t v;
+void UpdateVgVe(const gsl_matrix *Hessian_inv, const gsl_vector *gradient,
+ const double step_scale, gsl_matrix *V_g, gsl_matrix *V_e) {
+ size_t v_size = gradient->size / 2, d_size = V_g->size1;
+ size_t v;
- gsl_vector *vec_v=gsl_vector_alloc (v_size*2);
+ gsl_vector *vec_v = gsl_vector_alloc(v_size * 2);
- double d;
+ double d;
- // Vectorize Vg and Ve.
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<d_size; j++) {
- if (j<i) {continue;}
- v=GetIndex(i, j, d_size);
+ // Vectorize Vg and Ve.
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j < d_size; j++) {
+ if (j < i) {
+ continue;
+ }
+ v = GetIndex(i, j, d_size);
- d=gsl_matrix_get (V_g, i, j);
- gsl_vector_set (vec_v, v, d);
+ d = gsl_matrix_get(V_g, i, j);
+ gsl_vector_set(vec_v, v, d);
- d=gsl_matrix_get (V_e, i, j);
- gsl_vector_set (vec_v, v+v_size, d);
- }
- }
+ d = gsl_matrix_get(V_e, i, j);
+ gsl_vector_set(vec_v, v + v_size, d);
+ }
+ }
- gsl_blas_dgemv (CblasNoTrans, -1.0*step_scale, Hessian_inv,
- gradient, 1.0, vec_v);
+ gsl_blas_dgemv(CblasNoTrans, -1.0 * step_scale, Hessian_inv, gradient, 1.0,
+ vec_v);
- // Save Vg and Ve.
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<d_size; j++) {
- if (j<i) {continue;}
- v=GetIndex(i, j, d_size);
+ // Save Vg and Ve.
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j < d_size; j++) {
+ if (j < i) {
+ continue;
+ }
+ v = GetIndex(i, j, d_size);
- d=gsl_vector_get (vec_v, v);
- gsl_matrix_set (V_g, i, j, d);
- gsl_matrix_set (V_g, j, i, d);
+ d = gsl_vector_get(vec_v, v);
+ gsl_matrix_set(V_g, i, j, d);
+ gsl_matrix_set(V_g, j, i, d);
- d=gsl_vector_get (vec_v, v+v_size);
- gsl_matrix_set (V_e, i, j, d);
- gsl_matrix_set (V_e, j, i, d);
- }
- }
+ d = gsl_vector_get(vec_v, v + v_size);
+ gsl_matrix_set(V_e, i, j, d);
+ gsl_matrix_set(V_e, j, i, d);
+ }
+ }
- gsl_vector_free(vec_v);
+ gsl_vector_free(vec_v);
- return;
+ return;
}
-double MphNR (const char func_name, const size_t max_iter,
- const double max_prec, const gsl_vector *eval,
- const gsl_matrix *X, const gsl_matrix *Y, gsl_matrix *Hi_all,
- gsl_matrix *xHi_all, gsl_matrix *Hiy_all, gsl_matrix *V_g,
- gsl_matrix *V_e, gsl_matrix *Hessian_inv, double &crt_a,
- double &crt_b, double &crt_c) {
- if (func_name!='R' && func_name!='L' && func_name!='r' &&
- func_name!='l') {
- cout<<"func_name only takes 'R' or 'L': 'R' for log-restricted "<<
- "likelihood, 'L' for log-likelihood."<<endl;
- return 0.0;
- }
- size_t n_size=eval->size, c_size=X->size1, d_size=Y->size1;
- size_t dc_size=d_size*c_size;
- size_t v_size=d_size*(d_size+1)/2;
-
- double logdet_H, logdet_Q, yPy, logl_const;
- double logl_old=0.0, logl_new=0.0, step_scale;
- int sig;
- size_t step_iter, flag_pd;
-
- gsl_matrix *Vg_save=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *Ve_save=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *V_temp=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *U_temp=gsl_matrix_alloc (d_size, d_size);
- gsl_vector *D_temp=gsl_vector_alloc (d_size);
- gsl_vector *xHiy=gsl_vector_alloc (dc_size);
- gsl_vector *QixHiy=gsl_vector_alloc (dc_size);
- gsl_matrix *Qi=gsl_matrix_alloc (dc_size, dc_size);
- gsl_matrix *XXt=gsl_matrix_alloc (c_size, c_size);
-
- gsl_vector *gradient=gsl_vector_alloc (v_size*2);
-
- // Calculate |XXt| and (XXt)^{-1}.
- gsl_blas_dsyrk (CblasUpper, CblasNoTrans, 1.0, X, 0.0, XXt);
- for (size_t i=0; i<c_size; ++i) {
- for (size_t j=0; j<i; ++j) {
- gsl_matrix_set (XXt, i, j, gsl_matrix_get (XXt, j, i));
- }
- }
-
- gsl_permutation * pmt=gsl_permutation_alloc (c_size);
- LUDecomp (XXt, pmt, &sig);
- gsl_permutation_free (pmt);
-
- // Calculate the constant for logl.
- if (func_name=='R' || func_name=='r') {
- logl_const=-0.5*(double)(n_size-c_size) *
- (double)d_size*log(2.0*M_PI) +
- 0.5*(double)d_size*LULndet (XXt);
- } else {
- logl_const=-0.5*(double)n_size*(double)d_size*log(2.0*M_PI);
- }
-
- // Optimization iterations.
- for (size_t t=0; t<max_iter; t++) {
- gsl_matrix_memcpy (Vg_save, V_g);
- gsl_matrix_memcpy (Ve_save, V_e);
-
- step_scale=1.0; step_iter=0;
- do {
- gsl_matrix_memcpy (V_g, Vg_save);
- gsl_matrix_memcpy (V_e, Ve_save);
-
- // Update Vg, Ve, and invert Hessian.
- if (t!=0) {
- UpdateVgVe (Hessian_inv, gradient, step_scale, V_g, V_e);
- }
-
- // Check if both Vg and Ve are positive definite.
- flag_pd=1;
- gsl_matrix_memcpy (V_temp, V_e);
- EigenDecomp(V_temp, U_temp, D_temp, 0);
- for (size_t i=0; i<d_size; i++) {
- if (gsl_vector_get (D_temp, i)<=0) {flag_pd=0;}
- }
- gsl_matrix_memcpy (V_temp, V_g);
- EigenDecomp(V_temp, U_temp, D_temp, 0);
- for (size_t i=0; i<d_size; i++) {
- if (gsl_vector_get (D_temp, i)<=0) {flag_pd=0;}
- }
-
- // If flag_pd==1, continue to calculate quantities
- // and logl.
- if (flag_pd==1) {
- CalcHiQi(eval,X,V_g,V_e,Hi_all,Qi,logdet_H,logdet_Q);
- Calc_Hiy_all (Y, Hi_all, Hiy_all);
- Calc_xHi_all (X, Hi_all, xHi_all);
-
- // Calculate QixHiy and yPy.
- Calc_xHiy (Y, xHi_all, xHiy);
- gsl_blas_dgemv (CblasNoTrans, 1.0, Qi, xHiy, 0.0, QixHiy);
-
- gsl_blas_ddot (QixHiy, xHiy, &yPy);
- yPy=Calc_yHiy (Y, Hiy_all)-yPy;
-
- // Calculate log likelihood/restricted likelihood value.
- if (func_name=='R' || func_name=='r') {
- logl_new=logl_const-0.5*logdet_H-0.5*logdet_Q-0.5*yPy;
- } else {
- logl_new=logl_const-0.5*logdet_H-0.5*yPy;
- }
- }
-
- step_scale/=2.0;
- step_iter++;
-
- } while ( (flag_pd==0 || logl_new<logl_old ||
- logl_new-logl_old>10 ) && step_iter<10 && t!=0);
-
- // Terminate if change is small.
- if (t!=0) {
- if (logl_new<logl_old || flag_pd==0) {
- gsl_matrix_memcpy (V_g, Vg_save);
- gsl_matrix_memcpy (V_e, Ve_save);
- break;
- }
-
- if (logl_new-logl_old<max_prec) {
- break;
- }
- }
-
- logl_old=logl_new;
-
- CalcDev (func_name, eval, Qi, Hi_all, xHi_all, Hiy_all,
- QixHiy, gradient, Hessian_inv, crt_a, crt_b, crt_c);
- }
-
- // Mutiply Hessian_inv with -1.0.
- // Now Hessian_inv is the variance matrix.
- gsl_matrix_scale (Hessian_inv, -1.0);
-
- gsl_matrix_free(Vg_save);
- gsl_matrix_free(Ve_save);
- gsl_matrix_free(V_temp);
- gsl_matrix_free(U_temp);
- gsl_vector_free(D_temp);
- gsl_vector_free(xHiy);
- gsl_vector_free(QixHiy);
-
- gsl_matrix_free(Qi);
- gsl_matrix_free(XXt);
-
- gsl_vector_free(gradient);
-
- return logl_new;
+double MphNR(const char func_name, const size_t max_iter, const double max_prec,
+ const gsl_vector *eval, const gsl_matrix *X, const gsl_matrix *Y,
+ gsl_matrix *Hi_all, gsl_matrix *xHi_all, gsl_matrix *Hiy_all,
+ gsl_matrix *V_g, gsl_matrix *V_e, gsl_matrix *Hessian_inv,
+ double &crt_a, double &crt_b, double &crt_c) {
+ if (func_name != 'R' && func_name != 'L' && func_name != 'r' &&
+ func_name != 'l') {
+ cout << "func_name only takes 'R' or 'L': 'R' for log-restricted "
+ << "likelihood, 'L' for log-likelihood." << endl;
+ return 0.0;
+ }
+ size_t n_size = eval->size, c_size = X->size1, d_size = Y->size1;
+ size_t dc_size = d_size * c_size;
+ size_t v_size = d_size * (d_size + 1) / 2;
+
+ double logdet_H, logdet_Q, yPy, logl_const;
+ double logl_old = 0.0, logl_new = 0.0, step_scale;
+ int sig;
+ size_t step_iter, flag_pd;
+
+ gsl_matrix *Vg_save = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *Ve_save = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *V_temp = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *U_temp = gsl_matrix_alloc(d_size, d_size);
+ gsl_vector *D_temp = gsl_vector_alloc(d_size);
+ gsl_vector *xHiy = gsl_vector_alloc(dc_size);
+ gsl_vector *QixHiy = gsl_vector_alloc(dc_size);
+ gsl_matrix *Qi = gsl_matrix_alloc(dc_size, dc_size);
+ gsl_matrix *XXt = gsl_matrix_alloc(c_size, c_size);
+
+ gsl_vector *gradient = gsl_vector_alloc(v_size * 2);
+
+ // Calculate |XXt| and (XXt)^{-1}.
+ gsl_blas_dsyrk(CblasUpper, CblasNoTrans, 1.0, X, 0.0, XXt);
+ for (size_t i = 0; i < c_size; ++i) {
+ for (size_t j = 0; j < i; ++j) {
+ gsl_matrix_set(XXt, i, j, gsl_matrix_get(XXt, j, i));
+ }
+ }
+
+ gsl_permutation *pmt = gsl_permutation_alloc(c_size);
+ LUDecomp(XXt, pmt, &sig);
+ gsl_permutation_free(pmt);
+
+ // Calculate the constant for logl.
+ if (func_name == 'R' || func_name == 'r') {
+ logl_const =
+ -0.5 * (double)(n_size - c_size) * (double)d_size * log(2.0 * M_PI) +
+ 0.5 * (double)d_size * LULndet(XXt);
+ } else {
+ logl_const = -0.5 * (double)n_size * (double)d_size * log(2.0 * M_PI);
+ }
+
+ // Optimization iterations.
+ for (size_t t = 0; t < max_iter; t++) {
+ gsl_matrix_memcpy(Vg_save, V_g);
+ gsl_matrix_memcpy(Ve_save, V_e);
+
+ step_scale = 1.0;
+ step_iter = 0;
+ do {
+ gsl_matrix_memcpy(V_g, Vg_save);
+ gsl_matrix_memcpy(V_e, Ve_save);
+
+ // Update Vg, Ve, and invert Hessian.
+ if (t != 0) {
+ UpdateVgVe(Hessian_inv, gradient, step_scale, V_g, V_e);
+ }
+
+ // Check if both Vg and Ve are positive definite.
+ flag_pd = 1;
+ gsl_matrix_memcpy(V_temp, V_e);
+ EigenDecomp(V_temp, U_temp, D_temp, 0);
+ for (size_t i = 0; i < d_size; i++) {
+ if (gsl_vector_get(D_temp, i) <= 0) {
+ flag_pd = 0;
+ }
+ }
+ gsl_matrix_memcpy(V_temp, V_g);
+ EigenDecomp(V_temp, U_temp, D_temp, 0);
+ for (size_t i = 0; i < d_size; i++) {
+ if (gsl_vector_get(D_temp, i) <= 0) {
+ flag_pd = 0;
+ }
+ }
+
+ // If flag_pd==1, continue to calculate quantities
+ // and logl.
+ if (flag_pd == 1) {
+ CalcHiQi(eval, X, V_g, V_e, Hi_all, Qi, logdet_H, logdet_Q);
+ Calc_Hiy_all(Y, Hi_all, Hiy_all);
+ Calc_xHi_all(X, Hi_all, xHi_all);
+
+ // Calculate QixHiy and yPy.
+ Calc_xHiy(Y, xHi_all, xHiy);
+ gsl_blas_dgemv(CblasNoTrans, 1.0, Qi, xHiy, 0.0, QixHiy);
+
+ gsl_blas_ddot(QixHiy, xHiy, &yPy);
+ yPy = Calc_yHiy(Y, Hiy_all) - yPy;
+
+ // Calculate log likelihood/restricted likelihood value.
+ if (func_name == 'R' || func_name == 'r') {
+ logl_new = logl_const - 0.5 * logdet_H - 0.5 * logdet_Q - 0.5 * yPy;
+ } else {
+ logl_new = logl_const - 0.5 * logdet_H - 0.5 * yPy;
+ }
+ }
+
+ step_scale /= 2.0;
+ step_iter++;
+
+ } while (
+ (flag_pd == 0 || logl_new < logl_old || logl_new - logl_old > 10) &&
+ step_iter < 10 && t != 0);
+
+ // Terminate if change is small.
+ if (t != 0) {
+ if (logl_new < logl_old || flag_pd == 0) {
+ gsl_matrix_memcpy(V_g, Vg_save);
+ gsl_matrix_memcpy(V_e, Ve_save);
+ break;
+ }
+
+ if (logl_new - logl_old < max_prec) {
+ break;
+ }
+ }
+
+ logl_old = logl_new;
+
+ CalcDev(func_name, eval, Qi, Hi_all, xHi_all, Hiy_all, QixHiy, gradient,
+ Hessian_inv, crt_a, crt_b, crt_c);
+ }
+
+ // Mutiply Hessian_inv with -1.0.
+ // Now Hessian_inv is the variance matrix.
+ gsl_matrix_scale(Hessian_inv, -1.0);
+
+ gsl_matrix_free(Vg_save);
+ gsl_matrix_free(Ve_save);
+ gsl_matrix_free(V_temp);
+ gsl_matrix_free(U_temp);
+ gsl_vector_free(D_temp);
+ gsl_vector_free(xHiy);
+ gsl_vector_free(QixHiy);
+
+ gsl_matrix_free(Qi);
+ gsl_matrix_free(XXt);
+
+ gsl_vector_free(gradient);
+
+ return logl_new;
}
// Initialize Vg, Ve and B.
void MphInitial(const size_t em_iter, const double em_prec,
- const size_t nr_iter, const double nr_prec,
- const gsl_vector *eval, const gsl_matrix *X,
- const gsl_matrix *Y, const double l_min, const double l_max,
- const size_t n_region, gsl_matrix *V_g, gsl_matrix *V_e,
- gsl_matrix *B) {
-
- gsl_matrix_set_zero (V_g);
- gsl_matrix_set_zero (V_e);
- gsl_matrix_set_zero (B);
-
- size_t n_size=eval->size, c_size=X->size1, d_size=Y->size1;
- double a, b, c;
- double lambda, logl, vg, ve;
-
- // Initialize the diagonal elements of Vg and Ve using univariate
- // LMM and REML estimates.
- gsl_matrix *Xt=gsl_matrix_alloc (n_size, c_size);
- gsl_vector *beta_temp=gsl_vector_alloc(c_size);
- gsl_vector *se_beta_temp=gsl_vector_alloc(c_size);
-
- gsl_matrix_transpose_memcpy (Xt, X);
-
- for (size_t i=0; i<d_size; i++) {
- gsl_vector_const_view Y_row=gsl_matrix_const_row (Y, i);
- CalcLambda ('R', eval, Xt, &Y_row.vector, l_min, l_max,
- n_region, lambda, logl);
- CalcLmmVgVeBeta (eval, Xt, &Y_row.vector, lambda, vg, ve,
- beta_temp, se_beta_temp);
-
- gsl_matrix_set(V_g, i, i, vg);
- gsl_matrix_set(V_e, i, i, ve);
- }
-
- gsl_matrix_free (Xt);
- gsl_vector_free (beta_temp);
- gsl_vector_free (se_beta_temp);
-
- // If number of phenotypes is above four, then obtain the off
- // diagonal elements with two trait models.
- if (d_size>4) {
-
- // First obtain good initial values.
- // Large matrices for EM.
- gsl_matrix *U_hat=gsl_matrix_alloc (2, n_size);
- gsl_matrix *E_hat=gsl_matrix_alloc (2, n_size);
- gsl_matrix *OmegaU=gsl_matrix_alloc (2, n_size);
- gsl_matrix *OmegaE=gsl_matrix_alloc (2, n_size);
- gsl_matrix *UltVehiY=gsl_matrix_alloc (2, n_size);
- gsl_matrix *UltVehiBX=gsl_matrix_alloc (2, n_size);
- gsl_matrix *UltVehiU=gsl_matrix_alloc (2, n_size);
- gsl_matrix *UltVehiE=gsl_matrix_alloc (2, n_size);
-
- // Large matrices for NR. Each dxd block is H_k^{-1}.
- gsl_matrix *Hi_all=gsl_matrix_alloc (2, 2*n_size);
-
- // Each column is H_k^{-1}y_k.
- gsl_matrix *Hiy_all=gsl_matrix_alloc (2, n_size);
-
- // Each dcxdc block is x_k\otimes H_k^{-1}.
- gsl_matrix *xHi_all=gsl_matrix_alloc (2*c_size, 2*n_size);
- gsl_matrix *Hessian=gsl_matrix_alloc (6, 6);
-
- // 2 by n matrix of Y.
- gsl_matrix *Y_sub=gsl_matrix_alloc (2, n_size);
- gsl_matrix *Vg_sub=gsl_matrix_alloc (2, 2);
- gsl_matrix *Ve_sub=gsl_matrix_alloc (2, 2);
- gsl_matrix *B_sub=gsl_matrix_alloc (2, c_size);
-
- for (size_t i=0; i<d_size; i++) {
- gsl_vector_view Y_sub1=gsl_matrix_row (Y_sub, 0);
- gsl_vector_const_view Y_1=gsl_matrix_const_row (Y, i);
- gsl_vector_memcpy (&Y_sub1.vector, &Y_1.vector);
-
- for (size_t j=i+1; j<d_size; j++) {
- gsl_vector_view Y_sub2=gsl_matrix_row (Y_sub, 1);
- gsl_vector_const_view Y_2=gsl_matrix_const_row (Y, j);
- gsl_vector_memcpy (&Y_sub2.vector, &Y_2.vector);
-
- gsl_matrix_set_zero (Vg_sub);
- gsl_matrix_set_zero (Ve_sub);
- gsl_matrix_set (Vg_sub, 0, 0, gsl_matrix_get (V_g, i, i));
- gsl_matrix_set (Ve_sub, 0, 0, gsl_matrix_get (V_e, i, i));
- gsl_matrix_set (Vg_sub, 1, 1, gsl_matrix_get (V_g, j, j));
- gsl_matrix_set (Ve_sub, 1, 1, gsl_matrix_get (V_e, j, j));
-
- logl=MphEM ('R', em_iter, em_prec, eval, X, Y_sub, U_hat,
- E_hat, OmegaU, OmegaE, UltVehiY, UltVehiBX,
- UltVehiU, UltVehiE, Vg_sub, Ve_sub, B_sub);
- logl=MphNR ('R', nr_iter, nr_prec, eval, X, Y_sub, Hi_all,
- xHi_all, Hiy_all, Vg_sub, Ve_sub, Hessian, a, b, c);
-
- gsl_matrix_set(V_g, i, j, gsl_matrix_get (Vg_sub, 0, 1));
- gsl_matrix_set(V_g, j, i, gsl_matrix_get (Vg_sub, 0, 1));
-
- gsl_matrix_set(V_e, i, j, ve=gsl_matrix_get (Ve_sub, 0, 1));
- gsl_matrix_set(V_e, j, i, ve=gsl_matrix_get (Ve_sub, 0, 1));
- }
- }
-
- // Free matrices.
- gsl_matrix_free(U_hat);
- gsl_matrix_free(E_hat);
- gsl_matrix_free(OmegaU);
- gsl_matrix_free(OmegaE);
- gsl_matrix_free(UltVehiY);
- gsl_matrix_free(UltVehiBX);
- gsl_matrix_free(UltVehiU);
- gsl_matrix_free(UltVehiE);
-
- gsl_matrix_free(Hi_all);
- gsl_matrix_free(Hiy_all);
- gsl_matrix_free(xHi_all);
- gsl_matrix_free(Hessian);
-
- gsl_matrix_free(Y_sub);
- gsl_matrix_free(Vg_sub);
- gsl_matrix_free(Ve_sub);
- gsl_matrix_free(B_sub);
- }
-
- // Calculate B hat using GSL estimate.
- gsl_matrix *UltVehiY=gsl_matrix_alloc (d_size, n_size);
-
- gsl_vector *D_l=gsl_vector_alloc (d_size);
- gsl_matrix *UltVeh=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *UltVehi=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *Qi=gsl_matrix_alloc (d_size*c_size, d_size*c_size);
- gsl_vector *XHiy=gsl_vector_alloc (d_size*c_size);
- gsl_vector *beta=gsl_vector_alloc (d_size*c_size);
-
- gsl_vector_set_zero (XHiy);
-
- double logdet_Ve, logdet_Q, dl, d, delta, dx, dy;
-
- // Eigen decomposition and calculate log|Ve|.
- logdet_Ve=EigenProc (V_g, V_e, D_l, UltVeh, UltVehi);
-
- // Calculate Qi and log|Q|.
- logdet_Q=CalcQi (eval, D_l, X, Qi);
-
- // Calculate UltVehiY.
- gsl_blas_dgemm(CblasNoTrans,CblasNoTrans,1.0,UltVehi,Y,0.0,UltVehiY);
-
- //calculate XHiy
- for (size_t i=0; i<d_size; i++) {
- dl=gsl_vector_get(D_l, i);
-
- for (size_t j=0; j<c_size; j++) {
- d=0.0;
- for (size_t k=0; k<n_size; k++) {
- delta=gsl_vector_get(eval, k);
- dx=gsl_matrix_get(X, j, k);
- dy=gsl_matrix_get(UltVehiY, i, k);
- d+=dy*dx/(delta*dl+1.0);
- }
- gsl_vector_set(XHiy, j*d_size+i, d);
- }
- }
-
- gsl_blas_dgemv(CblasNoTrans, 1.0, Qi, XHiy, 0.0, beta);
-
- // Multiply beta by UltVeh and save to B.
- for (size_t i=0; i<c_size; i++) {
- gsl_vector_view B_col=gsl_matrix_column (B, i);
- gsl_vector_view beta_sub=gsl_vector_subvector(beta,i*d_size,d_size);
- gsl_blas_dgemv(CblasTrans, 1.0, UltVeh, &beta_sub.vector, 0.0,
- &B_col.vector);
- }
-
- // Free memory.
- gsl_matrix_free(UltVehiY);
-
- gsl_vector_free(D_l);
- gsl_matrix_free(UltVeh);
- gsl_matrix_free(UltVehi);
- gsl_matrix_free(Qi);
- gsl_vector_free(XHiy);
- gsl_vector_free(beta);
-
- return;
+ const size_t nr_iter, const double nr_prec,
+ const gsl_vector *eval, const gsl_matrix *X,
+ const gsl_matrix *Y, const double l_min, const double l_max,
+ const size_t n_region, gsl_matrix *V_g, gsl_matrix *V_e,
+ gsl_matrix *B) {
+
+ gsl_matrix_set_zero(V_g);
+ gsl_matrix_set_zero(V_e);
+ gsl_matrix_set_zero(B);
+
+ size_t n_size = eval->size, c_size = X->size1, d_size = Y->size1;
+ double a, b, c;
+ double lambda, logl, vg, ve;
+
+ // Initialize the diagonal elements of Vg and Ve using univariate
+ // LMM and REML estimates.
+ gsl_matrix *Xt = gsl_matrix_alloc(n_size, c_size);
+ gsl_vector *beta_temp = gsl_vector_alloc(c_size);
+ gsl_vector *se_beta_temp = gsl_vector_alloc(c_size);
+
+ gsl_matrix_transpose_memcpy(Xt, X);
+
+ for (size_t i = 0; i < d_size; i++) {
+ gsl_vector_const_view Y_row = gsl_matrix_const_row(Y, i);
+ CalcLambda('R', eval, Xt, &Y_row.vector, l_min, l_max, n_region, lambda,
+ logl);
+ CalcLmmVgVeBeta(eval, Xt, &Y_row.vector, lambda, vg, ve, beta_temp,
+ se_beta_temp);
+
+ gsl_matrix_set(V_g, i, i, vg);
+ gsl_matrix_set(V_e, i, i, ve);
+ }
+
+ gsl_matrix_free(Xt);
+ gsl_vector_free(beta_temp);
+ gsl_vector_free(se_beta_temp);
+
+ // If number of phenotypes is above four, then obtain the off
+ // diagonal elements with two trait models.
+ if (d_size > 4) {
+
+ // First obtain good initial values.
+ // Large matrices for EM.
+ gsl_matrix *U_hat = gsl_matrix_alloc(2, n_size);
+ gsl_matrix *E_hat = gsl_matrix_alloc(2, n_size);
+ gsl_matrix *OmegaU = gsl_matrix_alloc(2, n_size);
+ gsl_matrix *OmegaE = gsl_matrix_alloc(2, n_size);
+ gsl_matrix *UltVehiY = gsl_matrix_alloc(2, n_size);
+ gsl_matrix *UltVehiBX = gsl_matrix_alloc(2, n_size);
+ gsl_matrix *UltVehiU = gsl_matrix_alloc(2, n_size);
+ gsl_matrix *UltVehiE = gsl_matrix_alloc(2, n_size);
+
+ // Large matrices for NR. Each dxd block is H_k^{-1}.
+ gsl_matrix *Hi_all = gsl_matrix_alloc(2, 2 * n_size);
+
+ // Each column is H_k^{-1}y_k.
+ gsl_matrix *Hiy_all = gsl_matrix_alloc(2, n_size);
+
+ // Each dcxdc block is x_k\otimes H_k^{-1}.
+ gsl_matrix *xHi_all = gsl_matrix_alloc(2 * c_size, 2 * n_size);
+ gsl_matrix *Hessian = gsl_matrix_alloc(6, 6);
+
+ // 2 by n matrix of Y.
+ gsl_matrix *Y_sub = gsl_matrix_alloc(2, n_size);
+ gsl_matrix *Vg_sub = gsl_matrix_alloc(2, 2);
+ gsl_matrix *Ve_sub = gsl_matrix_alloc(2, 2);
+ gsl_matrix *B_sub = gsl_matrix_alloc(2, c_size);
+
+ for (size_t i = 0; i < d_size; i++) {
+ gsl_vector_view Y_sub1 = gsl_matrix_row(Y_sub, 0);
+ gsl_vector_const_view Y_1 = gsl_matrix_const_row(Y, i);
+ gsl_vector_memcpy(&Y_sub1.vector, &Y_1.vector);
+
+ for (size_t j = i + 1; j < d_size; j++) {
+ gsl_vector_view Y_sub2 = gsl_matrix_row(Y_sub, 1);
+ gsl_vector_const_view Y_2 = gsl_matrix_const_row(Y, j);
+ gsl_vector_memcpy(&Y_sub2.vector, &Y_2.vector);
+
+ gsl_matrix_set_zero(Vg_sub);
+ gsl_matrix_set_zero(Ve_sub);
+ gsl_matrix_set(Vg_sub, 0, 0, gsl_matrix_get(V_g, i, i));
+ gsl_matrix_set(Ve_sub, 0, 0, gsl_matrix_get(V_e, i, i));
+ gsl_matrix_set(Vg_sub, 1, 1, gsl_matrix_get(V_g, j, j));
+ gsl_matrix_set(Ve_sub, 1, 1, gsl_matrix_get(V_e, j, j));
+
+ logl = MphEM('R', em_iter, em_prec, eval, X, Y_sub, U_hat, E_hat,
+ OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU, UltVehiE,
+ Vg_sub, Ve_sub, B_sub);
+ logl = MphNR('R', nr_iter, nr_prec, eval, X, Y_sub, Hi_all, xHi_all,
+ Hiy_all, Vg_sub, Ve_sub, Hessian, a, b, c);
+
+ gsl_matrix_set(V_g, i, j, gsl_matrix_get(Vg_sub, 0, 1));
+ gsl_matrix_set(V_g, j, i, gsl_matrix_get(Vg_sub, 0, 1));
+
+ gsl_matrix_set(V_e, i, j, ve = gsl_matrix_get(Ve_sub, 0, 1));
+ gsl_matrix_set(V_e, j, i, ve = gsl_matrix_get(Ve_sub, 0, 1));
+ }
+ }
+
+ // Free matrices.
+ gsl_matrix_free(U_hat);
+ gsl_matrix_free(E_hat);
+ gsl_matrix_free(OmegaU);
+ gsl_matrix_free(OmegaE);
+ gsl_matrix_free(UltVehiY);
+ gsl_matrix_free(UltVehiBX);
+ gsl_matrix_free(UltVehiU);
+ gsl_matrix_free(UltVehiE);
+
+ gsl_matrix_free(Hi_all);
+ gsl_matrix_free(Hiy_all);
+ gsl_matrix_free(xHi_all);
+ gsl_matrix_free(Hessian);
+
+ gsl_matrix_free(Y_sub);
+ gsl_matrix_free(Vg_sub);
+ gsl_matrix_free(Ve_sub);
+ gsl_matrix_free(B_sub);
+ }
+
+ // Calculate B hat using GSL estimate.
+ gsl_matrix *UltVehiY = gsl_matrix_alloc(d_size, n_size);
+
+ gsl_vector *D_l = gsl_vector_alloc(d_size);
+ gsl_matrix *UltVeh = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *UltVehi = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *Qi = gsl_matrix_alloc(d_size * c_size, d_size * c_size);
+ gsl_vector *XHiy = gsl_vector_alloc(d_size * c_size);
+ gsl_vector *beta = gsl_vector_alloc(d_size * c_size);
+
+ gsl_vector_set_zero(XHiy);
+
+ double logdet_Ve, logdet_Q, dl, d, delta, dx, dy;
+
+ // Eigen decomposition and calculate log|Ve|.
+ logdet_Ve = EigenProc(V_g, V_e, D_l, UltVeh, UltVehi);
+
+ // Calculate Qi and log|Q|.
+ logdet_Q = CalcQi(eval, D_l, X, Qi);
+
+ // Calculate UltVehiY.
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, UltVehi, Y, 0.0, UltVehiY);
+
+ // calculate XHiy
+ for (size_t i = 0; i < d_size; i++) {
+ dl = gsl_vector_get(D_l, i);
+
+ for (size_t j = 0; j < c_size; j++) {
+ d = 0.0;
+ for (size_t k = 0; k < n_size; k++) {
+ delta = gsl_vector_get(eval, k);
+ dx = gsl_matrix_get(X, j, k);
+ dy = gsl_matrix_get(UltVehiY, i, k);
+ d += dy * dx / (delta * dl + 1.0);
+ }
+ gsl_vector_set(XHiy, j * d_size + i, d);
+ }
+ }
+
+ gsl_blas_dgemv(CblasNoTrans, 1.0, Qi, XHiy, 0.0, beta);
+
+ // Multiply beta by UltVeh and save to B.
+ for (size_t i = 0; i < c_size; i++) {
+ gsl_vector_view B_col = gsl_matrix_column(B, i);
+ gsl_vector_view beta_sub = gsl_vector_subvector(beta, i * d_size, d_size);
+ gsl_blas_dgemv(CblasTrans, 1.0, UltVeh, &beta_sub.vector, 0.0,
+ &B_col.vector);
+ }
+
+ // Free memory.
+ gsl_matrix_free(UltVehiY);
+
+ gsl_vector_free(D_l);
+ gsl_matrix_free(UltVeh);
+ gsl_matrix_free(UltVehi);
+ gsl_matrix_free(Qi);
+ gsl_vector_free(XHiy);
+ gsl_vector_free(beta);
+
+ return;
}
// p-value correction
// mode=1 Wald; mode=2 LRT; mode=3 SCORE;
-double PCRT (const size_t mode, const size_t d_size, const double p_value,
- const double crt_a, const double crt_b, const double crt_c) {
- double p_crt=0.0, chisq_crt=0.0, q=(double)d_size;
- double chisq=gsl_cdf_chisq_Qinv(p_value, (double)d_size );
-
- if (mode==1) {
- double a=crt_c/(2.0*q*(q+2.0));
- double b=1.0+(crt_a+crt_b)/(2.0*q);
- chisq_crt=(-1.0*b+sqrt(b*b+4.0*a*chisq))/(2.0*a);
- } else if (mode==2) {
- chisq_crt=chisq/(1.0+crt_a/(2.0*q) );
- } else {
- chisq_crt=chisq;
- }
-
- p_crt=gsl_cdf_chisq_Q (chisq_crt, (double)d_size );
-
- return p_crt;
+double PCRT(const size_t mode, const size_t d_size, const double p_value,
+ const double crt_a, const double crt_b, const double crt_c) {
+ double p_crt = 0.0, chisq_crt = 0.0, q = (double)d_size;
+ double chisq = gsl_cdf_chisq_Qinv(p_value, (double)d_size);
+
+ if (mode == 1) {
+ double a = crt_c / (2.0 * q * (q + 2.0));
+ double b = 1.0 + (crt_a + crt_b) / (2.0 * q);
+ chisq_crt = (-1.0 * b + sqrt(b * b + 4.0 * a * chisq)) / (2.0 * a);
+ } else if (mode == 2) {
+ chisq_crt = chisq / (1.0 + crt_a / (2.0 * q));
+ } else {
+ chisq_crt = chisq;
+ }
+
+ p_crt = gsl_cdf_chisq_Q(chisq_crt, (double)d_size);
+
+ return p_crt;
}
// WJA added.
-void MVLMM::Analyzebgen (const gsl_matrix *U, const gsl_vector *eval,
- const gsl_matrix *UtW, const gsl_matrix *UtY) {
- string file_bgen=file_oxford+".bgen";
- ifstream infile (file_bgen.c_str(), ios::binary);
- if (!infile) {
- cout<<"error reading bgen file:"<<file_bgen<<endl;
- return;
- }
-
- clock_t time_start=clock();
- time_UtX=0; time_opt=0;
-
- string line;
-
- // Create a large matrix.
- size_t msize=10000;
- gsl_matrix *Xlarge=gsl_matrix_alloc (U->size1, msize);
- gsl_matrix *UtXlarge=gsl_matrix_alloc (U->size1, msize);
- gsl_matrix_set_zero(Xlarge);
-
- double logl_H0=0.0, logl_H1=0.0, p_wald=0, p_lrt=0, p_score=0;
- double crt_a, crt_b, crt_c;
- int n_miss, c_phen;
- double geno, x_mean;
- size_t c=0;
- size_t n_size=UtY->size1, d_size=UtY->size2, c_size=UtW->size2;
-
- size_t dc_size=d_size*(c_size+1), v_size=d_size*(d_size+1)/2;
-
- // Large matrices for EM.
- gsl_matrix *U_hat=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *E_hat=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *OmegaU=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *OmegaE=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *UltVehiY=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *UltVehiBX=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *UltVehiU=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *UltVehiE=gsl_matrix_alloc (d_size, n_size);
-
- // Large matrices for NR. Each dxd block is H_k^{-1}.
- gsl_matrix *Hi_all=gsl_matrix_alloc (d_size, d_size*n_size);
-
- // Each column is H_k^{-1}y_k.
- gsl_matrix *Hiy_all=gsl_matrix_alloc (d_size, n_size);
-
- // Each dcxdc block is x_k\otimes H_k^{-1}.
- gsl_matrix *xHi_all=gsl_matrix_alloc (dc_size, d_size*n_size);
- gsl_matrix *Hessian=gsl_matrix_alloc (v_size*2, v_size*2);
- gsl_vector *x=gsl_vector_alloc (n_size);
- gsl_vector *x_miss=gsl_vector_alloc (n_size);
-
- gsl_matrix *Y=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *X=gsl_matrix_alloc (c_size+1, n_size);
- gsl_matrix *V_g=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *V_e=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *B=gsl_matrix_alloc (d_size, c_size+1);
- gsl_vector *beta=gsl_vector_alloc (d_size);
- gsl_matrix *Vbeta=gsl_matrix_alloc (d_size, d_size);
-
- // Null estimates for initial values.
- gsl_matrix *V_g_null=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *V_e_null=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *B_null=gsl_matrix_alloc (d_size, c_size+1);
- gsl_matrix *se_B_null=gsl_matrix_alloc (d_size, c_size);
-
- gsl_matrix_view X_sub=gsl_matrix_submatrix (X, 0, 0, c_size, n_size);
- gsl_matrix_view B_sub=gsl_matrix_submatrix (B, 0, 0, d_size, c_size);
- gsl_matrix_view xHi_all_sub =
- gsl_matrix_submatrix (xHi_all, 0, 0, d_size*c_size, d_size*n_size);
-
- gsl_matrix_transpose_memcpy (Y, UtY);
-
- gsl_matrix_transpose_memcpy (&X_sub.matrix, UtW);
-
- gsl_vector_view X_row=gsl_matrix_row(X, c_size);
- gsl_vector_set_zero(&X_row.vector);
- gsl_vector_view B_col=gsl_matrix_column(B, c_size);
- gsl_vector_set_zero(&B_col.vector);
-
- MphInitial(em_iter, em_prec, nr_iter, nr_prec, eval, &X_sub.matrix,
- Y, l_min, l_max, n_region, V_g, V_e, &B_sub.matrix);
- logl_H0=MphEM ('R', em_iter, em_prec, eval, &X_sub.matrix, Y, U_hat,
- E_hat, OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU,
- UltVehiE, V_g, V_e, &B_sub.matrix);
- logl_H0=MphNR ('R', nr_iter, nr_prec, eval, &X_sub.matrix, Y,
- Hi_all, &xHi_all_sub.matrix, Hiy_all, V_g, V_e,
- Hessian, crt_a, crt_b, crt_c);
- MphCalcBeta (eval, &X_sub.matrix, Y, V_g, V_e, UltVehiY,
- &B_sub.matrix, se_B_null);
-
- c=0;
- Vg_remle_null.clear();
- Ve_remle_null.clear();
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=i; j<d_size; j++) {
- Vg_remle_null.push_back(gsl_matrix_get (V_g, i, j) );
- Ve_remle_null.push_back(gsl_matrix_get (V_e, i, j) );
- VVg_remle_null.push_back(gsl_matrix_get (Hessian, c, c) );
- VVe_remle_null.push_back(gsl_matrix_get (Hessian, c+v_size,
- c+v_size) );
- c++;
- }
- }
- beta_remle_null.clear();
- se_beta_remle_null.clear();
- for (size_t i=0; i<se_B_null->size1; i++) {
- for (size_t j=0; j<se_B_null->size2; j++) {
- beta_remle_null.push_back(gsl_matrix_get(B, i, j) );
- se_beta_remle_null.push_back(gsl_matrix_get(se_B_null, i, j) );
- }
- }
- logl_remle_H0=logl_H0;
-
- cout.setf(std::ios_base::fixed, std::ios_base::floatfield);
- cout.precision(4);
-
- cout<<"REMLE estimate for Vg in the null model: "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- cout<<gsl_matrix_get(V_g, i, j)<<"\t";
- }
- cout<<endl;
- }
- cout<<"se(Vg): "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- c=GetIndex(i, j, d_size);
- cout<<sqrt(gsl_matrix_get(Hessian, c, c))<<"\t";
- }
- cout<<endl;
- }
- cout<<"REMLE estimate for Ve in the null model: "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- cout<<gsl_matrix_get(V_e, i, j)<<"\t";
- }
- cout<<endl;
- }
- cout<<"se(Ve): "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- c=GetIndex(i, j, d_size);
- cout<<sqrt(gsl_matrix_get(Hessian, c+v_size, c+v_size))<<"\t";
- }
- cout<<endl;
- }
- cout<<"REMLE likelihood = "<<logl_H0<<endl;
-
-
- logl_H0=MphEM ('L', em_iter, em_prec, eval, &X_sub.matrix, Y, U_hat,
- E_hat, OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU,
- UltVehiE, V_g, V_e, &B_sub.matrix);
- logl_H0=MphNR ('L', nr_iter, nr_prec, eval, &X_sub.matrix, Y,
- Hi_all, &xHi_all_sub.matrix, Hiy_all, V_g, V_e,
- Hessian, crt_a, crt_b, crt_c);
- MphCalcBeta (eval, &X_sub.matrix, Y, V_g, V_e, UltVehiY,
- &B_sub.matrix, se_B_null);
-
- c=0;
- Vg_mle_null.clear();
- Ve_mle_null.clear();
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=i; j<d_size; j++) {
- Vg_mle_null.push_back(gsl_matrix_get (V_g, i, j) );
- Ve_mle_null.push_back(gsl_matrix_get (V_e, i, j) );
- VVg_mle_null.push_back(gsl_matrix_get (Hessian, c, c) );
- VVe_mle_null.push_back(gsl_matrix_get(Hessian,c+v_size,c+v_size));
- c++;
- }
- }
- beta_mle_null.clear();
- se_beta_mle_null.clear();
- for (size_t i=0; i<se_B_null->size1; i++) {
- for (size_t j=0; j<se_B_null->size2; j++) {
- beta_mle_null.push_back(gsl_matrix_get(B, i, j) );
- se_beta_mle_null.push_back(gsl_matrix_get(se_B_null, i, j) );
- }
- }
- logl_mle_H0=logl_H0;
-
- cout<<"MLE estimate for Vg in the null model: "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- cout<<gsl_matrix_get(V_g, i, j)<<"\t";
- }
- cout<<endl;
- }
- cout<<"se(Vg): "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- c=GetIndex(i, j, d_size);
- cout<<sqrt(gsl_matrix_get(Hessian, c, c))<<"\t";
- }
- cout<<endl;
- }
- cout<<"MLE estimate for Ve in the null model: "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- cout<<gsl_matrix_get(V_e, i, j)<<"\t";
- }
- cout<<endl;
- }
- cout<<"se(Ve): "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- c=GetIndex(i, j, d_size);
- cout<<sqrt(gsl_matrix_get(Hessian, c+v_size, c+v_size))<<"\t";
- }
- cout<<endl;
- }
- cout<<"MLE likelihood = "<<logl_H0<<endl;
-
-
- vector<double> v_beta, v_Vg, v_Ve, v_Vbeta;
- for (size_t i=0; i<d_size; i++) {
- v_beta.push_back(0.0);
- }
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=i; j<d_size; j++) {
- v_Vg.push_back(0.0);
- v_Ve.push_back(0.0);
- v_Vbeta.push_back(0.0);
- }
- }
-
- gsl_matrix_memcpy (V_g_null, V_g);
- gsl_matrix_memcpy (V_e_null, V_e);
- gsl_matrix_memcpy (B_null, B);
-
- // Read in header.
- uint32_t bgen_snp_block_offset;
- uint32_t bgen_header_length;
- uint32_t bgen_nsamples;
- uint32_t bgen_nsnps;
- uint32_t bgen_flags;
- infile.read(reinterpret_cast<char*>(&bgen_snp_block_offset),4);
- infile.read(reinterpret_cast<char*>(&bgen_header_length),4);
- bgen_snp_block_offset-=4;
- infile.read(reinterpret_cast<char*>(&bgen_nsnps),4);
- bgen_snp_block_offset-=4;
- infile.read(reinterpret_cast<char*>(&bgen_nsamples),4);
- bgen_snp_block_offset-=4;
- infile.ignore(4+bgen_header_length-20);
- bgen_snp_block_offset-=4+bgen_header_length-20;
- infile.read(reinterpret_cast<char*>(&bgen_flags),4);
- bgen_snp_block_offset-=4;
- bool CompressedSNPBlocks=bgen_flags&0x1;
-
- infile.ignore(bgen_snp_block_offset);
-
- double bgen_geno_prob_AA, bgen_geno_prob_AB, bgen_geno_prob_BB;
- double bgen_geno_prob_non_miss;
-
- uint32_t bgen_N;
- uint16_t bgen_LS;
- uint16_t bgen_LR;
- uint16_t bgen_LC;
- uint32_t bgen_SNP_pos;
- uint32_t bgen_LA;
- std::string bgen_A_allele;
- uint32_t bgen_LB;
- std::string bgen_B_allele;
- uint32_t bgen_P;
- size_t unzipped_data_size;
- string id;
- string rs;
- string chr;
- std::cout<<"Warning: WJA hard coded SNP missingness threshold "<<
- "of 10%"<<std::endl;
-
- // Start reading genotypes and analyze.
- size_t csnp=0, t_last=0;
- for (size_t t=0; t<indicator_snp.size(); ++t) {
- if (indicator_snp[t]==0) {continue;}
- t_last++;
- }
- for (size_t t=0; t<indicator_snp.size(); ++t) {
- if (t%d_pace==0 || t==(ns_total-1)) {
- ProgressBar ("Reading SNPs ", t, ns_total-1);
- }
- if (indicator_snp[t]==0) {continue;}
-
- // Read SNP header.
- id.clear();
- rs.clear();
- chr.clear();
- bgen_A_allele.clear();
- bgen_B_allele.clear();
-
- infile.read(reinterpret_cast<char*>(&bgen_N),4);
- infile.read(reinterpret_cast<char*>(&bgen_LS),2);
-
- id.resize(bgen_LS);
- infile.read(&id[0], bgen_LS);
-
- infile.read(reinterpret_cast<char*>(&bgen_LR),2);
- rs.resize(bgen_LR);
- infile.read(&rs[0], bgen_LR);
-
- infile.read(reinterpret_cast<char*>(&bgen_LC),2);
- chr.resize(bgen_LC);
- infile.read(&chr[0], bgen_LC);
-
- infile.read(reinterpret_cast<char*>(&bgen_SNP_pos),4);
-
- infile.read(reinterpret_cast<char*>(&bgen_LA),4);
- bgen_A_allele.resize(bgen_LA);
- infile.read(&bgen_A_allele[0], bgen_LA);
-
- infile.read(reinterpret_cast<char*>(&bgen_LB),4);
- bgen_B_allele.resize(bgen_LB);
- infile.read(&bgen_B_allele[0], bgen_LB);
-
- uint16_t unzipped_data[3*bgen_N];
-
- if (indicator_snp[t]==0) {
- if(CompressedSNPBlocks)
- infile.read(reinterpret_cast<char*>(&bgen_P),4);
- else
- bgen_P=6*bgen_N;
-
- infile.ignore(static_cast<size_t>(bgen_P));
-
- continue;
- }
-
- if(CompressedSNPBlocks) {
-
- infile.read(reinterpret_cast<char*>(&bgen_P),4);
- uint8_t zipped_data[bgen_P];
-
- unzipped_data_size=6*bgen_N;
-
- infile.read(reinterpret_cast<char*>(zipped_data),bgen_P);
-
- int result=uncompress(reinterpret_cast<Bytef*>(unzipped_data),
- reinterpret_cast<uLongf*>(&unzipped_data_size),
- reinterpret_cast<Bytef*>(zipped_data),
- static_cast<uLong> (bgen_P));
- assert(result == Z_OK);
-
- } else {
-
- bgen_P=6*bgen_N;
- infile.read(reinterpret_cast<char*>(unzipped_data),bgen_P);
- }
-
- x_mean=0.0; c_phen=0; n_miss=0;
- gsl_vector_set_zero(x_miss);
- for (size_t i=0; i<bgen_N; ++i) {
- if (indicator_idv[i]==0) {continue;}
-
- bgen_geno_prob_AA =
- static_cast<double>(unzipped_data[i*3])/32768.0;
- bgen_geno_prob_AB =
- static_cast<double>(unzipped_data[i*3+1])/32768.0;
- bgen_geno_prob_BB =
- static_cast<double>(unzipped_data[i*3+2])/32768.0;
-
- // WJA.
- bgen_geno_prob_non_miss=bgen_geno_prob_AA +
- bgen_geno_prob_AB+bgen_geno_prob_BB;
- if (bgen_geno_prob_non_miss<0.9) {
- gsl_vector_set(x_miss, c_phen, 0.0);
- n_miss++;
- }
- else {
-
- bgen_geno_prob_AA/=bgen_geno_prob_non_miss;
- bgen_geno_prob_AB/=bgen_geno_prob_non_miss;
- bgen_geno_prob_BB/=bgen_geno_prob_non_miss;
-
- geno=2.0*bgen_geno_prob_BB+bgen_geno_prob_AB;
-
- gsl_vector_set(x, c_phen, geno);
- gsl_vector_set(x_miss, c_phen, 1.0);
- x_mean+=geno;
- }
- c_phen++;
- }
-
- x_mean/=static_cast<double>(ni_test-n_miss);
-
- for (size_t i=0; i<ni_test; ++i) {
- if (gsl_vector_get (x_miss, i)==0) {gsl_vector_set(x, i, x_mean);}
- }
-
- gsl_vector_view Xlarge_col=gsl_matrix_column (Xlarge, csnp%msize);
- gsl_vector_memcpy (&Xlarge_col.vector, x);
- csnp++;
-
- if (csnp%msize==0 || csnp==t_last ) {
- size_t l=0;
- if (csnp%msize==0) {l=msize;} else {l=csnp%msize;}
-
- gsl_matrix_view Xlarge_sub =
- gsl_matrix_submatrix(Xlarge, 0, 0, Xlarge->size1, l);
- gsl_matrix_view UtXlarge_sub =
- gsl_matrix_submatrix(UtXlarge, 0, 0, UtXlarge->size1, l);
-
- time_start=clock();
- eigenlib_dgemm ("T", "N", 1.0, U, &Xlarge_sub.matrix, 0.0,
- &UtXlarge_sub.matrix);
- time_UtX+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
-
- gsl_matrix_set_zero (Xlarge);
-
- for (size_t i=0; i<l; i++) {
- gsl_vector_view UtXlarge_col=gsl_matrix_column (UtXlarge, i);
- gsl_vector_memcpy (&X_row.vector, &UtXlarge_col.vector);
-
- // Initial values.
- gsl_matrix_memcpy (V_g, V_g_null);
- gsl_matrix_memcpy (V_e, V_e_null);
- gsl_matrix_memcpy (B, B_null);
-
- time_start=clock();
-
- // 3 is before 1.
- if (a_mode==3 || a_mode==4) {
- p_score=MphCalcP (eval, &X_row.vector, &X_sub.matrix, Y,
- V_g_null, V_e_null, UltVehiY, beta, Vbeta);
- if (p_score<p_nr && crt==1) {
- logl_H1=MphNR ('R', 1, nr_prec*10, eval, X, Y, Hi_all,
- xHi_all, Hiy_all, V_g, V_e, Hessian, crt_a,
- crt_b, crt_c);
- p_score=PCRT (3, d_size, p_score, crt_a, crt_b, crt_c);
- }
- }
-
- if (a_mode==2 || a_mode==4) {
- logl_H1=MphEM ('L', em_iter/10, em_prec*10, eval, X, Y,
- U_hat, E_hat, OmegaU, OmegaE, UltVehiY,
- UltVehiBX, UltVehiU, UltVehiE, V_g, V_e, B);
-
- // Calculate beta and Vbeta.
- p_lrt=MphCalcP (eval, &X_row.vector, &X_sub.matrix, Y, V_g,
- V_e, UltVehiY, beta, Vbeta);
- p_lrt=gsl_cdf_chisq_Q (2.0*(logl_H1-logl_H0), (double)d_size );
-
- if (p_lrt<p_nr) {
- logl_H1=MphNR ('L', nr_iter/10, nr_prec*10, eval, X, Y,
- Hi_all, xHi_all, Hiy_all, V_g, V_e, Hessian,
- crt_a, crt_b, crt_c);
-
- // Calculate beta and Vbeta.
- p_lrt=MphCalcP (eval, &X_row.vector, &X_sub.matrix, Y, V_g,
- V_e, UltVehiY, beta, Vbeta);
- p_lrt=gsl_cdf_chisq_Q (2.0*(logl_H1-logl_H0),
- (double)d_size );
-
- if (crt==1) {
- p_lrt=PCRT (2, d_size, p_lrt, crt_a, crt_b, crt_c);
- }
- }
- }
-
- if (a_mode==1 || a_mode==4) {
- logl_H1=MphEM ('R', em_iter/10, em_prec*10, eval, X, Y, U_hat,
- E_hat, OmegaU, OmegaE, UltVehiY, UltVehiBX,
- UltVehiU, UltVehiE, V_g, V_e, B);
- p_wald=MphCalcP (eval, &X_row.vector, &X_sub.matrix, Y, V_g,
- V_e, UltVehiY, beta, Vbeta);
-
- if (p_wald<p_nr) {
- logl_H1=MphNR ('R', nr_iter/10, nr_prec*10, eval, X, Y,
- Hi_all, xHi_all, Hiy_all, V_g, V_e, Hessian,
- crt_a, crt_b, crt_c);
- p_wald=MphCalcP (eval, &X_row.vector, &X_sub.matrix, Y,
- V_g, V_e, UltVehiY, beta, Vbeta);
-
- if (crt==1) {
- p_wald=PCRT (1, d_size, p_wald, crt_a, crt_b, crt_c);
- }
- }
- }
-
- time_opt+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
-
- // Store summary data.
- for (size_t i=0; i<d_size; i++) {
- v_beta[i]=gsl_vector_get (beta, i);
- }
-
- c=0;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=i; j<d_size; j++) {
- v_Vg[c]=gsl_matrix_get (V_g, i, j);
- v_Ve[c]=gsl_matrix_get (V_e, i, j);
- v_Vbeta[c]=gsl_matrix_get (Vbeta, i, j);
- c++;
- }
- }
-
- MPHSUMSTAT SNPs={v_beta, p_wald, p_lrt, p_score, v_Vg, v_Ve,
- v_Vbeta};
- sumStat.push_back(SNPs);
- }
- }
- }
- cout<<endl;
-
- infile.close();
- infile.clear();
-
- gsl_matrix_free(U_hat);
- gsl_matrix_free(E_hat);
- gsl_matrix_free(OmegaU);
- gsl_matrix_free(OmegaE);
- gsl_matrix_free(UltVehiY);
- gsl_matrix_free(UltVehiBX);
- gsl_matrix_free(UltVehiU);
- gsl_matrix_free(UltVehiE);
-
- gsl_matrix_free(Hi_all);
- gsl_matrix_free(Hiy_all);
- gsl_matrix_free(xHi_all);
- gsl_matrix_free(Hessian);
-
- gsl_vector_free(x);
- gsl_vector_free(x_miss);
-
- gsl_matrix_free(Y);
- gsl_matrix_free(X);
- gsl_matrix_free(V_g);
- gsl_matrix_free(V_e);
- gsl_matrix_free(B);
- gsl_vector_free(beta);
- gsl_matrix_free(Vbeta);
-
- gsl_matrix_free(V_g_null);
- gsl_matrix_free(V_e_null);
- gsl_matrix_free(B_null);
- gsl_matrix_free(se_B_null);
-
- gsl_matrix_free(Xlarge);
- gsl_matrix_free(UtXlarge);
-
- return;
+void MVLMM::Analyzebgen(const gsl_matrix *U, const gsl_vector *eval,
+ const gsl_matrix *UtW, const gsl_matrix *UtY) {
+ string file_bgen = file_oxford + ".bgen";
+ ifstream infile(file_bgen.c_str(), ios::binary);
+ if (!infile) {
+ cout << "error reading bgen file:" << file_bgen << endl;
+ return;
+ }
+
+ clock_t time_start = clock();
+ time_UtX = 0;
+ time_opt = 0;
+
+ string line;
+
+ // Create a large matrix.
+ size_t msize = 10000;
+ gsl_matrix *Xlarge = gsl_matrix_alloc(U->size1, msize);
+ gsl_matrix *UtXlarge = gsl_matrix_alloc(U->size1, msize);
+ gsl_matrix_set_zero(Xlarge);
+
+ double logl_H0 = 0.0, logl_H1 = 0.0, p_wald = 0, p_lrt = 0, p_score = 0;
+ double crt_a, crt_b, crt_c;
+ int n_miss, c_phen;
+ double geno, x_mean;
+ size_t c = 0;
+ size_t n_size = UtY->size1, d_size = UtY->size2, c_size = UtW->size2;
+
+ size_t dc_size = d_size * (c_size + 1), v_size = d_size * (d_size + 1) / 2;
+
+ // Large matrices for EM.
+ gsl_matrix *U_hat = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *E_hat = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *OmegaU = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *OmegaE = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *UltVehiY = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *UltVehiBX = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *UltVehiU = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *UltVehiE = gsl_matrix_alloc(d_size, n_size);
+
+ // Large matrices for NR. Each dxd block is H_k^{-1}.
+ gsl_matrix *Hi_all = gsl_matrix_alloc(d_size, d_size * n_size);
+
+ // Each column is H_k^{-1}y_k.
+ gsl_matrix *Hiy_all = gsl_matrix_alloc(d_size, n_size);
+
+ // Each dcxdc block is x_k\otimes H_k^{-1}.
+ gsl_matrix *xHi_all = gsl_matrix_alloc(dc_size, d_size * n_size);
+ gsl_matrix *Hessian = gsl_matrix_alloc(v_size * 2, v_size * 2);
+ gsl_vector *x = gsl_vector_alloc(n_size);
+ gsl_vector *x_miss = gsl_vector_alloc(n_size);
+
+ gsl_matrix *Y = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *X = gsl_matrix_alloc(c_size + 1, n_size);
+ gsl_matrix *V_g = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *V_e = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *B = gsl_matrix_alloc(d_size, c_size + 1);
+ gsl_vector *beta = gsl_vector_alloc(d_size);
+ gsl_matrix *Vbeta = gsl_matrix_alloc(d_size, d_size);
+
+ // Null estimates for initial values.
+ gsl_matrix *V_g_null = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *V_e_null = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *B_null = gsl_matrix_alloc(d_size, c_size + 1);
+ gsl_matrix *se_B_null = gsl_matrix_alloc(d_size, c_size);
+
+ gsl_matrix_view X_sub = gsl_matrix_submatrix(X, 0, 0, c_size, n_size);
+ gsl_matrix_view B_sub = gsl_matrix_submatrix(B, 0, 0, d_size, c_size);
+ gsl_matrix_view xHi_all_sub =
+ gsl_matrix_submatrix(xHi_all, 0, 0, d_size * c_size, d_size * n_size);
+
+ gsl_matrix_transpose_memcpy(Y, UtY);
+
+ gsl_matrix_transpose_memcpy(&X_sub.matrix, UtW);
+
+ gsl_vector_view X_row = gsl_matrix_row(X, c_size);
+ gsl_vector_set_zero(&X_row.vector);
+ gsl_vector_view B_col = gsl_matrix_column(B, c_size);
+ gsl_vector_set_zero(&B_col.vector);
+
+ MphInitial(em_iter, em_prec, nr_iter, nr_prec, eval, &X_sub.matrix, Y, l_min,
+ l_max, n_region, V_g, V_e, &B_sub.matrix);
+ logl_H0 = MphEM('R', em_iter, em_prec, eval, &X_sub.matrix, Y, U_hat, E_hat,
+ OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU, UltVehiE, V_g,
+ V_e, &B_sub.matrix);
+ logl_H0 = MphNR('R', nr_iter, nr_prec, eval, &X_sub.matrix, Y, Hi_all,
+ &xHi_all_sub.matrix, Hiy_all, V_g, V_e, Hessian, crt_a, crt_b,
+ crt_c);
+ MphCalcBeta(eval, &X_sub.matrix, Y, V_g, V_e, UltVehiY, &B_sub.matrix,
+ se_B_null);
+
+ c = 0;
+ Vg_remle_null.clear();
+ Ve_remle_null.clear();
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = i; j < d_size; j++) {
+ Vg_remle_null.push_back(gsl_matrix_get(V_g, i, j));
+ Ve_remle_null.push_back(gsl_matrix_get(V_e, i, j));
+ VVg_remle_null.push_back(gsl_matrix_get(Hessian, c, c));
+ VVe_remle_null.push_back(gsl_matrix_get(Hessian, c + v_size, c + v_size));
+ c++;
+ }
+ }
+ beta_remle_null.clear();
+ se_beta_remle_null.clear();
+ for (size_t i = 0; i < se_B_null->size1; i++) {
+ for (size_t j = 0; j < se_B_null->size2; j++) {
+ beta_remle_null.push_back(gsl_matrix_get(B, i, j));
+ se_beta_remle_null.push_back(gsl_matrix_get(se_B_null, i, j));
+ }
+ }
+ logl_remle_H0 = logl_H0;
+
+ cout.setf(std::ios_base::fixed, std::ios_base::floatfield);
+ cout.precision(4);
+
+ cout << "REMLE estimate for Vg in the null model: " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ cout << gsl_matrix_get(V_g, i, j) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "se(Vg): " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ c = GetIndex(i, j, d_size);
+ cout << sqrt(gsl_matrix_get(Hessian, c, c)) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "REMLE estimate for Ve in the null model: " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ cout << gsl_matrix_get(V_e, i, j) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "se(Ve): " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ c = GetIndex(i, j, d_size);
+ cout << sqrt(gsl_matrix_get(Hessian, c + v_size, c + v_size)) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "REMLE likelihood = " << logl_H0 << endl;
+
+ logl_H0 = MphEM('L', em_iter, em_prec, eval, &X_sub.matrix, Y, U_hat, E_hat,
+ OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU, UltVehiE, V_g,
+ V_e, &B_sub.matrix);
+ logl_H0 = MphNR('L', nr_iter, nr_prec, eval, &X_sub.matrix, Y, Hi_all,
+ &xHi_all_sub.matrix, Hiy_all, V_g, V_e, Hessian, crt_a, crt_b,
+ crt_c);
+ MphCalcBeta(eval, &X_sub.matrix, Y, V_g, V_e, UltVehiY, &B_sub.matrix,
+ se_B_null);
+
+ c = 0;
+ Vg_mle_null.clear();
+ Ve_mle_null.clear();
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = i; j < d_size; j++) {
+ Vg_mle_null.push_back(gsl_matrix_get(V_g, i, j));
+ Ve_mle_null.push_back(gsl_matrix_get(V_e, i, j));
+ VVg_mle_null.push_back(gsl_matrix_get(Hessian, c, c));
+ VVe_mle_null.push_back(gsl_matrix_get(Hessian, c + v_size, c + v_size));
+ c++;
+ }
+ }
+ beta_mle_null.clear();
+ se_beta_mle_null.clear();
+ for (size_t i = 0; i < se_B_null->size1; i++) {
+ for (size_t j = 0; j < se_B_null->size2; j++) {
+ beta_mle_null.push_back(gsl_matrix_get(B, i, j));
+ se_beta_mle_null.push_back(gsl_matrix_get(se_B_null, i, j));
+ }
+ }
+ logl_mle_H0 = logl_H0;
+
+ cout << "MLE estimate for Vg in the null model: " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ cout << gsl_matrix_get(V_g, i, j) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "se(Vg): " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ c = GetIndex(i, j, d_size);
+ cout << sqrt(gsl_matrix_get(Hessian, c, c)) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "MLE estimate for Ve in the null model: " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ cout << gsl_matrix_get(V_e, i, j) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "se(Ve): " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ c = GetIndex(i, j, d_size);
+ cout << sqrt(gsl_matrix_get(Hessian, c + v_size, c + v_size)) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "MLE likelihood = " << logl_H0 << endl;
+
+ vector<double> v_beta, v_Vg, v_Ve, v_Vbeta;
+ for (size_t i = 0; i < d_size; i++) {
+ v_beta.push_back(0.0);
+ }
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = i; j < d_size; j++) {
+ v_Vg.push_back(0.0);
+ v_Ve.push_back(0.0);
+ v_Vbeta.push_back(0.0);
+ }
+ }
+
+ gsl_matrix_memcpy(V_g_null, V_g);
+ gsl_matrix_memcpy(V_e_null, V_e);
+ gsl_matrix_memcpy(B_null, B);
+
+ // Read in header.
+ uint32_t bgen_snp_block_offset;
+ uint32_t bgen_header_length;
+ uint32_t bgen_nsamples;
+ uint32_t bgen_nsnps;
+ uint32_t bgen_flags;
+ infile.read(reinterpret_cast<char *>(&bgen_snp_block_offset), 4);
+ infile.read(reinterpret_cast<char *>(&bgen_header_length), 4);
+ bgen_snp_block_offset -= 4;
+ infile.read(reinterpret_cast<char *>(&bgen_nsnps), 4);
+ bgen_snp_block_offset -= 4;
+ infile.read(reinterpret_cast<char *>(&bgen_nsamples), 4);
+ bgen_snp_block_offset -= 4;
+ infile.ignore(4 + bgen_header_length - 20);
+ bgen_snp_block_offset -= 4 + bgen_header_length - 20;
+ infile.read(reinterpret_cast<char *>(&bgen_flags), 4);
+ bgen_snp_block_offset -= 4;
+ bool CompressedSNPBlocks = bgen_flags & 0x1;
+
+ infile.ignore(bgen_snp_block_offset);
+
+ double bgen_geno_prob_AA, bgen_geno_prob_AB, bgen_geno_prob_BB;
+ double bgen_geno_prob_non_miss;
+
+ uint32_t bgen_N;
+ uint16_t bgen_LS;
+ uint16_t bgen_LR;
+ uint16_t bgen_LC;
+ uint32_t bgen_SNP_pos;
+ uint32_t bgen_LA;
+ std::string bgen_A_allele;
+ uint32_t bgen_LB;
+ std::string bgen_B_allele;
+ uint32_t bgen_P;
+ size_t unzipped_data_size;
+ string id;
+ string rs;
+ string chr;
+ std::cout << "Warning: WJA hard coded SNP missingness threshold "
+ << "of 10%" << std::endl;
+
+ // Start reading genotypes and analyze.
+ size_t csnp = 0, t_last = 0;
+ for (size_t t = 0; t < indicator_snp.size(); ++t) {
+ if (indicator_snp[t] == 0) {
+ continue;
+ }
+ t_last++;
+ }
+ for (size_t t = 0; t < indicator_snp.size(); ++t) {
+ if (t % d_pace == 0 || t == (ns_total - 1)) {
+ ProgressBar("Reading SNPs ", t, ns_total - 1);
+ }
+ if (indicator_snp[t] == 0) {
+ continue;
+ }
+
+ // Read SNP header.
+ id.clear();
+ rs.clear();
+ chr.clear();
+ bgen_A_allele.clear();
+ bgen_B_allele.clear();
+
+ infile.read(reinterpret_cast<char *>(&bgen_N), 4);
+ infile.read(reinterpret_cast<char *>(&bgen_LS), 2);
+
+ id.resize(bgen_LS);
+ infile.read(&id[0], bgen_LS);
+
+ infile.read(reinterpret_cast<char *>(&bgen_LR), 2);
+ rs.resize(bgen_LR);
+ infile.read(&rs[0], bgen_LR);
+
+ infile.read(reinterpret_cast<char *>(&bgen_LC), 2);
+ chr.resize(bgen_LC);
+ infile.read(&chr[0], bgen_LC);
+
+ infile.read(reinterpret_cast<char *>(&bgen_SNP_pos), 4);
+
+ infile.read(reinterpret_cast<char *>(&bgen_LA), 4);
+ bgen_A_allele.resize(bgen_LA);
+ infile.read(&bgen_A_allele[0], bgen_LA);
+
+ infile.read(reinterpret_cast<char *>(&bgen_LB), 4);
+ bgen_B_allele.resize(bgen_LB);
+ infile.read(&bgen_B_allele[0], bgen_LB);
+
+ uint16_t unzipped_data[3 * bgen_N];
+
+ if (indicator_snp[t] == 0) {
+ if (CompressedSNPBlocks)
+ infile.read(reinterpret_cast<char *>(&bgen_P), 4);
+ else
+ bgen_P = 6 * bgen_N;
+
+ infile.ignore(static_cast<size_t>(bgen_P));
+
+ continue;
+ }
+
+ if (CompressedSNPBlocks) {
+
+ infile.read(reinterpret_cast<char *>(&bgen_P), 4);
+ uint8_t zipped_data[bgen_P];
+
+ unzipped_data_size = 6 * bgen_N;
+
+ infile.read(reinterpret_cast<char *>(zipped_data), bgen_P);
+
+ int result = uncompress(reinterpret_cast<Bytef *>(unzipped_data),
+ reinterpret_cast<uLongf *>(&unzipped_data_size),
+ reinterpret_cast<Bytef *>(zipped_data),
+ static_cast<uLong>(bgen_P));
+ assert(result == Z_OK);
+
+ } else {
+
+ bgen_P = 6 * bgen_N;
+ infile.read(reinterpret_cast<char *>(unzipped_data), bgen_P);
+ }
+
+ x_mean = 0.0;
+ c_phen = 0;
+ n_miss = 0;
+ gsl_vector_set_zero(x_miss);
+ for (size_t i = 0; i < bgen_N; ++i) {
+ if (indicator_idv[i] == 0) {
+ continue;
+ }
+
+ bgen_geno_prob_AA = static_cast<double>(unzipped_data[i * 3]) / 32768.0;
+ bgen_geno_prob_AB =
+ static_cast<double>(unzipped_data[i * 3 + 1]) / 32768.0;
+ bgen_geno_prob_BB =
+ static_cast<double>(unzipped_data[i * 3 + 2]) / 32768.0;
+
+ // WJA.
+ bgen_geno_prob_non_miss =
+ bgen_geno_prob_AA + bgen_geno_prob_AB + bgen_geno_prob_BB;
+ if (bgen_geno_prob_non_miss < 0.9) {
+ gsl_vector_set(x_miss, c_phen, 0.0);
+ n_miss++;
+ } else {
+
+ bgen_geno_prob_AA /= bgen_geno_prob_non_miss;
+ bgen_geno_prob_AB /= bgen_geno_prob_non_miss;
+ bgen_geno_prob_BB /= bgen_geno_prob_non_miss;
+
+ geno = 2.0 * bgen_geno_prob_BB + bgen_geno_prob_AB;
+
+ gsl_vector_set(x, c_phen, geno);
+ gsl_vector_set(x_miss, c_phen, 1.0);
+ x_mean += geno;
+ }
+ c_phen++;
+ }
+
+ x_mean /= static_cast<double>(ni_test - n_miss);
+
+ for (size_t i = 0; i < ni_test; ++i) {
+ if (gsl_vector_get(x_miss, i) == 0) {
+ gsl_vector_set(x, i, x_mean);
+ }
+ }
+
+ gsl_vector_view Xlarge_col = gsl_matrix_column(Xlarge, csnp % msize);
+ gsl_vector_memcpy(&Xlarge_col.vector, x);
+ csnp++;
+
+ if (csnp % msize == 0 || csnp == t_last) {
+ size_t l = 0;
+ if (csnp % msize == 0) {
+ l = msize;
+ } else {
+ l = csnp % msize;
+ }
+
+ gsl_matrix_view Xlarge_sub =
+ gsl_matrix_submatrix(Xlarge, 0, 0, Xlarge->size1, l);
+ gsl_matrix_view UtXlarge_sub =
+ gsl_matrix_submatrix(UtXlarge, 0, 0, UtXlarge->size1, l);
+
+ time_start = clock();
+ eigenlib_dgemm("T", "N", 1.0, U, &Xlarge_sub.matrix, 0.0,
+ &UtXlarge_sub.matrix);
+ time_UtX += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
+
+ gsl_matrix_set_zero(Xlarge);
+
+ for (size_t i = 0; i < l; i++) {
+ gsl_vector_view UtXlarge_col = gsl_matrix_column(UtXlarge, i);
+ gsl_vector_memcpy(&X_row.vector, &UtXlarge_col.vector);
+
+ // Initial values.
+ gsl_matrix_memcpy(V_g, V_g_null);
+ gsl_matrix_memcpy(V_e, V_e_null);
+ gsl_matrix_memcpy(B, B_null);
+
+ time_start = clock();
+
+ // 3 is before 1.
+ if (a_mode == 3 || a_mode == 4) {
+ p_score = MphCalcP(eval, &X_row.vector, &X_sub.matrix, Y, V_g_null,
+ V_e_null, UltVehiY, beta, Vbeta);
+ if (p_score < p_nr && crt == 1) {
+ logl_H1 = MphNR('R', 1, nr_prec * 10, eval, X, Y, Hi_all, xHi_all,
+ Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, crt_c);
+ p_score = PCRT(3, d_size, p_score, crt_a, crt_b, crt_c);
+ }
+ }
+
+ if (a_mode == 2 || a_mode == 4) {
+ logl_H1 = MphEM('L', em_iter / 10, em_prec * 10, eval, X, Y, U_hat,
+ E_hat, OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU,
+ UltVehiE, V_g, V_e, B);
+
+ // Calculate beta and Vbeta.
+ p_lrt = MphCalcP(eval, &X_row.vector, &X_sub.matrix, Y, V_g, V_e,
+ UltVehiY, beta, Vbeta);
+ p_lrt = gsl_cdf_chisq_Q(2.0 * (logl_H1 - logl_H0), (double)d_size);
+
+ if (p_lrt < p_nr) {
+ logl_H1 =
+ MphNR('L', nr_iter / 10, nr_prec * 10, eval, X, Y, Hi_all,
+ xHi_all, Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, crt_c);
+
+ // Calculate beta and Vbeta.
+ p_lrt = MphCalcP(eval, &X_row.vector, &X_sub.matrix, Y, V_g, V_e,
+ UltVehiY, beta, Vbeta);
+ p_lrt = gsl_cdf_chisq_Q(2.0 * (logl_H1 - logl_H0), (double)d_size);
+
+ if (crt == 1) {
+ p_lrt = PCRT(2, d_size, p_lrt, crt_a, crt_b, crt_c);
+ }
+ }
+ }
+
+ if (a_mode == 1 || a_mode == 4) {
+ logl_H1 = MphEM('R', em_iter / 10, em_prec * 10, eval, X, Y, U_hat,
+ E_hat, OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU,
+ UltVehiE, V_g, V_e, B);
+ p_wald = MphCalcP(eval, &X_row.vector, &X_sub.matrix, Y, V_g, V_e,
+ UltVehiY, beta, Vbeta);
+
+ if (p_wald < p_nr) {
+ logl_H1 =
+ MphNR('R', nr_iter / 10, nr_prec * 10, eval, X, Y, Hi_all,
+ xHi_all, Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, crt_c);
+ p_wald = MphCalcP(eval, &X_row.vector, &X_sub.matrix, Y, V_g, V_e,
+ UltVehiY, beta, Vbeta);
+
+ if (crt == 1) {
+ p_wald = PCRT(1, d_size, p_wald, crt_a, crt_b, crt_c);
+ }
+ }
+ }
+
+ time_opt += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
+
+ // Store summary data.
+ for (size_t i = 0; i < d_size; i++) {
+ v_beta[i] = gsl_vector_get(beta, i);
+ }
+
+ c = 0;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = i; j < d_size; j++) {
+ v_Vg[c] = gsl_matrix_get(V_g, i, j);
+ v_Ve[c] = gsl_matrix_get(V_e, i, j);
+ v_Vbeta[c] = gsl_matrix_get(Vbeta, i, j);
+ c++;
+ }
+ }
+
+ MPHSUMSTAT SNPs = {v_beta, p_wald, p_lrt, p_score, v_Vg, v_Ve, v_Vbeta};
+ sumStat.push_back(SNPs);
+ }
+ }
+ }
+ cout << endl;
+
+ infile.close();
+ infile.clear();
+
+ gsl_matrix_free(U_hat);
+ gsl_matrix_free(E_hat);
+ gsl_matrix_free(OmegaU);
+ gsl_matrix_free(OmegaE);
+ gsl_matrix_free(UltVehiY);
+ gsl_matrix_free(UltVehiBX);
+ gsl_matrix_free(UltVehiU);
+ gsl_matrix_free(UltVehiE);
+
+ gsl_matrix_free(Hi_all);
+ gsl_matrix_free(Hiy_all);
+ gsl_matrix_free(xHi_all);
+ gsl_matrix_free(Hessian);
+
+ gsl_vector_free(x);
+ gsl_vector_free(x_miss);
+
+ gsl_matrix_free(Y);
+ gsl_matrix_free(X);
+ gsl_matrix_free(V_g);
+ gsl_matrix_free(V_e);
+ gsl_matrix_free(B);
+ gsl_vector_free(beta);
+ gsl_matrix_free(Vbeta);
+
+ gsl_matrix_free(V_g_null);
+ gsl_matrix_free(V_e_null);
+ gsl_matrix_free(B_null);
+ gsl_matrix_free(se_B_null);
+
+ gsl_matrix_free(Xlarge);
+ gsl_matrix_free(UtXlarge);
+
+ return;
}
-void MVLMM::AnalyzeBimbam (const gsl_matrix *U, const gsl_vector *eval,
- const gsl_matrix *UtW, const gsl_matrix *UtY) {
- igzstream infile (file_geno.c_str(), igzstream::in);
- if (!infile) {
- cout<<"error reading genotype file:"<<file_geno<<endl;
- return;
- }
-
- clock_t time_start=clock();
- time_UtX=0; time_opt=0;
-
- string line;
- char *ch_ptr;
-
- double logl_H0=0.0, logl_H1=0.0, p_wald=0, p_lrt=0, p_score=0;
- double crt_a, crt_b, crt_c;
- int n_miss, c_phen;
- double geno, x_mean;
- size_t c=0;
- size_t n_size=UtY->size1, d_size=UtY->size2, c_size=UtW->size2;
-
- size_t dc_size=d_size*(c_size+1), v_size=d_size*(d_size+1)/2;
-
- // Create a large matrix.
- size_t msize=10000;
- gsl_matrix *Xlarge=gsl_matrix_alloc (U->size1, msize);
- gsl_matrix *UtXlarge=gsl_matrix_alloc (U->size1, msize);
- gsl_matrix_set_zero(Xlarge);
-
- // Large matrices for EM.
- gsl_matrix *U_hat=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *E_hat=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *OmegaU=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *OmegaE=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *UltVehiY=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *UltVehiBX=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *UltVehiU=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *UltVehiE=gsl_matrix_alloc (d_size, n_size);
-
- // Large matrices for NR.
- // Each dxd block is H_k^{-1}.
- gsl_matrix *Hi_all=gsl_matrix_alloc (d_size, d_size*n_size);
-
- // Each column is H_k^{-1}y_k.
- gsl_matrix *Hiy_all=gsl_matrix_alloc (d_size, n_size);
-
- // Each dcxdc block is x_k \otimes H_k^{-1}.
- gsl_matrix *xHi_all=gsl_matrix_alloc (dc_size, d_size*n_size);
- gsl_matrix *Hessian=gsl_matrix_alloc (v_size*2, v_size*2);
-
- gsl_vector *x=gsl_vector_alloc (n_size);
- gsl_vector *x_miss=gsl_vector_alloc (n_size);
-
- gsl_matrix *Y=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *X=gsl_matrix_alloc (c_size+1, n_size);
- gsl_matrix *V_g=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *V_e=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *B=gsl_matrix_alloc (d_size, c_size+1);
- gsl_vector *beta=gsl_vector_alloc (d_size);
- gsl_matrix *Vbeta=gsl_matrix_alloc (d_size, d_size);
-
- // Null estimates for initial values.
- gsl_matrix *V_g_null=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *V_e_null=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *B_null=gsl_matrix_alloc (d_size, c_size+1);
- gsl_matrix *se_B_null=gsl_matrix_alloc (d_size, c_size);
-
- gsl_matrix_view X_sub=gsl_matrix_submatrix (X, 0, 0, c_size, n_size);
- gsl_matrix_view B_sub=gsl_matrix_submatrix (B, 0, 0, d_size, c_size);
- gsl_matrix_view xHi_all_sub =
- gsl_matrix_submatrix (xHi_all, 0, 0, d_size*c_size, d_size*n_size);
-
- gsl_matrix_transpose_memcpy (Y, UtY);
-
- gsl_matrix_transpose_memcpy (&X_sub.matrix, UtW);
-
- gsl_vector_view X_row=gsl_matrix_row(X, c_size);
- gsl_vector_set_zero(&X_row.vector);
- gsl_vector_view B_col=gsl_matrix_column(B, c_size);
- gsl_vector_set_zero(&B_col.vector);
-
- MphInitial(em_iter, em_prec, nr_iter, nr_prec, eval, &X_sub.matrix,
- Y, l_min, l_max, n_region, V_g, V_e, &B_sub.matrix);
- logl_H0=MphEM ('R', em_iter, em_prec, eval, &X_sub.matrix, Y, U_hat,
- E_hat, OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU,
- UltVehiE, V_g, V_e, &B_sub.matrix);
- logl_H0=MphNR ('R', nr_iter, nr_prec, eval, &X_sub.matrix, Y, Hi_all,
- &xHi_all_sub.matrix, Hiy_all, V_g, V_e, Hessian,
- crt_a, crt_b, crt_c);
- MphCalcBeta (eval, &X_sub.matrix, Y, V_g, V_e, UltVehiY,
- &B_sub.matrix, se_B_null);
-
- c=0;
- Vg_remle_null.clear();
- Ve_remle_null.clear();
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=i; j<d_size; j++) {
- Vg_remle_null.push_back(gsl_matrix_get (V_g, i, j) );
- Ve_remle_null.push_back(gsl_matrix_get (V_e, i, j) );
- VVg_remle_null.push_back(gsl_matrix_get (Hessian, c, c) );
- VVe_remle_null.push_back(gsl_matrix_get (Hessian, c+v_size,
- c+v_size) );
- c++;
- }
- }
- beta_remle_null.clear();
- se_beta_remle_null.clear();
- for (size_t i=0; i<se_B_null->size1; i++) {
- for (size_t j=0; j<se_B_null->size2; j++) {
- beta_remle_null.push_back(gsl_matrix_get(B, i, j) );
- se_beta_remle_null.push_back(gsl_matrix_get(se_B_null, i, j) );
- }
- }
- logl_remle_H0=logl_H0;
-
- cout.setf(std::ios_base::fixed, std::ios_base::floatfield);
- cout.precision(4);
-
- cout<<"REMLE estimate for Vg in the null model: "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- cout<<gsl_matrix_get(V_g, i, j)<<"\t";
- }
- cout<<endl;
- }
- cout<<"se(Vg): "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- c=GetIndex(i, j, d_size);
- cout<<sqrt(gsl_matrix_get(Hessian, c, c))<<"\t";
- }
- cout<<endl;
- }
- cout<<"REMLE estimate for Ve in the null model: "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- cout<<gsl_matrix_get(V_e, i, j)<<"\t";
- }
- cout<<endl;
- }
- cout<<"se(Ve): "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- c=GetIndex(i, j, d_size);
- cout<<sqrt(gsl_matrix_get(Hessian, c+v_size, c+v_size))<<"\t";
- }
- cout<<endl;
- }
- cout<<"REMLE likelihood = "<<logl_H0<<endl;
-
- logl_H0=MphEM ('L', em_iter, em_prec, eval, &X_sub.matrix, Y, U_hat,
- E_hat, OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU,
- UltVehiE, V_g, V_e, &B_sub.matrix);
- logl_H0=MphNR ('L', nr_iter, nr_prec, eval, &X_sub.matrix, Y,
- Hi_all, &xHi_all_sub.matrix, Hiy_all, V_g, V_e,
- Hessian, crt_a, crt_b, crt_c);
- MphCalcBeta (eval, &X_sub.matrix, Y, V_g, V_e, UltVehiY,
- &B_sub.matrix, se_B_null);
-
- c=0;
- Vg_mle_null.clear();
- Ve_mle_null.clear();
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=i; j<d_size; j++) {
- Vg_mle_null.push_back(gsl_matrix_get (V_g, i, j) );
- Ve_mle_null.push_back(gsl_matrix_get (V_e, i, j) );
- VVg_mle_null.push_back(gsl_matrix_get (Hessian, c, c) );
- VVe_mle_null.push_back(gsl_matrix_get(Hessian,c+v_size,c+v_size));
- c++;
- }
- }
- beta_mle_null.clear();
- se_beta_mle_null.clear();
- for (size_t i=0; i<se_B_null->size1; i++) {
- for (size_t j=0; j<se_B_null->size2; j++) {
- beta_mle_null.push_back(gsl_matrix_get(B, i, j) );
- se_beta_mle_null.push_back(gsl_matrix_get(se_B_null, i, j) );
- }
- }
- logl_mle_H0=logl_H0;
-
- cout<<"MLE estimate for Vg in the null model: "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- cout<<gsl_matrix_get(V_g, i, j)<<"\t";
- }
- cout<<endl;
- }
- cout<<"se(Vg): "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- c=GetIndex(i, j, d_size);
- cout<<sqrt(gsl_matrix_get(Hessian, c, c))<<"\t";
- }
- cout<<endl;
- }
- cout<<"MLE estimate for Ve in the null model: "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- cout<<gsl_matrix_get(V_e, i, j)<<"\t";
- }
- cout<<endl;
- }
- cout<<"se(Ve): "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- c=GetIndex(i, j, d_size);
- cout<<sqrt(gsl_matrix_get(Hessian, c+v_size, c+v_size))<<"\t";
- }
- cout<<endl;
- }
- cout<<"MLE likelihood = "<<logl_H0<<endl;
-
- vector<double> v_beta, v_Vg, v_Ve, v_Vbeta;
- for (size_t i=0; i<d_size; i++) {
- v_beta.push_back(0.0);
- }
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=i; j<d_size; j++) {
- v_Vg.push_back(0.0);
- v_Ve.push_back(0.0);
- v_Vbeta.push_back(0.0);
- }
- }
-
- gsl_matrix_memcpy (V_g_null, V_g);
- gsl_matrix_memcpy (V_e_null, V_e);
- gsl_matrix_memcpy (B_null, B);
-
- // Start reading genotypes and analyze.
- size_t csnp=0, t_last=0;
- for (size_t t=0; t<indicator_snp.size(); ++t) {
- if (indicator_snp[t]==0) {continue;}
- t_last++;
- }
- for (size_t t=0; t<indicator_snp.size(); ++t) {
- !safeGetline(infile, line).eof();
- if (t%d_pace==0 || t==(ns_total-1)) {
- ProgressBar ("Reading SNPs ", t, ns_total-1);
- }
- if (indicator_snp[t]==0) {continue;}
-
- ch_ptr=strtok ((char *)line.c_str(), " , \t");
- ch_ptr=strtok (NULL, " , \t");
- ch_ptr=strtok (NULL, " , \t");
-
- x_mean=0.0; c_phen=0; n_miss=0;
- gsl_vector_set_zero(x_miss);
- for (size_t i=0; i<ni_total; ++i) {
- ch_ptr=strtok (NULL, " , \t");
- if (indicator_idv[i]==0) {continue;}
-
- if (strcmp(ch_ptr, "NA")==0) {
- gsl_vector_set(x_miss, c_phen, 0.0);
- n_miss++;
- }
- else {
- geno=atof(ch_ptr);
-
- gsl_vector_set(x, c_phen, geno);
- gsl_vector_set(x_miss, c_phen, 1.0);
- x_mean+=geno;
- }
- c_phen++;
- }
-
- x_mean/=(double)(ni_test-n_miss);
-
- for (size_t i=0; i<ni_test; ++i) {
- if (gsl_vector_get (x_miss, i)==0) {gsl_vector_set(x, i, x_mean);}
- geno=gsl_vector_get(x, i);
- }
-
- gsl_vector_view Xlarge_col=gsl_matrix_column (Xlarge, csnp%msize);
- gsl_vector_memcpy (&Xlarge_col.vector, x);
- csnp++;
-
- if (csnp%msize==0 || csnp==t_last ) {
- size_t l=0;
- if (csnp%msize==0) {l=msize;} else {l=csnp%msize;}
-
- gsl_matrix_view Xlarge_sub =
- gsl_matrix_submatrix(Xlarge, 0, 0, Xlarge->size1, l);
- gsl_matrix_view UtXlarge_sub =
- gsl_matrix_submatrix(UtXlarge, 0, 0, UtXlarge->size1, l);
-
- time_start=clock();
- eigenlib_dgemm ("T", "N", 1.0, U, &Xlarge_sub.matrix, 0.0,
- &UtXlarge_sub.matrix);
- time_UtX+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
-
- gsl_matrix_set_zero (Xlarge);
-
- for (size_t i=0; i<l; i++) {
- gsl_vector_view UtXlarge_col=gsl_matrix_column (UtXlarge, i);
- gsl_vector_memcpy (&X_row.vector, &UtXlarge_col.vector);
-
- // Initial values.
- gsl_matrix_memcpy (V_g, V_g_null);
- gsl_matrix_memcpy (V_e, V_e_null);
- gsl_matrix_memcpy (B, B_null);
-
- time_start=clock();
-
- // 3 is before 1.
- if (a_mode==3 || a_mode==4) {
- p_score=MphCalcP (eval, &X_row.vector, &X_sub.matrix, Y,
- V_g_null, V_e_null, UltVehiY, beta, Vbeta);
- if (p_score<p_nr && crt==1) {
- logl_H1=MphNR ('R', 1, nr_prec*10, eval, X, Y, Hi_all,
- xHi_all, Hiy_all, V_g, V_e, Hessian, crt_a,
- crt_b, crt_c);
- p_score=PCRT (3, d_size, p_score, crt_a, crt_b, crt_c);
- }
- }
-
- if (a_mode==2 || a_mode==4) {
- logl_H1=MphEM ('L', em_iter/10, em_prec*10, eval, X, Y,
- U_hat, E_hat, OmegaU, OmegaE, UltVehiY,
- UltVehiBX, UltVehiU, UltVehiE, V_g, V_e, B);
-
- // Calculate beta and Vbeta.
- p_lrt=MphCalcP (eval, &X_row.vector, &X_sub.matrix, Y,
- V_g, V_e, UltVehiY, beta, Vbeta);
- p_lrt=gsl_cdf_chisq_Q (2.0*(logl_H1-logl_H0), (double)d_size );
-
- if (p_lrt<p_nr) {
- logl_H1=MphNR ('L', nr_iter/10, nr_prec*10, eval, X, Y,
- Hi_all, xHi_all, Hiy_all, V_g, V_e, Hessian,
- crt_a, crt_b, crt_c);
-
- // Calculate beta and Vbeta.
- p_lrt=MphCalcP (eval, &X_row.vector, &X_sub.matrix, Y,
- V_g, V_e, UltVehiY, beta, Vbeta);
- p_lrt=gsl_cdf_chisq_Q (2.0*(logl_H1-logl_H0),
- (double)d_size );
-
- if (crt==1) {
- p_lrt=PCRT (2, d_size, p_lrt, crt_a, crt_b, crt_c);
- }
- }
- }
-
- if (a_mode==1 || a_mode==4) {
- logl_H1=MphEM ('R', em_iter/10, em_prec*10, eval, X, Y,
- U_hat, E_hat, OmegaU, OmegaE, UltVehiY,
- UltVehiBX, UltVehiU, UltVehiE, V_g, V_e, B);
- p_wald=MphCalcP (eval, &X_row.vector, &X_sub.matrix, Y, V_g,
- V_e, UltVehiY, beta, Vbeta);
-
- if (p_wald<p_nr) {
- logl_H1=MphNR ('R', nr_iter/10, nr_prec*10, eval, X, Y,
- Hi_all, xHi_all, Hiy_all, V_g, V_e,
- Hessian, crt_a, crt_b, crt_c);
- p_wald=MphCalcP (eval, &X_row.vector, &X_sub.matrix, Y,
- V_g, V_e, UltVehiY, beta, Vbeta);
-
- if (crt==1) {
- p_wald=PCRT (1, d_size, p_wald, crt_a, crt_b, crt_c);
- }
- }
- }
-
- time_opt+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
-
- // Store summary data.
- for (size_t i=0; i<d_size; i++) {
- v_beta[i]=gsl_vector_get (beta, i);
- }
-
- c=0;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=i; j<d_size; j++) {
- v_Vg[c]=gsl_matrix_get (V_g, i, j);
- v_Ve[c]=gsl_matrix_get (V_e, i, j);
- v_Vbeta[c]=gsl_matrix_get (Vbeta, i, j);
- c++;
- }
- }
-
- MPHSUMSTAT SNPs={v_beta, p_wald, p_lrt, p_score, v_Vg,
- v_Ve, v_Vbeta};
- sumStat.push_back(SNPs);
- }
- }
- }
- cout<<endl;
-
- infile.close();
- infile.clear();
-
- gsl_matrix_free(U_hat);
- gsl_matrix_free(E_hat);
- gsl_matrix_free(OmegaU);
- gsl_matrix_free(OmegaE);
- gsl_matrix_free(UltVehiY);
- gsl_matrix_free(UltVehiBX);
- gsl_matrix_free(UltVehiU);
- gsl_matrix_free(UltVehiE);
-
- gsl_matrix_free(Hi_all);
- gsl_matrix_free(Hiy_all);
- gsl_matrix_free(xHi_all);
- gsl_matrix_free(Hessian);
-
- gsl_vector_free(x);
- gsl_vector_free(x_miss);
-
- gsl_matrix_free(Y);
- gsl_matrix_free(X);
- gsl_matrix_free(V_g);
- gsl_matrix_free(V_e);
- gsl_matrix_free(B);
- gsl_vector_free(beta);
- gsl_matrix_free(Vbeta);
-
- gsl_matrix_free(V_g_null);
- gsl_matrix_free(V_e_null);
- gsl_matrix_free(B_null);
- gsl_matrix_free(se_B_null);
-
- gsl_matrix_free(Xlarge);
- gsl_matrix_free(UtXlarge);
-
- return;
+void MVLMM::AnalyzeBimbam(const gsl_matrix *U, const gsl_vector *eval,
+ const gsl_matrix *UtW, const gsl_matrix *UtY) {
+ igzstream infile(file_geno.c_str(), igzstream::in);
+ if (!infile) {
+ cout << "error reading genotype file:" << file_geno << endl;
+ return;
+ }
+
+ clock_t time_start = clock();
+ time_UtX = 0;
+ time_opt = 0;
+
+ string line;
+ char *ch_ptr;
+
+ double logl_H0 = 0.0, logl_H1 = 0.0, p_wald = 0, p_lrt = 0, p_score = 0;
+ double crt_a, crt_b, crt_c;
+ int n_miss, c_phen;
+ double geno, x_mean;
+ size_t c = 0;
+ size_t n_size = UtY->size1, d_size = UtY->size2, c_size = UtW->size2;
+
+ size_t dc_size = d_size * (c_size + 1), v_size = d_size * (d_size + 1) / 2;
+
+ // Create a large matrix.
+ size_t msize = 10000;
+ gsl_matrix *Xlarge = gsl_matrix_alloc(U->size1, msize);
+ gsl_matrix *UtXlarge = gsl_matrix_alloc(U->size1, msize);
+ gsl_matrix_set_zero(Xlarge);
+
+ // Large matrices for EM.
+ gsl_matrix *U_hat = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *E_hat = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *OmegaU = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *OmegaE = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *UltVehiY = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *UltVehiBX = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *UltVehiU = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *UltVehiE = gsl_matrix_alloc(d_size, n_size);
+
+ // Large matrices for NR.
+ // Each dxd block is H_k^{-1}.
+ gsl_matrix *Hi_all = gsl_matrix_alloc(d_size, d_size * n_size);
+
+ // Each column is H_k^{-1}y_k.
+ gsl_matrix *Hiy_all = gsl_matrix_alloc(d_size, n_size);
+
+ // Each dcxdc block is x_k \otimes H_k^{-1}.
+ gsl_matrix *xHi_all = gsl_matrix_alloc(dc_size, d_size * n_size);
+ gsl_matrix *Hessian = gsl_matrix_alloc(v_size * 2, v_size * 2);
+
+ gsl_vector *x = gsl_vector_alloc(n_size);
+ gsl_vector *x_miss = gsl_vector_alloc(n_size);
+
+ gsl_matrix *Y = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *X = gsl_matrix_alloc(c_size + 1, n_size);
+ gsl_matrix *V_g = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *V_e = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *B = gsl_matrix_alloc(d_size, c_size + 1);
+ gsl_vector *beta = gsl_vector_alloc(d_size);
+ gsl_matrix *Vbeta = gsl_matrix_alloc(d_size, d_size);
+
+ // Null estimates for initial values.
+ gsl_matrix *V_g_null = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *V_e_null = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *B_null = gsl_matrix_alloc(d_size, c_size + 1);
+ gsl_matrix *se_B_null = gsl_matrix_alloc(d_size, c_size);
+
+ gsl_matrix_view X_sub = gsl_matrix_submatrix(X, 0, 0, c_size, n_size);
+ gsl_matrix_view B_sub = gsl_matrix_submatrix(B, 0, 0, d_size, c_size);
+ gsl_matrix_view xHi_all_sub =
+ gsl_matrix_submatrix(xHi_all, 0, 0, d_size * c_size, d_size * n_size);
+
+ gsl_matrix_transpose_memcpy(Y, UtY);
+
+ gsl_matrix_transpose_memcpy(&X_sub.matrix, UtW);
+
+ gsl_vector_view X_row = gsl_matrix_row(X, c_size);
+ gsl_vector_set_zero(&X_row.vector);
+ gsl_vector_view B_col = gsl_matrix_column(B, c_size);
+ gsl_vector_set_zero(&B_col.vector);
+
+ MphInitial(em_iter, em_prec, nr_iter, nr_prec, eval, &X_sub.matrix, Y, l_min,
+ l_max, n_region, V_g, V_e, &B_sub.matrix);
+ logl_H0 = MphEM('R', em_iter, em_prec, eval, &X_sub.matrix, Y, U_hat, E_hat,
+ OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU, UltVehiE, V_g,
+ V_e, &B_sub.matrix);
+ logl_H0 = MphNR('R', nr_iter, nr_prec, eval, &X_sub.matrix, Y, Hi_all,
+ &xHi_all_sub.matrix, Hiy_all, V_g, V_e, Hessian, crt_a, crt_b,
+ crt_c);
+ MphCalcBeta(eval, &X_sub.matrix, Y, V_g, V_e, UltVehiY, &B_sub.matrix,
+ se_B_null);
+
+ c = 0;
+ Vg_remle_null.clear();
+ Ve_remle_null.clear();
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = i; j < d_size; j++) {
+ Vg_remle_null.push_back(gsl_matrix_get(V_g, i, j));
+ Ve_remle_null.push_back(gsl_matrix_get(V_e, i, j));
+ VVg_remle_null.push_back(gsl_matrix_get(Hessian, c, c));
+ VVe_remle_null.push_back(gsl_matrix_get(Hessian, c + v_size, c + v_size));
+ c++;
+ }
+ }
+ beta_remle_null.clear();
+ se_beta_remle_null.clear();
+ for (size_t i = 0; i < se_B_null->size1; i++) {
+ for (size_t j = 0; j < se_B_null->size2; j++) {
+ beta_remle_null.push_back(gsl_matrix_get(B, i, j));
+ se_beta_remle_null.push_back(gsl_matrix_get(se_B_null, i, j));
+ }
+ }
+ logl_remle_H0 = logl_H0;
+
+ cout.setf(std::ios_base::fixed, std::ios_base::floatfield);
+ cout.precision(4);
+
+ cout << "REMLE estimate for Vg in the null model: " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ cout << gsl_matrix_get(V_g, i, j) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "se(Vg): " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ c = GetIndex(i, j, d_size);
+ cout << sqrt(gsl_matrix_get(Hessian, c, c)) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "REMLE estimate for Ve in the null model: " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ cout << gsl_matrix_get(V_e, i, j) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "se(Ve): " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ c = GetIndex(i, j, d_size);
+ cout << sqrt(gsl_matrix_get(Hessian, c + v_size, c + v_size)) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "REMLE likelihood = " << logl_H0 << endl;
+
+ logl_H0 = MphEM('L', em_iter, em_prec, eval, &X_sub.matrix, Y, U_hat, E_hat,
+ OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU, UltVehiE, V_g,
+ V_e, &B_sub.matrix);
+ logl_H0 = MphNR('L', nr_iter, nr_prec, eval, &X_sub.matrix, Y, Hi_all,
+ &xHi_all_sub.matrix, Hiy_all, V_g, V_e, Hessian, crt_a, crt_b,
+ crt_c);
+ MphCalcBeta(eval, &X_sub.matrix, Y, V_g, V_e, UltVehiY, &B_sub.matrix,
+ se_B_null);
+
+ c = 0;
+ Vg_mle_null.clear();
+ Ve_mle_null.clear();
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = i; j < d_size; j++) {
+ Vg_mle_null.push_back(gsl_matrix_get(V_g, i, j));
+ Ve_mle_null.push_back(gsl_matrix_get(V_e, i, j));
+ VVg_mle_null.push_back(gsl_matrix_get(Hessian, c, c));
+ VVe_mle_null.push_back(gsl_matrix_get(Hessian, c + v_size, c + v_size));
+ c++;
+ }
+ }
+ beta_mle_null.clear();
+ se_beta_mle_null.clear();
+ for (size_t i = 0; i < se_B_null->size1; i++) {
+ for (size_t j = 0; j < se_B_null->size2; j++) {
+ beta_mle_null.push_back(gsl_matrix_get(B, i, j));
+ se_beta_mle_null.push_back(gsl_matrix_get(se_B_null, i, j));
+ }
+ }
+ logl_mle_H0 = logl_H0;
+
+ cout << "MLE estimate for Vg in the null model: " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ cout << gsl_matrix_get(V_g, i, j) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "se(Vg): " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ c = GetIndex(i, j, d_size);
+ cout << sqrt(gsl_matrix_get(Hessian, c, c)) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "MLE estimate for Ve in the null model: " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ cout << gsl_matrix_get(V_e, i, j) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "se(Ve): " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ c = GetIndex(i, j, d_size);
+ cout << sqrt(gsl_matrix_get(Hessian, c + v_size, c + v_size)) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "MLE likelihood = " << logl_H0 << endl;
+
+ vector<double> v_beta, v_Vg, v_Ve, v_Vbeta;
+ for (size_t i = 0; i < d_size; i++) {
+ v_beta.push_back(0.0);
+ }
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = i; j < d_size; j++) {
+ v_Vg.push_back(0.0);
+ v_Ve.push_back(0.0);
+ v_Vbeta.push_back(0.0);
+ }
+ }
+
+ gsl_matrix_memcpy(V_g_null, V_g);
+ gsl_matrix_memcpy(V_e_null, V_e);
+ gsl_matrix_memcpy(B_null, B);
+
+ // Start reading genotypes and analyze.
+ size_t csnp = 0, t_last = 0;
+ for (size_t t = 0; t < indicator_snp.size(); ++t) {
+ if (indicator_snp[t] == 0) {
+ continue;
+ }
+ t_last++;
+ }
+ for (size_t t = 0; t < indicator_snp.size(); ++t) {
+ !safeGetline(infile, line).eof();
+ if (t % d_pace == 0 || t == (ns_total - 1)) {
+ ProgressBar("Reading SNPs ", t, ns_total - 1);
+ }
+ if (indicator_snp[t] == 0) {
+ continue;
+ }
+
+ ch_ptr = strtok((char *)line.c_str(), " , \t");
+ ch_ptr = strtok(NULL, " , \t");
+ ch_ptr = strtok(NULL, " , \t");
+
+ x_mean = 0.0;
+ c_phen = 0;
+ n_miss = 0;
+ gsl_vector_set_zero(x_miss);
+ for (size_t i = 0; i < ni_total; ++i) {
+ ch_ptr = strtok(NULL, " , \t");
+ if (indicator_idv[i] == 0) {
+ continue;
+ }
+
+ if (strcmp(ch_ptr, "NA") == 0) {
+ gsl_vector_set(x_miss, c_phen, 0.0);
+ n_miss++;
+ } else {
+ geno = atof(ch_ptr);
+
+ gsl_vector_set(x, c_phen, geno);
+ gsl_vector_set(x_miss, c_phen, 1.0);
+ x_mean += geno;
+ }
+ c_phen++;
+ }
+
+ x_mean /= (double)(ni_test - n_miss);
+
+ for (size_t i = 0; i < ni_test; ++i) {
+ if (gsl_vector_get(x_miss, i) == 0) {
+ gsl_vector_set(x, i, x_mean);
+ }
+ geno = gsl_vector_get(x, i);
+ }
+
+ gsl_vector_view Xlarge_col = gsl_matrix_column(Xlarge, csnp % msize);
+ gsl_vector_memcpy(&Xlarge_col.vector, x);
+ csnp++;
+
+ if (csnp % msize == 0 || csnp == t_last) {
+ size_t l = 0;
+ if (csnp % msize == 0) {
+ l = msize;
+ } else {
+ l = csnp % msize;
+ }
+
+ gsl_matrix_view Xlarge_sub =
+ gsl_matrix_submatrix(Xlarge, 0, 0, Xlarge->size1, l);
+ gsl_matrix_view UtXlarge_sub =
+ gsl_matrix_submatrix(UtXlarge, 0, 0, UtXlarge->size1, l);
+
+ time_start = clock();
+ eigenlib_dgemm("T", "N", 1.0, U, &Xlarge_sub.matrix, 0.0,
+ &UtXlarge_sub.matrix);
+ time_UtX += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
+
+ gsl_matrix_set_zero(Xlarge);
+
+ for (size_t i = 0; i < l; i++) {
+ gsl_vector_view UtXlarge_col = gsl_matrix_column(UtXlarge, i);
+ gsl_vector_memcpy(&X_row.vector, &UtXlarge_col.vector);
+
+ // Initial values.
+ gsl_matrix_memcpy(V_g, V_g_null);
+ gsl_matrix_memcpy(V_e, V_e_null);
+ gsl_matrix_memcpy(B, B_null);
+
+ time_start = clock();
+
+ // 3 is before 1.
+ if (a_mode == 3 || a_mode == 4) {
+ p_score = MphCalcP(eval, &X_row.vector, &X_sub.matrix, Y, V_g_null,
+ V_e_null, UltVehiY, beta, Vbeta);
+ if (p_score < p_nr && crt == 1) {
+ logl_H1 = MphNR('R', 1, nr_prec * 10, eval, X, Y, Hi_all, xHi_all,
+ Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, crt_c);
+ p_score = PCRT(3, d_size, p_score, crt_a, crt_b, crt_c);
+ }
+ }
+
+ if (a_mode == 2 || a_mode == 4) {
+ logl_H1 = MphEM('L', em_iter / 10, em_prec * 10, eval, X, Y, U_hat,
+ E_hat, OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU,
+ UltVehiE, V_g, V_e, B);
+
+ // Calculate beta and Vbeta.
+ p_lrt = MphCalcP(eval, &X_row.vector, &X_sub.matrix, Y, V_g, V_e,
+ UltVehiY, beta, Vbeta);
+ p_lrt = gsl_cdf_chisq_Q(2.0 * (logl_H1 - logl_H0), (double)d_size);
+
+ if (p_lrt < p_nr) {
+ logl_H1 =
+ MphNR('L', nr_iter / 10, nr_prec * 10, eval, X, Y, Hi_all,
+ xHi_all, Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, crt_c);
+
+ // Calculate beta and Vbeta.
+ p_lrt = MphCalcP(eval, &X_row.vector, &X_sub.matrix, Y, V_g, V_e,
+ UltVehiY, beta, Vbeta);
+ p_lrt = gsl_cdf_chisq_Q(2.0 * (logl_H1 - logl_H0), (double)d_size);
+
+ if (crt == 1) {
+ p_lrt = PCRT(2, d_size, p_lrt, crt_a, crt_b, crt_c);
+ }
+ }
+ }
+
+ if (a_mode == 1 || a_mode == 4) {
+ logl_H1 = MphEM('R', em_iter / 10, em_prec * 10, eval, X, Y, U_hat,
+ E_hat, OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU,
+ UltVehiE, V_g, V_e, B);
+ p_wald = MphCalcP(eval, &X_row.vector, &X_sub.matrix, Y, V_g, V_e,
+ UltVehiY, beta, Vbeta);
+
+ if (p_wald < p_nr) {
+ logl_H1 =
+ MphNR('R', nr_iter / 10, nr_prec * 10, eval, X, Y, Hi_all,
+ xHi_all, Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, crt_c);
+ p_wald = MphCalcP(eval, &X_row.vector, &X_sub.matrix, Y, V_g, V_e,
+ UltVehiY, beta, Vbeta);
+
+ if (crt == 1) {
+ p_wald = PCRT(1, d_size, p_wald, crt_a, crt_b, crt_c);
+ }
+ }
+ }
+
+ time_opt += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
+
+ // Store summary data.
+ for (size_t i = 0; i < d_size; i++) {
+ v_beta[i] = gsl_vector_get(beta, i);
+ }
+
+ c = 0;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = i; j < d_size; j++) {
+ v_Vg[c] = gsl_matrix_get(V_g, i, j);
+ v_Ve[c] = gsl_matrix_get(V_e, i, j);
+ v_Vbeta[c] = gsl_matrix_get(Vbeta, i, j);
+ c++;
+ }
+ }
+
+ MPHSUMSTAT SNPs = {v_beta, p_wald, p_lrt, p_score, v_Vg, v_Ve, v_Vbeta};
+ sumStat.push_back(SNPs);
+ }
+ }
+ }
+ cout << endl;
+
+ infile.close();
+ infile.clear();
+
+ gsl_matrix_free(U_hat);
+ gsl_matrix_free(E_hat);
+ gsl_matrix_free(OmegaU);
+ gsl_matrix_free(OmegaE);
+ gsl_matrix_free(UltVehiY);
+ gsl_matrix_free(UltVehiBX);
+ gsl_matrix_free(UltVehiU);
+ gsl_matrix_free(UltVehiE);
+
+ gsl_matrix_free(Hi_all);
+ gsl_matrix_free(Hiy_all);
+ gsl_matrix_free(xHi_all);
+ gsl_matrix_free(Hessian);
+
+ gsl_vector_free(x);
+ gsl_vector_free(x_miss);
+
+ gsl_matrix_free(Y);
+ gsl_matrix_free(X);
+ gsl_matrix_free(V_g);
+ gsl_matrix_free(V_e);
+ gsl_matrix_free(B);
+ gsl_vector_free(beta);
+ gsl_matrix_free(Vbeta);
+
+ gsl_matrix_free(V_g_null);
+ gsl_matrix_free(V_e_null);
+ gsl_matrix_free(B_null);
+ gsl_matrix_free(se_B_null);
+
+ gsl_matrix_free(Xlarge);
+ gsl_matrix_free(UtXlarge);
+
+ return;
}
-void MVLMM::AnalyzePlink (const gsl_matrix *U, const gsl_vector *eval,
- const gsl_matrix *UtW, const gsl_matrix *UtY) {
- string file_bed=file_bfile+".bed";
- ifstream infile (file_bed.c_str(), ios::binary);
- if (!infile) {cout<<"error reading bed file:"<<file_bed<<endl; return;}
-
- clock_t time_start=clock();
- time_UtX=0; time_opt=0;
-
- char ch[1];
- bitset<8> b;
-
- double logl_H0=0.0, logl_H1=0.0, p_wald=0, p_lrt=0, p_score=0;
- double crt_a, crt_b, crt_c;
- int n_bit, n_miss, ci_total, ci_test;
- double geno, x_mean;
- size_t c=0;
- size_t n_size=UtY->size1, d_size=UtY->size2, c_size=UtW->size2;
- size_t dc_size=d_size*(c_size+1), v_size=d_size*(d_size+1)/2;
-
- // Create a large matrix.
- size_t msize=10000;
- gsl_matrix *Xlarge=gsl_matrix_alloc (U->size1, msize);
- gsl_matrix *UtXlarge=gsl_matrix_alloc (U->size1, msize);
- gsl_matrix_set_zero(Xlarge);
-
- // Large matrices for EM.
- gsl_matrix *U_hat=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *E_hat=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *OmegaU=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *OmegaE=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *UltVehiY=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *UltVehiBX=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *UltVehiU=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *UltVehiE=gsl_matrix_alloc (d_size, n_size);
-
- // Large matrices for NR.
- // Each dxd block is H_k^{-1}.
- gsl_matrix *Hi_all=gsl_matrix_alloc (d_size, d_size*n_size);
-
- // Each column is H_k^{-1}y_k.
- gsl_matrix *Hiy_all=gsl_matrix_alloc (d_size, n_size);
-
- // Each dcxdc block is x_k\otimes H_k^{-1}.
- gsl_matrix *xHi_all=gsl_matrix_alloc (dc_size, d_size*n_size);
-
- gsl_matrix *Hessian=gsl_matrix_alloc (v_size*2, v_size*2);
-
- gsl_vector *x=gsl_vector_alloc (n_size);
-
- gsl_matrix *Y=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *X=gsl_matrix_alloc (c_size+1, n_size);
- gsl_matrix *V_g=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *V_e=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *B=gsl_matrix_alloc (d_size, c_size+1);
- gsl_vector *beta=gsl_vector_alloc (d_size);
- gsl_matrix *Vbeta=gsl_matrix_alloc (d_size, d_size);
-
- // Null estimates for initial values.
- gsl_matrix *V_g_null=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *V_e_null=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *B_null=gsl_matrix_alloc (d_size, c_size+1);
- gsl_matrix *se_B_null=gsl_matrix_alloc (d_size, c_size);
-
- gsl_matrix_view X_sub=gsl_matrix_submatrix (X, 0, 0, c_size, n_size);
- gsl_matrix_view B_sub=gsl_matrix_submatrix (B, 0, 0, d_size, c_size);
- gsl_matrix_view xHi_all_sub =
- gsl_matrix_submatrix (xHi_all, 0, 0, d_size*c_size, d_size*n_size);
-
- gsl_matrix_transpose_memcpy (Y, UtY);
- gsl_matrix_transpose_memcpy (&X_sub.matrix, UtW);
-
- gsl_vector_view X_row=gsl_matrix_row(X, c_size);
- gsl_vector_set_zero(&X_row.vector);
- gsl_vector_view B_col=gsl_matrix_column(B, c_size);
- gsl_vector_set_zero(&B_col.vector);
-
- MphInitial(em_iter, em_prec, nr_iter, nr_prec, eval, &X_sub.matrix,
- Y, l_min, l_max, n_region, V_g, V_e, &B_sub.matrix);
-
- logl_H0=MphEM ('R', em_iter, em_prec, eval, &X_sub.matrix, Y, U_hat,
- E_hat, OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU,
- UltVehiE, V_g, V_e, &B_sub.matrix);
- logl_H0=MphNR ('R', nr_iter, nr_prec, eval, &X_sub.matrix, Y, Hi_all,
- &xHi_all_sub.matrix, Hiy_all, V_g, V_e, Hessian,
- crt_a, crt_b, crt_c);
- MphCalcBeta (eval, &X_sub.matrix, Y, V_g, V_e, UltVehiY,
- &B_sub.matrix, se_B_null);
-
- c=0;
- Vg_remle_null.clear();
- Ve_remle_null.clear();
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=i; j<d_size; j++) {
- Vg_remle_null.push_back(gsl_matrix_get (V_g, i, j) );
- Ve_remle_null.push_back(gsl_matrix_get (V_e, i, j) );
- VVg_remle_null.push_back(gsl_matrix_get (Hessian, c, c) );
- VVe_remle_null.push_back(gsl_matrix_get(Hessian,c+v_size,
- c+v_size));
- c++;
- }
- }
- beta_remle_null.clear();
- se_beta_remle_null.clear();
- for (size_t i=0; i<se_B_null->size1; i++) {
- for (size_t j=0; j<se_B_null->size2; j++) {
- beta_remle_null.push_back(gsl_matrix_get(B, i, j) );
- se_beta_remle_null.push_back(gsl_matrix_get(se_B_null, i, j) );
- }
- }
- logl_remle_H0=logl_H0;
-
- cout.setf(std::ios_base::fixed, std::ios_base::floatfield);
- cout.precision(4);
- cout<<"REMLE estimate for Vg in the null model: "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- cout<<gsl_matrix_get(V_g, i, j)<<"\t";
- }
- cout<<endl;
- }
- cout<<"se(Vg): "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- c=GetIndex(i, j, d_size);
- cout<<sqrt(gsl_matrix_get(Hessian, c, c))<<"\t";
- }
- cout<<endl;
- }
- cout<<"REMLE estimate for Ve in the null model: "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- cout<<gsl_matrix_get(V_e, i, j)<<"\t";
- }
- cout<<endl;
- }
- cout<<"se(Ve): "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- c=GetIndex(i, j, d_size);
- cout<<sqrt(gsl_matrix_get(Hessian, c+v_size, c+v_size))<<"\t";
- }
- cout<<endl;
- }
- cout<<"REMLE likelihood = "<<logl_H0<<endl;
-
- logl_H0=MphEM ('L', em_iter, em_prec, eval, &X_sub.matrix, Y,
- U_hat, E_hat, OmegaU, OmegaE, UltVehiY, UltVehiBX,
- UltVehiU, UltVehiE, V_g, V_e, &B_sub.matrix);
- logl_H0=MphNR ('L', nr_iter, nr_prec, eval, &X_sub.matrix, Y,
- Hi_all, &xHi_all_sub.matrix, Hiy_all, V_g, V_e,
- Hessian, crt_a, crt_b, crt_c);
- MphCalcBeta (eval, &X_sub.matrix, Y, V_g, V_e, UltVehiY,
- &B_sub.matrix, se_B_null);
-
- c=0;
- Vg_mle_null.clear();
- Ve_mle_null.clear();
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=i; j<d_size; j++) {
- Vg_mle_null.push_back(gsl_matrix_get (V_g, i, j) );
- Ve_mle_null.push_back(gsl_matrix_get (V_e, i, j) );
- VVg_mle_null.push_back(gsl_matrix_get (Hessian, c, c) );
- VVe_mle_null.push_back(gsl_matrix_get(Hessian,c+v_size,c+v_size));
- c++;
- }
- }
- beta_mle_null.clear();
- se_beta_mle_null.clear();
- for (size_t i=0; i<se_B_null->size1; i++) {
- for (size_t j=0; j<se_B_null->size2; j++) {
- beta_mle_null.push_back(gsl_matrix_get(B, i, j) );
- se_beta_mle_null.push_back(gsl_matrix_get(se_B_null, i, j) );
- }
- }
- logl_mle_H0=logl_H0;
-
- cout<<"MLE estimate for Vg in the null model: "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- cout<<gsl_matrix_get(V_g, i, j)<<"\t";
- }
- cout<<endl;
- }
- cout<<"se(Vg): "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- c=GetIndex(i, j, d_size);
- cout<<sqrt(gsl_matrix_get(Hessian, c, c))<<"\t";
- }
- cout<<endl;
- }
- cout<<"MLE estimate for Ve in the null model: "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- cout<<gsl_matrix_get(V_e, i, j)<<"\t";
- }
- cout<<endl;
- }
- cout<<"se(Ve): "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- c=GetIndex(i, j, d_size);
- cout<<sqrt(gsl_matrix_get(Hessian, c+v_size, c+v_size))<<"\t";
- }
- cout<<endl;
- }
- cout<<"MLE likelihood = "<<logl_H0<<endl;
-
- vector<double> v_beta, v_Vg, v_Ve, v_Vbeta;
- for (size_t i=0; i<d_size; i++) {
- v_beta.push_back(0.0);
- }
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=i; j<d_size; j++) {
- v_Vg.push_back(0.0);
- v_Ve.push_back(0.0);
- v_Vbeta.push_back(0.0);
- }
- }
-
- gsl_matrix_memcpy (V_g_null, V_g);
- gsl_matrix_memcpy (V_e_null, V_e);
- gsl_matrix_memcpy (B_null, B);
-
- // Start reading genotypes and analyze.
- // Calculate n_bit and c, the number of bit for each snp.
- if (ni_total%4==0) {n_bit=ni_total/4;}
- else {n_bit=ni_total/4+1; }
-
- // Print the first three magic numbers.
- for (int i=0; i<3; ++i) {
- infile.read(ch,1);
- b=ch[0];
- }
-
- size_t csnp=0, t_last=0;
- for (size_t t=0; t<indicator_snp.size(); ++t) {
- if (indicator_snp[t]==0) {continue;}
- t_last++;
- }
- for (vector<SNPINFO>::size_type t=0; t<snpInfo.size(); ++t) {
- if (t%d_pace==0 || t==snpInfo.size()-1) {
- ProgressBar ("Reading SNPs ", t, snpInfo.size()-1);
- }
- if (indicator_snp[t]==0) {continue;}
-
- // n_bit, and 3 is the number of magic numbers.
- infile.seekg(t*n_bit+3);
-
- //read genotypes
- x_mean=0.0; n_miss=0; ci_total=0; ci_test=0;
- for (int i=0; i<n_bit; ++i) {
- infile.read(ch,1);
- b=ch[0];
-
- // Minor allele homozygous: 2.0; major: 0.0;
- for (size_t j=0; j<4; ++j) {
- if ((i==(n_bit-1)) && ci_total==(int)ni_total) {break;}
- if (indicator_idv[ci_total]==0) {ci_total++; continue;}
-
- if (b[2*j]==0) {
- if (b[2*j+1]==0) {gsl_vector_set(x, ci_test, 2); x_mean+=2.0; }
- else {gsl_vector_set(x, ci_test, 1); x_mean+=1.0; }
- }
- else {
- if (b[2*j+1]==1) {gsl_vector_set(x, ci_test, 0); }
- else {gsl_vector_set(x, ci_test, -9); n_miss++; }
- }
-
- ci_total++;
- ci_test++;
- }
- }
-
- x_mean/=(double)(ni_test-n_miss);
-
- for (size_t i=0; i<ni_test; ++i) {
- geno=gsl_vector_get(x,i);
- if (geno==-9) {gsl_vector_set(x, i, x_mean); geno=x_mean;}
- }
-
- gsl_vector_view Xlarge_col=gsl_matrix_column (Xlarge, csnp%msize);
- gsl_vector_memcpy (&Xlarge_col.vector, x);
- csnp++;
-
- if (csnp%msize==0 || csnp==t_last ) {
- size_t l=0;
- if (csnp%msize==0) {l=msize;} else {l=csnp%msize;}
-
- gsl_matrix_view Xlarge_sub =
- gsl_matrix_submatrix(Xlarge, 0, 0, Xlarge->size1, l);
- gsl_matrix_view UtXlarge_sub =
- gsl_matrix_submatrix(UtXlarge, 0, 0, UtXlarge->size1, l);
-
- time_start=clock();
- eigenlib_dgemm ("T", "N", 1.0, U, &Xlarge_sub.matrix, 0.0,
- &UtXlarge_sub.matrix);
- time_UtX+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
-
- gsl_matrix_set_zero (Xlarge);
-
- for (size_t i=0; i<l; i++) {
- gsl_vector_view UtXlarge_col=gsl_matrix_column (UtXlarge, i);
- gsl_vector_memcpy (&X_row.vector, &UtXlarge_col.vector);
-
- // Initial values.
- gsl_matrix_memcpy (V_g, V_g_null);
- gsl_matrix_memcpy (V_e, V_e_null);
- gsl_matrix_memcpy (B, B_null);
-
- time_start=clock();
-
- // 3 is before 1.
- if (a_mode==3 || a_mode==4) {
- p_score=MphCalcP (eval, &X_row.vector, &X_sub.matrix, Y,
- V_g_null, V_e_null, UltVehiY, beta, Vbeta);
-
- if (p_score<p_nr && crt==1) {
- logl_H1=MphNR ('R', 1, nr_prec*10, eval, X, Y, Hi_all,
- xHi_all, Hiy_all, V_g, V_e, Hessian, crt_a,
- crt_b, crt_c);
- p_score=PCRT (3, d_size, p_score, crt_a, crt_b, crt_c);
- }
- }
-
- if (a_mode==2 || a_mode==4) {
- logl_H1=MphEM ('L', em_iter/10, em_prec*10, eval, X, Y,
- U_hat, E_hat, OmegaU, OmegaE, UltVehiY,
- UltVehiBX, UltVehiU, UltVehiE, V_g, V_e, B);
-
- // Calculate beta and Vbeta.
- p_lrt=MphCalcP (eval, &X_row.vector, &X_sub.matrix, Y, V_g,
- V_e, UltVehiY, beta, Vbeta);
- p_lrt=gsl_cdf_chisq_Q (2.0*(logl_H1-logl_H0), (double)d_size );
-
- if (p_lrt<p_nr) {
- logl_H1=MphNR ('L', nr_iter/10, nr_prec*10, eval, X, Y,
- Hi_all, xHi_all, Hiy_all, V_g, V_e, Hessian,
- crt_a, crt_b, crt_c);
-
- // Calculate beta and Vbeta.
- p_lrt=MphCalcP (eval, &X_row.vector, &X_sub.matrix, Y, V_g,
- V_e, UltVehiY, beta, Vbeta);
- p_lrt=gsl_cdf_chisq_Q (2.0*(logl_H1-logl_H0),
- (double)d_size );
- if (crt==1) {
- p_lrt=PCRT (2, d_size, p_lrt, crt_a, crt_b, crt_c);
- }
- }
- }
-
- if (a_mode==1 || a_mode==4) {
- logl_H1=MphEM ('R', em_iter/10, em_prec*10, eval, X, Y,
- U_hat, E_hat, OmegaU, OmegaE, UltVehiY,
- UltVehiBX, UltVehiU, UltVehiE, V_g, V_e, B);
- p_wald=MphCalcP (eval, &X_row.vector, &X_sub.matrix, Y, V_g,
- V_e, UltVehiY, beta, Vbeta);
-
- if (p_wald<p_nr) {
- logl_H1=MphNR ('R', nr_iter/10, nr_prec*10, eval, X, Y,
- Hi_all, xHi_all, Hiy_all, V_g, V_e, Hessian,
- crt_a, crt_b, crt_c);
- p_wald=MphCalcP (eval, &X_row.vector, &X_sub.matrix, Y,
- V_g, V_e, UltVehiY, beta, Vbeta);
-
- if (crt==1) {
- p_wald=PCRT (1, d_size, p_wald, crt_a, crt_b, crt_c);
- }
- }
- }
-
- time_opt+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
-
- // Store summary data.
- for (size_t i=0; i<d_size; i++) {
- v_beta[i]=gsl_vector_get (beta, i);
- }
-
- c=0;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=i; j<d_size; j++) {
- v_Vg[c]=gsl_matrix_get (V_g, i, j);
- v_Ve[c]=gsl_matrix_get (V_e, i, j);
- v_Vbeta[c]=gsl_matrix_get (Vbeta, i, j);
- c++;
- }
- }
-
- MPHSUMSTAT SNPs={v_beta, p_wald, p_lrt, p_score, v_Vg,
- v_Ve, v_Vbeta};
- sumStat.push_back(SNPs);
- }
- }
- }
- cout<<endl;
-
- infile.close();
- infile.clear();
-
- gsl_matrix_free(U_hat);
- gsl_matrix_free(E_hat);
- gsl_matrix_free(OmegaU);
- gsl_matrix_free(OmegaE);
- gsl_matrix_free(UltVehiY);
- gsl_matrix_free(UltVehiBX);
- gsl_matrix_free(UltVehiU);
- gsl_matrix_free(UltVehiE);
-
- gsl_matrix_free(Hi_all);
- gsl_matrix_free(Hiy_all);
- gsl_matrix_free(xHi_all);
- gsl_matrix_free(Hessian);
-
- gsl_vector_free(x);
-
- gsl_matrix_free(Y);
- gsl_matrix_free(X);
- gsl_matrix_free(V_g);
- gsl_matrix_free(V_e);
- gsl_matrix_free(B);
- gsl_vector_free(beta);
- gsl_matrix_free(Vbeta);
-
- gsl_matrix_free(V_g_null);
- gsl_matrix_free(V_e_null);
- gsl_matrix_free(B_null);
- gsl_matrix_free(se_B_null);
-
- gsl_matrix_free(Xlarge);
- gsl_matrix_free(UtXlarge);
-
- return;
+void MVLMM::AnalyzePlink(const gsl_matrix *U, const gsl_vector *eval,
+ const gsl_matrix *UtW, const gsl_matrix *UtY) {
+ string file_bed = file_bfile + ".bed";
+ ifstream infile(file_bed.c_str(), ios::binary);
+ if (!infile) {
+ cout << "error reading bed file:" << file_bed << endl;
+ return;
+ }
+
+ clock_t time_start = clock();
+ time_UtX = 0;
+ time_opt = 0;
+
+ char ch[1];
+ bitset<8> b;
+
+ double logl_H0 = 0.0, logl_H1 = 0.0, p_wald = 0, p_lrt = 0, p_score = 0;
+ double crt_a, crt_b, crt_c;
+ int n_bit, n_miss, ci_total, ci_test;
+ double geno, x_mean;
+ size_t c = 0;
+ size_t n_size = UtY->size1, d_size = UtY->size2, c_size = UtW->size2;
+ size_t dc_size = d_size * (c_size + 1), v_size = d_size * (d_size + 1) / 2;
+
+ // Create a large matrix.
+ size_t msize = 10000;
+ gsl_matrix *Xlarge = gsl_matrix_alloc(U->size1, msize);
+ gsl_matrix *UtXlarge = gsl_matrix_alloc(U->size1, msize);
+ gsl_matrix_set_zero(Xlarge);
+
+ // Large matrices for EM.
+ gsl_matrix *U_hat = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *E_hat = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *OmegaU = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *OmegaE = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *UltVehiY = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *UltVehiBX = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *UltVehiU = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *UltVehiE = gsl_matrix_alloc(d_size, n_size);
+
+ // Large matrices for NR.
+ // Each dxd block is H_k^{-1}.
+ gsl_matrix *Hi_all = gsl_matrix_alloc(d_size, d_size * n_size);
+
+ // Each column is H_k^{-1}y_k.
+ gsl_matrix *Hiy_all = gsl_matrix_alloc(d_size, n_size);
+
+ // Each dcxdc block is x_k\otimes H_k^{-1}.
+ gsl_matrix *xHi_all = gsl_matrix_alloc(dc_size, d_size * n_size);
+
+ gsl_matrix *Hessian = gsl_matrix_alloc(v_size * 2, v_size * 2);
+
+ gsl_vector *x = gsl_vector_alloc(n_size);
+
+ gsl_matrix *Y = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *X = gsl_matrix_alloc(c_size + 1, n_size);
+ gsl_matrix *V_g = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *V_e = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *B = gsl_matrix_alloc(d_size, c_size + 1);
+ gsl_vector *beta = gsl_vector_alloc(d_size);
+ gsl_matrix *Vbeta = gsl_matrix_alloc(d_size, d_size);
+
+ // Null estimates for initial values.
+ gsl_matrix *V_g_null = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *V_e_null = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *B_null = gsl_matrix_alloc(d_size, c_size + 1);
+ gsl_matrix *se_B_null = gsl_matrix_alloc(d_size, c_size);
+
+ gsl_matrix_view X_sub = gsl_matrix_submatrix(X, 0, 0, c_size, n_size);
+ gsl_matrix_view B_sub = gsl_matrix_submatrix(B, 0, 0, d_size, c_size);
+ gsl_matrix_view xHi_all_sub =
+ gsl_matrix_submatrix(xHi_all, 0, 0, d_size * c_size, d_size * n_size);
+
+ gsl_matrix_transpose_memcpy(Y, UtY);
+ gsl_matrix_transpose_memcpy(&X_sub.matrix, UtW);
+
+ gsl_vector_view X_row = gsl_matrix_row(X, c_size);
+ gsl_vector_set_zero(&X_row.vector);
+ gsl_vector_view B_col = gsl_matrix_column(B, c_size);
+ gsl_vector_set_zero(&B_col.vector);
+
+ MphInitial(em_iter, em_prec, nr_iter, nr_prec, eval, &X_sub.matrix, Y, l_min,
+ l_max, n_region, V_g, V_e, &B_sub.matrix);
+
+ logl_H0 = MphEM('R', em_iter, em_prec, eval, &X_sub.matrix, Y, U_hat, E_hat,
+ OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU, UltVehiE, V_g,
+ V_e, &B_sub.matrix);
+ logl_H0 = MphNR('R', nr_iter, nr_prec, eval, &X_sub.matrix, Y, Hi_all,
+ &xHi_all_sub.matrix, Hiy_all, V_g, V_e, Hessian, crt_a, crt_b,
+ crt_c);
+ MphCalcBeta(eval, &X_sub.matrix, Y, V_g, V_e, UltVehiY, &B_sub.matrix,
+ se_B_null);
+
+ c = 0;
+ Vg_remle_null.clear();
+ Ve_remle_null.clear();
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = i; j < d_size; j++) {
+ Vg_remle_null.push_back(gsl_matrix_get(V_g, i, j));
+ Ve_remle_null.push_back(gsl_matrix_get(V_e, i, j));
+ VVg_remle_null.push_back(gsl_matrix_get(Hessian, c, c));
+ VVe_remle_null.push_back(gsl_matrix_get(Hessian, c + v_size, c + v_size));
+ c++;
+ }
+ }
+ beta_remle_null.clear();
+ se_beta_remle_null.clear();
+ for (size_t i = 0; i < se_B_null->size1; i++) {
+ for (size_t j = 0; j < se_B_null->size2; j++) {
+ beta_remle_null.push_back(gsl_matrix_get(B, i, j));
+ se_beta_remle_null.push_back(gsl_matrix_get(se_B_null, i, j));
+ }
+ }
+ logl_remle_H0 = logl_H0;
+
+ cout.setf(std::ios_base::fixed, std::ios_base::floatfield);
+ cout.precision(4);
+ cout << "REMLE estimate for Vg in the null model: " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ cout << gsl_matrix_get(V_g, i, j) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "se(Vg): " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ c = GetIndex(i, j, d_size);
+ cout << sqrt(gsl_matrix_get(Hessian, c, c)) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "REMLE estimate for Ve in the null model: " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ cout << gsl_matrix_get(V_e, i, j) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "se(Ve): " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ c = GetIndex(i, j, d_size);
+ cout << sqrt(gsl_matrix_get(Hessian, c + v_size, c + v_size)) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "REMLE likelihood = " << logl_H0 << endl;
+
+ logl_H0 = MphEM('L', em_iter, em_prec, eval, &X_sub.matrix, Y, U_hat, E_hat,
+ OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU, UltVehiE, V_g,
+ V_e, &B_sub.matrix);
+ logl_H0 = MphNR('L', nr_iter, nr_prec, eval, &X_sub.matrix, Y, Hi_all,
+ &xHi_all_sub.matrix, Hiy_all, V_g, V_e, Hessian, crt_a, crt_b,
+ crt_c);
+ MphCalcBeta(eval, &X_sub.matrix, Y, V_g, V_e, UltVehiY, &B_sub.matrix,
+ se_B_null);
+
+ c = 0;
+ Vg_mle_null.clear();
+ Ve_mle_null.clear();
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = i; j < d_size; j++) {
+ Vg_mle_null.push_back(gsl_matrix_get(V_g, i, j));
+ Ve_mle_null.push_back(gsl_matrix_get(V_e, i, j));
+ VVg_mle_null.push_back(gsl_matrix_get(Hessian, c, c));
+ VVe_mle_null.push_back(gsl_matrix_get(Hessian, c + v_size, c + v_size));
+ c++;
+ }
+ }
+ beta_mle_null.clear();
+ se_beta_mle_null.clear();
+ for (size_t i = 0; i < se_B_null->size1; i++) {
+ for (size_t j = 0; j < se_B_null->size2; j++) {
+ beta_mle_null.push_back(gsl_matrix_get(B, i, j));
+ se_beta_mle_null.push_back(gsl_matrix_get(se_B_null, i, j));
+ }
+ }
+ logl_mle_H0 = logl_H0;
+
+ cout << "MLE estimate for Vg in the null model: " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ cout << gsl_matrix_get(V_g, i, j) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "se(Vg): " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ c = GetIndex(i, j, d_size);
+ cout << sqrt(gsl_matrix_get(Hessian, c, c)) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "MLE estimate for Ve in the null model: " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ cout << gsl_matrix_get(V_e, i, j) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "se(Ve): " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ c = GetIndex(i, j, d_size);
+ cout << sqrt(gsl_matrix_get(Hessian, c + v_size, c + v_size)) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "MLE likelihood = " << logl_H0 << endl;
+
+ vector<double> v_beta, v_Vg, v_Ve, v_Vbeta;
+ for (size_t i = 0; i < d_size; i++) {
+ v_beta.push_back(0.0);
+ }
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = i; j < d_size; j++) {
+ v_Vg.push_back(0.0);
+ v_Ve.push_back(0.0);
+ v_Vbeta.push_back(0.0);
+ }
+ }
+
+ gsl_matrix_memcpy(V_g_null, V_g);
+ gsl_matrix_memcpy(V_e_null, V_e);
+ gsl_matrix_memcpy(B_null, B);
+
+ // Start reading genotypes and analyze.
+ // Calculate n_bit and c, the number of bit for each snp.
+ if (ni_total % 4 == 0) {
+ n_bit = ni_total / 4;
+ } else {
+ n_bit = ni_total / 4 + 1;
+ }
+
+ // Print the first three magic numbers.
+ for (int i = 0; i < 3; ++i) {
+ infile.read(ch, 1);
+ b = ch[0];
+ }
+
+ size_t csnp = 0, t_last = 0;
+ for (size_t t = 0; t < indicator_snp.size(); ++t) {
+ if (indicator_snp[t] == 0) {
+ continue;
+ }
+ t_last++;
+ }
+ for (vector<SNPINFO>::size_type t = 0; t < snpInfo.size(); ++t) {
+ if (t % d_pace == 0 || t == snpInfo.size() - 1) {
+ ProgressBar("Reading SNPs ", t, snpInfo.size() - 1);
+ }
+ if (indicator_snp[t] == 0) {
+ continue;
+ }
+
+ // n_bit, and 3 is the number of magic numbers.
+ infile.seekg(t * n_bit + 3);
+
+ // read genotypes
+ x_mean = 0.0;
+ n_miss = 0;
+ ci_total = 0;
+ ci_test = 0;
+ for (int i = 0; i < n_bit; ++i) {
+ infile.read(ch, 1);
+ b = ch[0];
+
+ // Minor allele homozygous: 2.0; major: 0.0;
+ for (size_t j = 0; j < 4; ++j) {
+ if ((i == (n_bit - 1)) && ci_total == (int)ni_total) {
+ break;
+ }
+ if (indicator_idv[ci_total] == 0) {
+ ci_total++;
+ continue;
+ }
+
+ if (b[2 * j] == 0) {
+ if (b[2 * j + 1] == 0) {
+ gsl_vector_set(x, ci_test, 2);
+ x_mean += 2.0;
+ } else {
+ gsl_vector_set(x, ci_test, 1);
+ x_mean += 1.0;
+ }
+ } else {
+ if (b[2 * j + 1] == 1) {
+ gsl_vector_set(x, ci_test, 0);
+ } else {
+ gsl_vector_set(x, ci_test, -9);
+ n_miss++;
+ }
+ }
+
+ ci_total++;
+ ci_test++;
+ }
+ }
+
+ x_mean /= (double)(ni_test - n_miss);
+
+ for (size_t i = 0; i < ni_test; ++i) {
+ geno = gsl_vector_get(x, i);
+ if (geno == -9) {
+ gsl_vector_set(x, i, x_mean);
+ geno = x_mean;
+ }
+ }
+
+ gsl_vector_view Xlarge_col = gsl_matrix_column(Xlarge, csnp % msize);
+ gsl_vector_memcpy(&Xlarge_col.vector, x);
+ csnp++;
+
+ if (csnp % msize == 0 || csnp == t_last) {
+ size_t l = 0;
+ if (csnp % msize == 0) {
+ l = msize;
+ } else {
+ l = csnp % msize;
+ }
+
+ gsl_matrix_view Xlarge_sub =
+ gsl_matrix_submatrix(Xlarge, 0, 0, Xlarge->size1, l);
+ gsl_matrix_view UtXlarge_sub =
+ gsl_matrix_submatrix(UtXlarge, 0, 0, UtXlarge->size1, l);
+
+ time_start = clock();
+ eigenlib_dgemm("T", "N", 1.0, U, &Xlarge_sub.matrix, 0.0,
+ &UtXlarge_sub.matrix);
+ time_UtX += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
+
+ gsl_matrix_set_zero(Xlarge);
+
+ for (size_t i = 0; i < l; i++) {
+ gsl_vector_view UtXlarge_col = gsl_matrix_column(UtXlarge, i);
+ gsl_vector_memcpy(&X_row.vector, &UtXlarge_col.vector);
+
+ // Initial values.
+ gsl_matrix_memcpy(V_g, V_g_null);
+ gsl_matrix_memcpy(V_e, V_e_null);
+ gsl_matrix_memcpy(B, B_null);
+
+ time_start = clock();
+
+ // 3 is before 1.
+ if (a_mode == 3 || a_mode == 4) {
+ p_score = MphCalcP(eval, &X_row.vector, &X_sub.matrix, Y, V_g_null,
+ V_e_null, UltVehiY, beta, Vbeta);
+
+ if (p_score < p_nr && crt == 1) {
+ logl_H1 = MphNR('R', 1, nr_prec * 10, eval, X, Y, Hi_all, xHi_all,
+ Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, crt_c);
+ p_score = PCRT(3, d_size, p_score, crt_a, crt_b, crt_c);
+ }
+ }
+
+ if (a_mode == 2 || a_mode == 4) {
+ logl_H1 = MphEM('L', em_iter / 10, em_prec * 10, eval, X, Y, U_hat,
+ E_hat, OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU,
+ UltVehiE, V_g, V_e, B);
+
+ // Calculate beta and Vbeta.
+ p_lrt = MphCalcP(eval, &X_row.vector, &X_sub.matrix, Y, V_g, V_e,
+ UltVehiY, beta, Vbeta);
+ p_lrt = gsl_cdf_chisq_Q(2.0 * (logl_H1 - logl_H0), (double)d_size);
+
+ if (p_lrt < p_nr) {
+ logl_H1 =
+ MphNR('L', nr_iter / 10, nr_prec * 10, eval, X, Y, Hi_all,
+ xHi_all, Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, crt_c);
+
+ // Calculate beta and Vbeta.
+ p_lrt = MphCalcP(eval, &X_row.vector, &X_sub.matrix, Y, V_g, V_e,
+ UltVehiY, beta, Vbeta);
+ p_lrt = gsl_cdf_chisq_Q(2.0 * (logl_H1 - logl_H0), (double)d_size);
+ if (crt == 1) {
+ p_lrt = PCRT(2, d_size, p_lrt, crt_a, crt_b, crt_c);
+ }
+ }
+ }
+
+ if (a_mode == 1 || a_mode == 4) {
+ logl_H1 = MphEM('R', em_iter / 10, em_prec * 10, eval, X, Y, U_hat,
+ E_hat, OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU,
+ UltVehiE, V_g, V_e, B);
+ p_wald = MphCalcP(eval, &X_row.vector, &X_sub.matrix, Y, V_g, V_e,
+ UltVehiY, beta, Vbeta);
+
+ if (p_wald < p_nr) {
+ logl_H1 =
+ MphNR('R', nr_iter / 10, nr_prec * 10, eval, X, Y, Hi_all,
+ xHi_all, Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, crt_c);
+ p_wald = MphCalcP(eval, &X_row.vector, &X_sub.matrix, Y, V_g, V_e,
+ UltVehiY, beta, Vbeta);
+
+ if (crt == 1) {
+ p_wald = PCRT(1, d_size, p_wald, crt_a, crt_b, crt_c);
+ }
+ }
+ }
+
+ time_opt += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
+
+ // Store summary data.
+ for (size_t i = 0; i < d_size; i++) {
+ v_beta[i] = gsl_vector_get(beta, i);
+ }
+
+ c = 0;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = i; j < d_size; j++) {
+ v_Vg[c] = gsl_matrix_get(V_g, i, j);
+ v_Ve[c] = gsl_matrix_get(V_e, i, j);
+ v_Vbeta[c] = gsl_matrix_get(Vbeta, i, j);
+ c++;
+ }
+ }
+
+ MPHSUMSTAT SNPs = {v_beta, p_wald, p_lrt, p_score, v_Vg, v_Ve, v_Vbeta};
+ sumStat.push_back(SNPs);
+ }
+ }
+ }
+ cout << endl;
+
+ infile.close();
+ infile.clear();
+
+ gsl_matrix_free(U_hat);
+ gsl_matrix_free(E_hat);
+ gsl_matrix_free(OmegaU);
+ gsl_matrix_free(OmegaE);
+ gsl_matrix_free(UltVehiY);
+ gsl_matrix_free(UltVehiBX);
+ gsl_matrix_free(UltVehiU);
+ gsl_matrix_free(UltVehiE);
+
+ gsl_matrix_free(Hi_all);
+ gsl_matrix_free(Hiy_all);
+ gsl_matrix_free(xHi_all);
+ gsl_matrix_free(Hessian);
+
+ gsl_vector_free(x);
+
+ gsl_matrix_free(Y);
+ gsl_matrix_free(X);
+ gsl_matrix_free(V_g);
+ gsl_matrix_free(V_e);
+ gsl_matrix_free(B);
+ gsl_vector_free(beta);
+ gsl_matrix_free(Vbeta);
+
+ gsl_matrix_free(V_g_null);
+ gsl_matrix_free(V_e_null);
+ gsl_matrix_free(B_null);
+ gsl_matrix_free(se_B_null);
+
+ gsl_matrix_free(Xlarge);
+ gsl_matrix_free(UtXlarge);
+
+ return;
}
// Calculate Vg, Ve, B, se(B) in the null mvLMM model.
// Both B and se_B are d by c matrices.
-void CalcMvLmmVgVeBeta (const gsl_vector *eval, const gsl_matrix *UtW,
- const gsl_matrix *UtY, const size_t em_iter,
- const size_t nr_iter, const double em_prec,
- const double nr_prec, const double l_min,
- const double l_max, const size_t n_region,
- gsl_matrix *V_g, gsl_matrix *V_e, gsl_matrix *B,
- gsl_matrix *se_B) {
- size_t n_size=UtY->size1, d_size=UtY->size2, c_size=UtW->size2;
- size_t dc_size=d_size*c_size, v_size=d_size*(d_size+1)/2;
-
- double logl, crt_a, crt_b, crt_c;
-
- // Large matrices for EM.
- gsl_matrix *U_hat=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *E_hat=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *OmegaU=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *OmegaE=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *UltVehiY=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *UltVehiBX=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *UltVehiU=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *UltVehiE=gsl_matrix_alloc (d_size, n_size);
-
- // Large matrices for NR.
- // Each dxd block is H_k^{-1}.
- gsl_matrix *Hi_all=gsl_matrix_alloc (d_size, d_size*n_size);
-
- // Each column is H_k^{-1}y_k.
- gsl_matrix *Hiy_all=gsl_matrix_alloc (d_size, n_size);
-
- // Each dcxdc block is x_k\otimes H_k^{-1}.
- gsl_matrix *xHi_all=gsl_matrix_alloc (dc_size, d_size*n_size);
- gsl_matrix *Hessian=gsl_matrix_alloc (v_size*2, v_size*2);
-
- // Transpose matrices.
- gsl_matrix *Y=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *W=gsl_matrix_alloc (c_size, n_size);
- gsl_matrix_transpose_memcpy (Y, UtY);
- gsl_matrix_transpose_memcpy (W, UtW);
-
- // Initial, EM, NR, and calculate B.
- MphInitial(em_iter, em_prec, nr_iter, nr_prec, eval, W, Y,
- l_min, l_max, n_region, V_g, V_e, B);
- logl=MphEM ('R', em_iter, em_prec, eval, W, Y, U_hat, E_hat,
- OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU,
- UltVehiE, V_g, V_e, B);
- logl=MphNR ('R', nr_iter, nr_prec, eval, W, Y, Hi_all, xHi_all,
- Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, crt_c);
- MphCalcBeta (eval, W, Y, V_g, V_e, UltVehiY, B, se_B);
-
- // Free matrices.
- gsl_matrix_free(U_hat);
- gsl_matrix_free(E_hat);
- gsl_matrix_free(OmegaU);
- gsl_matrix_free(OmegaE);
- gsl_matrix_free(UltVehiY);
- gsl_matrix_free(UltVehiBX);
- gsl_matrix_free(UltVehiU);
- gsl_matrix_free(UltVehiE);
-
- gsl_matrix_free(Hi_all);
- gsl_matrix_free(Hiy_all);
- gsl_matrix_free(xHi_all);
- gsl_matrix_free(Hessian);
-
- gsl_matrix_free(Y);
- gsl_matrix_free(W);
-
- return;
+void CalcMvLmmVgVeBeta(const gsl_vector *eval, const gsl_matrix *UtW,
+ const gsl_matrix *UtY, const size_t em_iter,
+ const size_t nr_iter, const double em_prec,
+ const double nr_prec, const double l_min,
+ const double l_max, const size_t n_region,
+ gsl_matrix *V_g, gsl_matrix *V_e, gsl_matrix *B,
+ gsl_matrix *se_B) {
+ size_t n_size = UtY->size1, d_size = UtY->size2, c_size = UtW->size2;
+ size_t dc_size = d_size * c_size, v_size = d_size * (d_size + 1) / 2;
+
+ double logl, crt_a, crt_b, crt_c;
+
+ // Large matrices for EM.
+ gsl_matrix *U_hat = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *E_hat = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *OmegaU = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *OmegaE = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *UltVehiY = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *UltVehiBX = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *UltVehiU = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *UltVehiE = gsl_matrix_alloc(d_size, n_size);
+
+ // Large matrices for NR.
+ // Each dxd block is H_k^{-1}.
+ gsl_matrix *Hi_all = gsl_matrix_alloc(d_size, d_size * n_size);
+
+ // Each column is H_k^{-1}y_k.
+ gsl_matrix *Hiy_all = gsl_matrix_alloc(d_size, n_size);
+
+ // Each dcxdc block is x_k\otimes H_k^{-1}.
+ gsl_matrix *xHi_all = gsl_matrix_alloc(dc_size, d_size * n_size);
+ gsl_matrix *Hessian = gsl_matrix_alloc(v_size * 2, v_size * 2);
+
+ // Transpose matrices.
+ gsl_matrix *Y = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *W = gsl_matrix_alloc(c_size, n_size);
+ gsl_matrix_transpose_memcpy(Y, UtY);
+ gsl_matrix_transpose_memcpy(W, UtW);
+
+ // Initial, EM, NR, and calculate B.
+ MphInitial(em_iter, em_prec, nr_iter, nr_prec, eval, W, Y, l_min, l_max,
+ n_region, V_g, V_e, B);
+ logl = MphEM('R', em_iter, em_prec, eval, W, Y, U_hat, E_hat, OmegaU, OmegaE,
+ UltVehiY, UltVehiBX, UltVehiU, UltVehiE, V_g, V_e, B);
+ logl = MphNR('R', nr_iter, nr_prec, eval, W, Y, Hi_all, xHi_all, Hiy_all, V_g,
+ V_e, Hessian, crt_a, crt_b, crt_c);
+ MphCalcBeta(eval, W, Y, V_g, V_e, UltVehiY, B, se_B);
+
+ // Free matrices.
+ gsl_matrix_free(U_hat);
+ gsl_matrix_free(E_hat);
+ gsl_matrix_free(OmegaU);
+ gsl_matrix_free(OmegaE);
+ gsl_matrix_free(UltVehiY);
+ gsl_matrix_free(UltVehiBX);
+ gsl_matrix_free(UltVehiU);
+ gsl_matrix_free(UltVehiE);
+
+ gsl_matrix_free(Hi_all);
+ gsl_matrix_free(Hiy_all);
+ gsl_matrix_free(xHi_all);
+ gsl_matrix_free(Hessian);
+
+ gsl_matrix_free(Y);
+ gsl_matrix_free(W);
+
+ return;
}
-void MVLMM::AnalyzeBimbamGXE (const gsl_matrix *U, const gsl_vector *eval,
- const gsl_matrix *UtW, const gsl_matrix *UtY,
- const gsl_vector *env) {
- igzstream infile (file_geno.c_str(), igzstream::in);
- if (!infile) {
- cout<<"error reading genotype file:"<<file_geno<<endl;
- return;
- }
-
- clock_t time_start=clock();
- time_UtX=0; time_opt=0;
-
- string line;
- char *ch_ptr;
-
- double logl_H0=0.0, logl_H1=0.0, p_wald=0, p_lrt=0, p_score=0;
- double crt_a, crt_b, crt_c;
- int n_miss, c_phen;
- double geno, x_mean;
- size_t c=0;
- size_t n_size=UtY->size1, d_size=UtY->size2, c_size=UtW->size2+2;
- size_t dc_size=d_size*(c_size+1), v_size=d_size*(d_size+1)/2;
-
- // Large matrices for EM.
- gsl_matrix *U_hat=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *E_hat=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *OmegaU=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *OmegaE=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *UltVehiY=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *UltVehiBX=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *UltVehiU=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *UltVehiE=gsl_matrix_alloc (d_size, n_size);
-
- // Large matrices for NR.
- // Each dxd block is H_k^{-1}.
- gsl_matrix *Hi_all=gsl_matrix_alloc (d_size, d_size*n_size);
-
- // Each column is H_k^{-1}y_k.
- gsl_matrix *Hiy_all=gsl_matrix_alloc (d_size, n_size);
-
- // Each dcxdc block is x_k\otimes H_k^{-1}.
- gsl_matrix *xHi_all=gsl_matrix_alloc (dc_size, d_size*n_size);
- gsl_matrix *Hessian=gsl_matrix_alloc (v_size*2, v_size*2);
-
- gsl_vector *x=gsl_vector_alloc (n_size);
- gsl_vector *x_miss=gsl_vector_alloc (n_size);
-
- gsl_matrix *Y=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *X=gsl_matrix_alloc (c_size+1, n_size);
- gsl_matrix *V_g=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *V_e=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *B=gsl_matrix_alloc (d_size, c_size+1);
- gsl_vector *beta=gsl_vector_alloc (d_size);
- gsl_matrix *Vbeta=gsl_matrix_alloc (d_size, d_size);
-
- // Null estimates for initial values; including env but not
- // including x.
- gsl_matrix *V_g_null=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *V_e_null=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *B_null=gsl_matrix_alloc (d_size, c_size+1);
- gsl_matrix *se_B_null1=gsl_matrix_alloc (d_size, c_size-1);
- gsl_matrix *se_B_null2=gsl_matrix_alloc (d_size, c_size);
-
- gsl_matrix_view X_sub1=gsl_matrix_submatrix(X,0,0,c_size-1,n_size);
- gsl_matrix_view B_sub1=gsl_matrix_submatrix(B,0,0,d_size,c_size-1);
- gsl_matrix_view xHi_all_sub1=
- gsl_matrix_submatrix(xHi_all,0,0,d_size*(c_size-1),d_size*n_size);
-
- gsl_matrix_view X_sub2=gsl_matrix_submatrix (X, 0, 0, c_size, n_size);
- gsl_matrix_view B_sub2=gsl_matrix_submatrix (B, 0, 0, d_size, c_size);
- gsl_matrix_view xHi_all_sub2=
- gsl_matrix_submatrix (xHi_all, 0, 0, d_size*c_size, d_size*n_size);
-
- gsl_matrix_transpose_memcpy (Y, UtY);
-
- gsl_matrix_view X_sub0=gsl_matrix_submatrix(X,0,0,c_size-2,n_size);
- gsl_matrix_transpose_memcpy (&X_sub0.matrix, UtW);
- gsl_vector_view X_row0=gsl_matrix_row(X, c_size-2);
- gsl_blas_dgemv (CblasTrans, 1.0, U, env, 0.0, &X_row0.vector);
-
- gsl_vector_view X_row1=gsl_matrix_row(X, c_size-1);
- gsl_vector_set_zero(&X_row1.vector);
- gsl_vector_view X_row2=gsl_matrix_row(X, c_size);
- gsl_vector_set_zero(&X_row2.vector);
-
- gsl_vector_view B_col1=gsl_matrix_column(B, c_size-1);
- gsl_vector_set_zero(&B_col1.vector);
- gsl_vector_view B_col2=gsl_matrix_column(B, c_size);
- gsl_vector_set_zero(&B_col2.vector);
-
- MphInitial(em_iter, em_prec, nr_iter, nr_prec, eval, &X_sub1.matrix,
- Y, l_min, l_max, n_region, V_g, V_e, &B_sub1.matrix);
- logl_H0=MphEM ('R', em_iter, em_prec, eval, &X_sub1.matrix, Y,
- U_hat, E_hat, OmegaU, OmegaE, UltVehiY, UltVehiBX,
- UltVehiU, UltVehiE, V_g, V_e, &B_sub1.matrix);
- logl_H0=MphNR ('R', nr_iter, nr_prec, eval, &X_sub1.matrix, Y,
- Hi_all, &xHi_all_sub1.matrix, Hiy_all, V_g, V_e,
- Hessian, crt_a, crt_b, crt_c);
- MphCalcBeta (eval, &X_sub1.matrix, Y, V_g, V_e, UltVehiY,
- &B_sub1.matrix, se_B_null1);
-
- c=0;
- Vg_remle_null.clear();
- Ve_remle_null.clear();
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=i; j<d_size; j++) {
- Vg_remle_null.push_back(gsl_matrix_get (V_g, i, j) );
- Ve_remle_null.push_back(gsl_matrix_get (V_e, i, j) );
- VVg_remle_null.push_back(gsl_matrix_get (Hessian, c, c) );
- VVe_remle_null.push_back(gsl_matrix_get(Hessian,c+v_size,
- c+v_size));
- c++;
- }
- }
- beta_remle_null.clear();
- se_beta_remle_null.clear();
- for (size_t i=0; i<se_B_null1->size1; i++) {
- for (size_t j=0; j<se_B_null1->size2; j++) {
- beta_remle_null.push_back(gsl_matrix_get(B, i, j) );
- se_beta_remle_null.push_back(gsl_matrix_get(se_B_null1, i, j) );
- }
- }
- logl_remle_H0=logl_H0;
-
- cout.setf(std::ios_base::fixed, std::ios_base::floatfield);
- cout.precision(4);
-
- cout<<"REMLE estimate for Vg in the null model: "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- cout<<gsl_matrix_get(V_g, i, j)<<"\t";
- }
- cout<<endl;
- }
- cout<<"se(Vg): "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- c=GetIndex(i, j, d_size);
- cout<<sqrt(gsl_matrix_get(Hessian, c, c))<<"\t";
- }
- cout<<endl;
- }
- cout<<"REMLE estimate for Ve in the null model: "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- cout<<gsl_matrix_get(V_e, i, j)<<"\t";
- }
- cout<<endl;
- }
- cout<<"se(Ve): "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- c=GetIndex(i, j, d_size);
- cout<<sqrt(gsl_matrix_get(Hessian, c+v_size, c+v_size))<<"\t";
- }
- cout<<endl;
- }
- cout<<"REMLE likelihood = "<<logl_H0<<endl;
-
- logl_H0=MphEM ('L', em_iter, em_prec, eval, &X_sub1.matrix, Y, U_hat,
- E_hat, OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU,
- UltVehiE, V_g, V_e, &B_sub1.matrix);
- logl_H0=MphNR ('L', nr_iter, nr_prec, eval, &X_sub1.matrix, Y,
- Hi_all, &xHi_all_sub1.matrix, Hiy_all, V_g, V_e,
- Hessian, crt_a, crt_b, crt_c);
- MphCalcBeta (eval, &X_sub1.matrix, Y, V_g, V_e, UltVehiY,
- &B_sub1.matrix, se_B_null1);
-
- c=0;
- Vg_mle_null.clear();
- Ve_mle_null.clear();
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=i; j<d_size; j++) {
- Vg_mle_null.push_back(gsl_matrix_get (V_g, i, j) );
- Ve_mle_null.push_back(gsl_matrix_get (V_e, i, j) );
- VVg_mle_null.push_back(gsl_matrix_get (Hessian, c, c) );
- VVe_mle_null.push_back(gsl_matrix_get(Hessian,c+v_size,c+v_size));
- c++;
- }
- }
- beta_mle_null.clear();
- se_beta_mle_null.clear();
- for (size_t i=0; i<se_B_null1->size1; i++) {
- for (size_t j=0; j<se_B_null1->size2; j++) {
- beta_mle_null.push_back(gsl_matrix_get(B, i, j) );
- se_beta_mle_null.push_back(gsl_matrix_get(se_B_null1, i, j) );
- }
- }
- logl_mle_H0=logl_H0;
-
- cout<<"MLE estimate for Vg in the null model: "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- cout<<gsl_matrix_get(V_g, i, j)<<"\t";
- }
- cout<<endl;
- }
- cout<<"se(Vg): "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- c=GetIndex(i, j, d_size);
- cout<<sqrt(gsl_matrix_get(Hessian, c, c))<<"\t";
- }
- cout<<endl;
- }
- cout<<"MLE estimate for Ve in the null model: "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- cout<<gsl_matrix_get(V_e, i, j)<<"\t";
- }
- cout<<endl;
- }
- cout<<"se(Ve): "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- c=GetIndex(i, j, d_size);
- cout<<sqrt(gsl_matrix_get(Hessian, c+v_size, c+v_size))<<"\t";
- }
- cout<<endl;
- }
- cout<<"MLE likelihood = "<<logl_H0<<endl;
-
- vector<double> v_beta, v_Vg, v_Ve, v_Vbeta;
- for (size_t i=0; i<d_size; i++) {
- v_beta.push_back(0.0);
- }
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=i; j<d_size; j++) {
- v_Vg.push_back(0.0);
- v_Ve.push_back(0.0);
- v_Vbeta.push_back(0.0);
- }
- }
-
- gsl_matrix_memcpy (V_g_null, V_g);
- gsl_matrix_memcpy (V_e_null, V_e);
- gsl_matrix_memcpy (B_null, B);
-
- // Start reading genotypes and analyze.
- for (size_t t=0; t<indicator_snp.size(); ++t) {
- !safeGetline(infile, line).eof();
- if (t%d_pace==0 || t==(ns_total-1)) {
- ProgressBar ("Reading SNPs ", t, ns_total-1);
- }
- if (indicator_snp[t]==0) {continue;}
-
- ch_ptr=strtok ((char *)line.c_str(), " , \t");
- ch_ptr=strtok (NULL, " , \t");
- ch_ptr=strtok (NULL, " , \t");
-
- x_mean=0.0; c_phen=0; n_miss=0;
- gsl_vector_set_zero(x_miss);
- for (size_t i=0; i<ni_total; ++i) {
- ch_ptr=strtok (NULL, " , \t");
- if (indicator_idv[i]==0) {continue;}
-
- if (strcmp(ch_ptr, "NA")==0) {
- gsl_vector_set(x_miss, c_phen, 0.0);
- n_miss++;
- }
- else {
- geno=atof(ch_ptr);
-
- gsl_vector_set(x, c_phen, geno);
- gsl_vector_set(x_miss, c_phen, 1.0);
- x_mean+=geno;
- }
- c_phen++;
- }
-
- x_mean/=(double)(ni_test-n_miss);
-
- for (size_t i=0; i<ni_test; ++i) {
- if (gsl_vector_get (x_miss, i)==0) {gsl_vector_set(x, i, x_mean);}
- geno=gsl_vector_get(x, i);
- if (x_mean>1) {
- gsl_vector_set(x, i, 2-geno);
- }
- }
-
- // Calculate statistics.
- time_start=clock();
- gsl_blas_dgemv (CblasTrans, 1.0, U, x, 0.0, &X_row1.vector);
- gsl_vector_mul (x, env);
- gsl_blas_dgemv (CblasTrans, 1.0, U, x, 0.0, &X_row2.vector);
- time_UtX+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
-
- //initial values
- gsl_matrix_memcpy (V_g, V_g_null);
- gsl_matrix_memcpy (V_e, V_e_null);
- gsl_matrix_memcpy (B, B_null);
-
- if (a_mode==2 || a_mode==3 || a_mode==4) {
- if (a_mode==3 || a_mode==4) {
- logl_H0=MphEM ('R', em_iter/10, em_prec*10, eval,
- &X_sub2.matrix, Y, U_hat, E_hat, OmegaU,
- OmegaE, UltVehiY, UltVehiBX, UltVehiU,
- UltVehiE, V_g, V_e, &B_sub2.matrix);
- logl_H0=MphNR ('R', nr_iter/10, nr_prec*10, eval,
- &X_sub2.matrix, Y, Hi_all,
- &xHi_all_sub2.matrix, Hiy_all, V_g, V_e,
- Hessian, crt_a, crt_b, crt_c);
- MphCalcBeta (eval, &X_sub2.matrix, Y, V_g, V_e, UltVehiY,
- &B_sub2.matrix, se_B_null2);
- }
-
- if (a_mode==2 || a_mode==4) {
- logl_H0=MphEM ('L', em_iter/10, em_prec*10, eval,
- &X_sub2.matrix, Y, U_hat, E_hat, OmegaU,
- OmegaE, UltVehiY, UltVehiBX, UltVehiU,
- UltVehiE, V_g, V_e, &B_sub2.matrix);
- logl_H0=MphNR ('L', nr_iter/10, nr_prec*10, eval,
- &X_sub2.matrix, Y, Hi_all,
- &xHi_all_sub2.matrix, Hiy_all, V_g, V_e,
- Hessian, crt_a, crt_b, crt_c);
- MphCalcBeta (eval, &X_sub2.matrix, Y, V_g, V_e, UltVehiY,
- &B_sub2.matrix, se_B_null2);
- }
- }
-
- time_start=clock();
-
- // 3 is before 1.
- if (a_mode==3 || a_mode==4) {
- p_score=MphCalcP (eval, &X_row2.vector, &X_sub2.matrix, Y,
- V_g_null, V_e_null, UltVehiY, beta, Vbeta);
- if (p_score<p_nr && crt==1) {
- logl_H1=MphNR ('R', 1, nr_prec*10, eval, X, Y, Hi_all,
- xHi_all, Hiy_all, V_g, V_e, Hessian,
- crt_a, crt_b, crt_c);
- p_score=PCRT (3, d_size, p_score, crt_a, crt_b, crt_c);
- }
- }
-
- if (a_mode==2 || a_mode==4) {
- logl_H1=MphEM ('L', em_iter/10, em_prec*10, eval, X, Y,
- U_hat, E_hat, OmegaU, OmegaE, UltVehiY,
- UltVehiBX, UltVehiU, UltVehiE, V_g, V_e, B);
-
- // Calculate beta and Vbeta.
- p_lrt=MphCalcP (eval, &X_row2.vector, &X_sub2.matrix, Y,
- V_g, V_e, UltVehiY, beta, Vbeta);
- p_lrt=gsl_cdf_chisq_Q(2.0*(logl_H1-logl_H0),(double)d_size);
-
- if (p_lrt<p_nr) {
- logl_H1=MphNR ('L', nr_iter/10, nr_prec*10, eval, X, Y,
- Hi_all, xHi_all, Hiy_all, V_g, V_e,
- Hessian, crt_a, crt_b, crt_c);
-
- // Calculate beta and Vbeta.
- p_lrt=MphCalcP (eval, &X_row2.vector, &X_sub2.matrix, Y,
- V_g, V_e, UltVehiY, beta, Vbeta);
- p_lrt=gsl_cdf_chisq_Q(2.0*(logl_H1-logl_H0),
- (double)d_size );
-
- if (crt==1) {
- p_lrt=PCRT (2, d_size, p_lrt, crt_a, crt_b, crt_c);
- }
- }
- }
-
- if (a_mode==1 || a_mode==4) {
- logl_H1=MphEM ('R', em_iter/10, em_prec*10, eval, X, Y,
- U_hat, E_hat, OmegaU, OmegaE, UltVehiY,
- UltVehiBX, UltVehiU, UltVehiE, V_g, V_e, B);
- p_wald=MphCalcP (eval, &X_row2.vector, &X_sub2.matrix, Y,
- V_g, V_e, UltVehiY, beta, Vbeta);
-
- if (p_wald<p_nr) {
- logl_H1=MphNR ('R', nr_iter/10, nr_prec*10, eval, X, Y,
- Hi_all, xHi_all, Hiy_all, V_g, V_e,
- Hessian, crt_a, crt_b, crt_c);
- p_wald=MphCalcP (eval, &X_row2.vector, &X_sub2.matrix, Y,
- V_g, V_e, UltVehiY, beta, Vbeta);
-
- if (crt==1) {
- p_wald=PCRT (1, d_size, p_wald, crt_a, crt_b, crt_c);
- }
- }
- }
-
- if (x_mean>1) {gsl_vector_scale(beta, -1.0);}
-
- time_opt+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
-
- // Store summary data.
- for (size_t i=0; i<d_size; i++) {
- v_beta[i]=gsl_vector_get (beta, i);
- }
-
- c=0;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=i; j<d_size; j++) {
- v_Vg[c]=gsl_matrix_get (V_g, i, j);
- v_Ve[c]=gsl_matrix_get (V_e, i, j);
- v_Vbeta[c]=gsl_matrix_get (Vbeta, i, j);
- c++;
- }
- }
-
- MPHSUMSTAT SNPs={v_beta, p_wald, p_lrt, p_score, v_Vg,
- v_Ve, v_Vbeta};
- sumStat.push_back(SNPs);
- }
- cout<<endl;
-
-
- infile.close();
- infile.clear();
-
- gsl_matrix_free(U_hat);
- gsl_matrix_free(E_hat);
- gsl_matrix_free(OmegaU);
- gsl_matrix_free(OmegaE);
- gsl_matrix_free(UltVehiY);
- gsl_matrix_free(UltVehiBX);
- gsl_matrix_free(UltVehiU);
- gsl_matrix_free(UltVehiE);
-
- gsl_matrix_free(Hi_all);
- gsl_matrix_free(Hiy_all);
- gsl_matrix_free(xHi_all);
- gsl_matrix_free(Hessian);
-
- gsl_vector_free(x);
- gsl_vector_free(x_miss);
-
- gsl_matrix_free(Y);
- gsl_matrix_free(X);
- gsl_matrix_free(V_g);
- gsl_matrix_free(V_e);
- gsl_matrix_free(B);
- gsl_vector_free(beta);
- gsl_matrix_free(Vbeta);
-
- gsl_matrix_free(V_g_null);
- gsl_matrix_free(V_e_null);
- gsl_matrix_free(B_null);
- gsl_matrix_free(se_B_null1);
- gsl_matrix_free(se_B_null2);
-
- return;
+void MVLMM::AnalyzeBimbamGXE(const gsl_matrix *U, const gsl_vector *eval,
+ const gsl_matrix *UtW, const gsl_matrix *UtY,
+ const gsl_vector *env) {
+ igzstream infile(file_geno.c_str(), igzstream::in);
+ if (!infile) {
+ cout << "error reading genotype file:" << file_geno << endl;
+ return;
+ }
+
+ clock_t time_start = clock();
+ time_UtX = 0;
+ time_opt = 0;
+
+ string line;
+ char *ch_ptr;
+
+ double logl_H0 = 0.0, logl_H1 = 0.0, p_wald = 0, p_lrt = 0, p_score = 0;
+ double crt_a, crt_b, crt_c;
+ int n_miss, c_phen;
+ double geno, x_mean;
+ size_t c = 0;
+ size_t n_size = UtY->size1, d_size = UtY->size2, c_size = UtW->size2 + 2;
+ size_t dc_size = d_size * (c_size + 1), v_size = d_size * (d_size + 1) / 2;
+
+ // Large matrices for EM.
+ gsl_matrix *U_hat = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *E_hat = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *OmegaU = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *OmegaE = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *UltVehiY = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *UltVehiBX = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *UltVehiU = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *UltVehiE = gsl_matrix_alloc(d_size, n_size);
+
+ // Large matrices for NR.
+ // Each dxd block is H_k^{-1}.
+ gsl_matrix *Hi_all = gsl_matrix_alloc(d_size, d_size * n_size);
+
+ // Each column is H_k^{-1}y_k.
+ gsl_matrix *Hiy_all = gsl_matrix_alloc(d_size, n_size);
+
+ // Each dcxdc block is x_k\otimes H_k^{-1}.
+ gsl_matrix *xHi_all = gsl_matrix_alloc(dc_size, d_size * n_size);
+ gsl_matrix *Hessian = gsl_matrix_alloc(v_size * 2, v_size * 2);
+
+ gsl_vector *x = gsl_vector_alloc(n_size);
+ gsl_vector *x_miss = gsl_vector_alloc(n_size);
+
+ gsl_matrix *Y = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *X = gsl_matrix_alloc(c_size + 1, n_size);
+ gsl_matrix *V_g = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *V_e = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *B = gsl_matrix_alloc(d_size, c_size + 1);
+ gsl_vector *beta = gsl_vector_alloc(d_size);
+ gsl_matrix *Vbeta = gsl_matrix_alloc(d_size, d_size);
+
+ // Null estimates for initial values; including env but not
+ // including x.
+ gsl_matrix *V_g_null = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *V_e_null = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *B_null = gsl_matrix_alloc(d_size, c_size + 1);
+ gsl_matrix *se_B_null1 = gsl_matrix_alloc(d_size, c_size - 1);
+ gsl_matrix *se_B_null2 = gsl_matrix_alloc(d_size, c_size);
+
+ gsl_matrix_view X_sub1 = gsl_matrix_submatrix(X, 0, 0, c_size - 1, n_size);
+ gsl_matrix_view B_sub1 = gsl_matrix_submatrix(B, 0, 0, d_size, c_size - 1);
+ gsl_matrix_view xHi_all_sub1 = gsl_matrix_submatrix(
+ xHi_all, 0, 0, d_size * (c_size - 1), d_size * n_size);
+
+ gsl_matrix_view X_sub2 = gsl_matrix_submatrix(X, 0, 0, c_size, n_size);
+ gsl_matrix_view B_sub2 = gsl_matrix_submatrix(B, 0, 0, d_size, c_size);
+ gsl_matrix_view xHi_all_sub2 =
+ gsl_matrix_submatrix(xHi_all, 0, 0, d_size * c_size, d_size * n_size);
+
+ gsl_matrix_transpose_memcpy(Y, UtY);
+
+ gsl_matrix_view X_sub0 = gsl_matrix_submatrix(X, 0, 0, c_size - 2, n_size);
+ gsl_matrix_transpose_memcpy(&X_sub0.matrix, UtW);
+ gsl_vector_view X_row0 = gsl_matrix_row(X, c_size - 2);
+ gsl_blas_dgemv(CblasTrans, 1.0, U, env, 0.0, &X_row0.vector);
+
+ gsl_vector_view X_row1 = gsl_matrix_row(X, c_size - 1);
+ gsl_vector_set_zero(&X_row1.vector);
+ gsl_vector_view X_row2 = gsl_matrix_row(X, c_size);
+ gsl_vector_set_zero(&X_row2.vector);
+
+ gsl_vector_view B_col1 = gsl_matrix_column(B, c_size - 1);
+ gsl_vector_set_zero(&B_col1.vector);
+ gsl_vector_view B_col2 = gsl_matrix_column(B, c_size);
+ gsl_vector_set_zero(&B_col2.vector);
+
+ MphInitial(em_iter, em_prec, nr_iter, nr_prec, eval, &X_sub1.matrix, Y, l_min,
+ l_max, n_region, V_g, V_e, &B_sub1.matrix);
+ logl_H0 = MphEM('R', em_iter, em_prec, eval, &X_sub1.matrix, Y, U_hat, E_hat,
+ OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU, UltVehiE, V_g,
+ V_e, &B_sub1.matrix);
+ logl_H0 = MphNR('R', nr_iter, nr_prec, eval, &X_sub1.matrix, Y, Hi_all,
+ &xHi_all_sub1.matrix, Hiy_all, V_g, V_e, Hessian, crt_a,
+ crt_b, crt_c);
+ MphCalcBeta(eval, &X_sub1.matrix, Y, V_g, V_e, UltVehiY, &B_sub1.matrix,
+ se_B_null1);
+
+ c = 0;
+ Vg_remle_null.clear();
+ Ve_remle_null.clear();
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = i; j < d_size; j++) {
+ Vg_remle_null.push_back(gsl_matrix_get(V_g, i, j));
+ Ve_remle_null.push_back(gsl_matrix_get(V_e, i, j));
+ VVg_remle_null.push_back(gsl_matrix_get(Hessian, c, c));
+ VVe_remle_null.push_back(gsl_matrix_get(Hessian, c + v_size, c + v_size));
+ c++;
+ }
+ }
+ beta_remle_null.clear();
+ se_beta_remle_null.clear();
+ for (size_t i = 0; i < se_B_null1->size1; i++) {
+ for (size_t j = 0; j < se_B_null1->size2; j++) {
+ beta_remle_null.push_back(gsl_matrix_get(B, i, j));
+ se_beta_remle_null.push_back(gsl_matrix_get(se_B_null1, i, j));
+ }
+ }
+ logl_remle_H0 = logl_H0;
+
+ cout.setf(std::ios_base::fixed, std::ios_base::floatfield);
+ cout.precision(4);
+
+ cout << "REMLE estimate for Vg in the null model: " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ cout << gsl_matrix_get(V_g, i, j) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "se(Vg): " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ c = GetIndex(i, j, d_size);
+ cout << sqrt(gsl_matrix_get(Hessian, c, c)) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "REMLE estimate for Ve in the null model: " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ cout << gsl_matrix_get(V_e, i, j) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "se(Ve): " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ c = GetIndex(i, j, d_size);
+ cout << sqrt(gsl_matrix_get(Hessian, c + v_size, c + v_size)) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "REMLE likelihood = " << logl_H0 << endl;
+
+ logl_H0 = MphEM('L', em_iter, em_prec, eval, &X_sub1.matrix, Y, U_hat, E_hat,
+ OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU, UltVehiE, V_g,
+ V_e, &B_sub1.matrix);
+ logl_H0 = MphNR('L', nr_iter, nr_prec, eval, &X_sub1.matrix, Y, Hi_all,
+ &xHi_all_sub1.matrix, Hiy_all, V_g, V_e, Hessian, crt_a,
+ crt_b, crt_c);
+ MphCalcBeta(eval, &X_sub1.matrix, Y, V_g, V_e, UltVehiY, &B_sub1.matrix,
+ se_B_null1);
+
+ c = 0;
+ Vg_mle_null.clear();
+ Ve_mle_null.clear();
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = i; j < d_size; j++) {
+ Vg_mle_null.push_back(gsl_matrix_get(V_g, i, j));
+ Ve_mle_null.push_back(gsl_matrix_get(V_e, i, j));
+ VVg_mle_null.push_back(gsl_matrix_get(Hessian, c, c));
+ VVe_mle_null.push_back(gsl_matrix_get(Hessian, c + v_size, c + v_size));
+ c++;
+ }
+ }
+ beta_mle_null.clear();
+ se_beta_mle_null.clear();
+ for (size_t i = 0; i < se_B_null1->size1; i++) {
+ for (size_t j = 0; j < se_B_null1->size2; j++) {
+ beta_mle_null.push_back(gsl_matrix_get(B, i, j));
+ se_beta_mle_null.push_back(gsl_matrix_get(se_B_null1, i, j));
+ }
+ }
+ logl_mle_H0 = logl_H0;
+
+ cout << "MLE estimate for Vg in the null model: " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ cout << gsl_matrix_get(V_g, i, j) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "se(Vg): " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ c = GetIndex(i, j, d_size);
+ cout << sqrt(gsl_matrix_get(Hessian, c, c)) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "MLE estimate for Ve in the null model: " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ cout << gsl_matrix_get(V_e, i, j) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "se(Ve): " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ c = GetIndex(i, j, d_size);
+ cout << sqrt(gsl_matrix_get(Hessian, c + v_size, c + v_size)) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "MLE likelihood = " << logl_H0 << endl;
+
+ vector<double> v_beta, v_Vg, v_Ve, v_Vbeta;
+ for (size_t i = 0; i < d_size; i++) {
+ v_beta.push_back(0.0);
+ }
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = i; j < d_size; j++) {
+ v_Vg.push_back(0.0);
+ v_Ve.push_back(0.0);
+ v_Vbeta.push_back(0.0);
+ }
+ }
+
+ gsl_matrix_memcpy(V_g_null, V_g);
+ gsl_matrix_memcpy(V_e_null, V_e);
+ gsl_matrix_memcpy(B_null, B);
+
+ // Start reading genotypes and analyze.
+ for (size_t t = 0; t < indicator_snp.size(); ++t) {
+ !safeGetline(infile, line).eof();
+ if (t % d_pace == 0 || t == (ns_total - 1)) {
+ ProgressBar("Reading SNPs ", t, ns_total - 1);
+ }
+ if (indicator_snp[t] == 0) {
+ continue;
+ }
+
+ ch_ptr = strtok((char *)line.c_str(), " , \t");
+ ch_ptr = strtok(NULL, " , \t");
+ ch_ptr = strtok(NULL, " , \t");
+
+ x_mean = 0.0;
+ c_phen = 0;
+ n_miss = 0;
+ gsl_vector_set_zero(x_miss);
+ for (size_t i = 0; i < ni_total; ++i) {
+ ch_ptr = strtok(NULL, " , \t");
+ if (indicator_idv[i] == 0) {
+ continue;
+ }
+
+ if (strcmp(ch_ptr, "NA") == 0) {
+ gsl_vector_set(x_miss, c_phen, 0.0);
+ n_miss++;
+ } else {
+ geno = atof(ch_ptr);
+
+ gsl_vector_set(x, c_phen, geno);
+ gsl_vector_set(x_miss, c_phen, 1.0);
+ x_mean += geno;
+ }
+ c_phen++;
+ }
+
+ x_mean /= (double)(ni_test - n_miss);
+
+ for (size_t i = 0; i < ni_test; ++i) {
+ if (gsl_vector_get(x_miss, i) == 0) {
+ gsl_vector_set(x, i, x_mean);
+ }
+ geno = gsl_vector_get(x, i);
+ if (x_mean > 1) {
+ gsl_vector_set(x, i, 2 - geno);
+ }
+ }
+
+ // Calculate statistics.
+ time_start = clock();
+ gsl_blas_dgemv(CblasTrans, 1.0, U, x, 0.0, &X_row1.vector);
+ gsl_vector_mul(x, env);
+ gsl_blas_dgemv(CblasTrans, 1.0, U, x, 0.0, &X_row2.vector);
+ time_UtX += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
+
+ // initial values
+ gsl_matrix_memcpy(V_g, V_g_null);
+ gsl_matrix_memcpy(V_e, V_e_null);
+ gsl_matrix_memcpy(B, B_null);
+
+ if (a_mode == 2 || a_mode == 3 || a_mode == 4) {
+ if (a_mode == 3 || a_mode == 4) {
+ logl_H0 = MphEM('R', em_iter / 10, em_prec * 10, eval, &X_sub2.matrix,
+ Y, U_hat, E_hat, OmegaU, OmegaE, UltVehiY, UltVehiBX,
+ UltVehiU, UltVehiE, V_g, V_e, &B_sub2.matrix);
+ logl_H0 = MphNR('R', nr_iter / 10, nr_prec * 10, eval, &X_sub2.matrix,
+ Y, Hi_all, &xHi_all_sub2.matrix, Hiy_all, V_g, V_e,
+ Hessian, crt_a, crt_b, crt_c);
+ MphCalcBeta(eval, &X_sub2.matrix, Y, V_g, V_e, UltVehiY, &B_sub2.matrix,
+ se_B_null2);
+ }
+
+ if (a_mode == 2 || a_mode == 4) {
+ logl_H0 = MphEM('L', em_iter / 10, em_prec * 10, eval, &X_sub2.matrix,
+ Y, U_hat, E_hat, OmegaU, OmegaE, UltVehiY, UltVehiBX,
+ UltVehiU, UltVehiE, V_g, V_e, &B_sub2.matrix);
+ logl_H0 = MphNR('L', nr_iter / 10, nr_prec * 10, eval, &X_sub2.matrix,
+ Y, Hi_all, &xHi_all_sub2.matrix, Hiy_all, V_g, V_e,
+ Hessian, crt_a, crt_b, crt_c);
+ MphCalcBeta(eval, &X_sub2.matrix, Y, V_g, V_e, UltVehiY, &B_sub2.matrix,
+ se_B_null2);
+ }
+ }
+
+ time_start = clock();
+
+ // 3 is before 1.
+ if (a_mode == 3 || a_mode == 4) {
+ p_score = MphCalcP(eval, &X_row2.vector, &X_sub2.matrix, Y, V_g_null,
+ V_e_null, UltVehiY, beta, Vbeta);
+ if (p_score < p_nr && crt == 1) {
+ logl_H1 = MphNR('R', 1, nr_prec * 10, eval, X, Y, Hi_all, xHi_all,
+ Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, crt_c);
+ p_score = PCRT(3, d_size, p_score, crt_a, crt_b, crt_c);
+ }
+ }
+
+ if (a_mode == 2 || a_mode == 4) {
+ logl_H1 = MphEM('L', em_iter / 10, em_prec * 10, eval, X, Y, U_hat, E_hat,
+ OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU, UltVehiE,
+ V_g, V_e, B);
+
+ // Calculate beta and Vbeta.
+ p_lrt = MphCalcP(eval, &X_row2.vector, &X_sub2.matrix, Y, V_g, V_e,
+ UltVehiY, beta, Vbeta);
+ p_lrt = gsl_cdf_chisq_Q(2.0 * (logl_H1 - logl_H0), (double)d_size);
+
+ if (p_lrt < p_nr) {
+ logl_H1 =
+ MphNR('L', nr_iter / 10, nr_prec * 10, eval, X, Y, Hi_all, xHi_all,
+ Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, crt_c);
+
+ // Calculate beta and Vbeta.
+ p_lrt = MphCalcP(eval, &X_row2.vector, &X_sub2.matrix, Y, V_g, V_e,
+ UltVehiY, beta, Vbeta);
+ p_lrt = gsl_cdf_chisq_Q(2.0 * (logl_H1 - logl_H0), (double)d_size);
+
+ if (crt == 1) {
+ p_lrt = PCRT(2, d_size, p_lrt, crt_a, crt_b, crt_c);
+ }
+ }
+ }
+
+ if (a_mode == 1 || a_mode == 4) {
+ logl_H1 = MphEM('R', em_iter / 10, em_prec * 10, eval, X, Y, U_hat, E_hat,
+ OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU, UltVehiE,
+ V_g, V_e, B);
+ p_wald = MphCalcP(eval, &X_row2.vector, &X_sub2.matrix, Y, V_g, V_e,
+ UltVehiY, beta, Vbeta);
+
+ if (p_wald < p_nr) {
+ logl_H1 =
+ MphNR('R', nr_iter / 10, nr_prec * 10, eval, X, Y, Hi_all, xHi_all,
+ Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, crt_c);
+ p_wald = MphCalcP(eval, &X_row2.vector, &X_sub2.matrix, Y, V_g, V_e,
+ UltVehiY, beta, Vbeta);
+
+ if (crt == 1) {
+ p_wald = PCRT(1, d_size, p_wald, crt_a, crt_b, crt_c);
+ }
+ }
+ }
+
+ if (x_mean > 1) {
+ gsl_vector_scale(beta, -1.0);
+ }
+
+ time_opt += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
+
+ // Store summary data.
+ for (size_t i = 0; i < d_size; i++) {
+ v_beta[i] = gsl_vector_get(beta, i);
+ }
+
+ c = 0;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = i; j < d_size; j++) {
+ v_Vg[c] = gsl_matrix_get(V_g, i, j);
+ v_Ve[c] = gsl_matrix_get(V_e, i, j);
+ v_Vbeta[c] = gsl_matrix_get(Vbeta, i, j);
+ c++;
+ }
+ }
+
+ MPHSUMSTAT SNPs = {v_beta, p_wald, p_lrt, p_score, v_Vg, v_Ve, v_Vbeta};
+ sumStat.push_back(SNPs);
+ }
+ cout << endl;
+
+ infile.close();
+ infile.clear();
+
+ gsl_matrix_free(U_hat);
+ gsl_matrix_free(E_hat);
+ gsl_matrix_free(OmegaU);
+ gsl_matrix_free(OmegaE);
+ gsl_matrix_free(UltVehiY);
+ gsl_matrix_free(UltVehiBX);
+ gsl_matrix_free(UltVehiU);
+ gsl_matrix_free(UltVehiE);
+
+ gsl_matrix_free(Hi_all);
+ gsl_matrix_free(Hiy_all);
+ gsl_matrix_free(xHi_all);
+ gsl_matrix_free(Hessian);
+
+ gsl_vector_free(x);
+ gsl_vector_free(x_miss);
+
+ gsl_matrix_free(Y);
+ gsl_matrix_free(X);
+ gsl_matrix_free(V_g);
+ gsl_matrix_free(V_e);
+ gsl_matrix_free(B);
+ gsl_vector_free(beta);
+ gsl_matrix_free(Vbeta);
+
+ gsl_matrix_free(V_g_null);
+ gsl_matrix_free(V_e_null);
+ gsl_matrix_free(B_null);
+ gsl_matrix_free(se_B_null1);
+ gsl_matrix_free(se_B_null2);
+
+ return;
}
-void MVLMM::AnalyzePlinkGXE (const gsl_matrix *U, const gsl_vector *eval,
- const gsl_matrix *UtW, const gsl_matrix *UtY,
- const gsl_vector *env) {
- string file_bed=file_bfile+".bed";
- ifstream infile (file_bed.c_str(), ios::binary);
- if (!infile) {
- cout<<"error reading bed file:"<<file_bed<<endl;
- return;
- }
-
- clock_t time_start=clock();
- time_UtX=0; time_opt=0;
-
- char ch[1];
- bitset<8> b;
-
- double logl_H0=0.0, logl_H1=0.0, p_wald=0, p_lrt=0, p_score=0;
- double crt_a, crt_b, crt_c;
- int n_bit, n_miss, ci_total, ci_test;
- double geno, x_mean;
- size_t c=0;
- size_t n_size=UtY->size1, d_size=UtY->size2, c_size=UtW->size2+2;
- size_t dc_size=d_size*(c_size+1), v_size=d_size*(d_size+1)/2;
-
- // Large matrices for EM.
- gsl_matrix *U_hat=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *E_hat=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *OmegaU=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *OmegaE=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *UltVehiY=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *UltVehiBX=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *UltVehiU=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *UltVehiE=gsl_matrix_alloc (d_size, n_size);
-
- // Large matrices for NR.
- // Each dxd block is H_k^{-1}.
- gsl_matrix *Hi_all=gsl_matrix_alloc (d_size, d_size*n_size);
-
- // Each column is H_k^{-1}y_k
- gsl_matrix *Hiy_all=gsl_matrix_alloc (d_size, n_size);
-
- // Each dcxdc block is x_k\otimes H_k^{-1}.
- gsl_matrix *xHi_all=gsl_matrix_alloc (dc_size, d_size*n_size);
- gsl_matrix *Hessian=gsl_matrix_alloc (v_size*2, v_size*2);
-
- gsl_vector *x=gsl_vector_alloc (n_size);
-
- gsl_matrix *Y=gsl_matrix_alloc (d_size, n_size);
- gsl_matrix *X=gsl_matrix_alloc (c_size+1, n_size);
- gsl_matrix *V_g=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *V_e=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *B=gsl_matrix_alloc (d_size, c_size+1);
- gsl_vector *beta=gsl_vector_alloc (d_size);
- gsl_matrix *Vbeta=gsl_matrix_alloc (d_size, d_size);
-
- // Null estimates for initial values.
- gsl_matrix *V_g_null=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *V_e_null=gsl_matrix_alloc (d_size, d_size);
- gsl_matrix *B_null=gsl_matrix_alloc (d_size, c_size+1);
- gsl_matrix *se_B_null1=gsl_matrix_alloc (d_size, c_size-1);
- gsl_matrix *se_B_null2=gsl_matrix_alloc (d_size, c_size);
-
- gsl_matrix_view X_sub1=gsl_matrix_submatrix(X,0,0,c_size-1,n_size);
- gsl_matrix_view B_sub1=gsl_matrix_submatrix(B,0,0,d_size,c_size-1);
- gsl_matrix_view xHi_all_sub1=
- gsl_matrix_submatrix(xHi_all,0,0,d_size*(c_size-1),d_size*n_size);
-
- gsl_matrix_view X_sub2=gsl_matrix_submatrix (X, 0, 0, c_size, n_size);
- gsl_matrix_view B_sub2=gsl_matrix_submatrix (B, 0, 0, d_size, c_size);
- gsl_matrix_view xHi_all_sub2=
- gsl_matrix_submatrix (xHi_all, 0, 0, d_size*c_size, d_size*n_size);
-
- gsl_matrix_transpose_memcpy (Y, UtY);
-
- gsl_matrix_view X_sub0=gsl_matrix_submatrix(X,0,0,c_size-2,n_size);
- gsl_matrix_transpose_memcpy (&X_sub0.matrix, UtW);
- gsl_vector_view X_row0=gsl_matrix_row(X, c_size-2);
- gsl_blas_dgemv (CblasTrans, 1.0, U, env, 0.0, &X_row0.vector);
-
- gsl_vector_view X_row1=gsl_matrix_row(X, c_size-1);
- gsl_vector_set_zero(&X_row1.vector);
- gsl_vector_view X_row2=gsl_matrix_row(X, c_size);
- gsl_vector_set_zero(&X_row2.vector);
-
- gsl_vector_view B_col1=gsl_matrix_column(B, c_size-1);
- gsl_vector_set_zero(&B_col1.vector);
- gsl_vector_view B_col2=gsl_matrix_column(B, c_size);
- gsl_vector_set_zero(&B_col2.vector);
-
- MphInitial(em_iter, em_prec, nr_iter, nr_prec, eval, &X_sub1.matrix,
- Y, l_min, l_max, n_region, V_g, V_e, &B_sub1.matrix);
-
- logl_H0=MphEM ('R', em_iter, em_prec, eval, &X_sub1.matrix, Y, U_hat,
- E_hat, OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU,
- UltVehiE, V_g, V_e, &B_sub1.matrix);
- logl_H0=MphNR ('R', nr_iter, nr_prec, eval, &X_sub1.matrix, Y,
- Hi_all, &xHi_all_sub1.matrix, Hiy_all, V_g, V_e,
- Hessian, crt_a, crt_b, crt_c);
- MphCalcBeta (eval, &X_sub1.matrix, Y, V_g, V_e, UltVehiY,
- &B_sub1.matrix, se_B_null1);
-
- c=0;
- Vg_remle_null.clear();
- Ve_remle_null.clear();
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=i; j<d_size; j++) {
- Vg_remle_null.push_back(gsl_matrix_get (V_g, i, j) );
- Ve_remle_null.push_back(gsl_matrix_get (V_e, i, j) );
- VVg_remle_null.push_back(gsl_matrix_get (Hessian, c, c) );
- VVe_remle_null.push_back(gsl_matrix_get(Hessian,c+v_size,
- c+v_size));
- c++;
- }
- }
- beta_remle_null.clear();
- se_beta_remle_null.clear();
- for (size_t i=0; i<se_B_null1->size1; i++) {
- for (size_t j=0; j<se_B_null1->size2; j++) {
- beta_remle_null.push_back(gsl_matrix_get(B, i, j) );
- se_beta_remle_null.push_back(gsl_matrix_get(se_B_null1, i, j) );
- }
- }
- logl_remle_H0=logl_H0;
-
- cout.setf(std::ios_base::fixed, std::ios_base::floatfield);
- cout.precision(4);
- cout<<"REMLE estimate for Vg in the null model: "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- cout<<gsl_matrix_get(V_g, i, j)<<"\t";
- }
- cout<<endl;
- }
- cout<<"se(Vg): "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- c=GetIndex(i, j, d_size);
- cout<<sqrt(gsl_matrix_get(Hessian, c, c))<<"\t";
- }
- cout<<endl;
- }
- cout<<"REMLE estimate for Ve in the null model: "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- cout<<gsl_matrix_get(V_e, i, j)<<"\t";
- }
- cout<<endl;
- }
- cout<<"se(Ve): "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- c=GetIndex(i, j, d_size);
- cout<<sqrt(gsl_matrix_get(Hessian, c+v_size, c+v_size))<<"\t";
- }
- cout<<endl;
- }
- cout<<"REMLE likelihood = "<<logl_H0<<endl;
-
- logl_H0=MphEM ('L', em_iter, em_prec, eval, &X_sub1.matrix, Y,
- U_hat, E_hat, OmegaU, OmegaE, UltVehiY, UltVehiBX,
- UltVehiU, UltVehiE, V_g, V_e, &B_sub1.matrix);
- logl_H0=MphNR ('L', nr_iter, nr_prec, eval, &X_sub1.matrix, Y,
- Hi_all, &xHi_all_sub1.matrix, Hiy_all, V_g, V_e,
- Hessian, crt_a, crt_b, crt_c);
- MphCalcBeta (eval, &X_sub1.matrix, Y, V_g, V_e, UltVehiY,
- &B_sub1.matrix, se_B_null1);
-
- c=0;
- Vg_mle_null.clear();
- Ve_mle_null.clear();
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=i; j<d_size; j++) {
- Vg_mle_null.push_back(gsl_matrix_get (V_g, i, j) );
- Ve_mle_null.push_back(gsl_matrix_get (V_e, i, j) );
- VVg_mle_null.push_back(gsl_matrix_get (Hessian, c, c) );
- VVe_mle_null.push_back(gsl_matrix_get(Hessian,c+v_size,c+v_size));
- c++;
- }
- }
- beta_mle_null.clear();
- se_beta_mle_null.clear();
- for (size_t i=0; i<se_B_null1->size1; i++) {
- for (size_t j=0; j<se_B_null1->size2; j++) {
- beta_mle_null.push_back(gsl_matrix_get(B, i, j) );
- se_beta_mle_null.push_back(gsl_matrix_get(se_B_null1, i, j) );
- }
- }
- logl_mle_H0=logl_H0;
-
- cout<<"MLE estimate for Vg in the null model: "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- cout<<gsl_matrix_get(V_g, i, j)<<"\t";
- }
- cout<<endl;
- }
- cout<<"se(Vg): "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- c=GetIndex(i, j, d_size);
- cout<<sqrt(gsl_matrix_get(Hessian, c, c))<<"\t";
- }
- cout<<endl;
- }
- cout<<"MLE estimate for Ve in the null model: "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- cout<<gsl_matrix_get(V_e, i, j)<<"\t";
- }
- cout<<endl;
- }
- cout<<"se(Ve): "<<endl;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=0; j<=i; j++) {
- c=GetIndex(i, j, d_size);
- cout<<sqrt(gsl_matrix_get(Hessian, c+v_size, c+v_size))<<"\t";
- }
- cout<<endl;
- }
- cout<<"MLE likelihood = "<<logl_H0<<endl;
-
- vector<double> v_beta, v_Vg, v_Ve, v_Vbeta;
- for (size_t i=0; i<d_size; i++) {
- v_beta.push_back(0.0);
- }
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=i; j<d_size; j++) {
- v_Vg.push_back(0.0);
- v_Ve.push_back(0.0);
- v_Vbeta.push_back(0.0);
- }
- }
-
- gsl_matrix_memcpy (V_g_null, V_g);
- gsl_matrix_memcpy (V_e_null, V_e);
- gsl_matrix_memcpy (B_null, B);
-
- // Start reading genotypes and analyze.
- // Calculate n_bit and c, the number of bit for each SNP.
- if (ni_total%4==0) {n_bit=ni_total/4;}
- else {n_bit=ni_total/4+1; }
-
- // Print the first three magic numbers.
- for (int i=0; i<3; ++i) {
- infile.read(ch,1);
- b=ch[0];
- }
-
- for (vector<SNPINFO>::size_type t=0; t<snpInfo.size(); ++t) {
- if (t%d_pace==0 || t==snpInfo.size()-1) {
- ProgressBar ("Reading SNPs ", t, snpInfo.size()-1);
- }
- if (indicator_snp[t]==0) {continue;}
-
- // n_bit, and 3 is the number of magic numbers.
- infile.seekg(t*n_bit+3);
-
- // Read genotypes.
- x_mean=0.0; n_miss=0; ci_total=0; ci_test=0;
- for (int i=0; i<n_bit; ++i) {
- infile.read(ch,1);
- b=ch[0];
-
- // Minor allele homozygous: 2.0; major: 0.0.
- for (size_t j=0; j<4; ++j) {
-
- if ((i==(n_bit-1)) && ci_total==(int)ni_total) {break;}
- if (indicator_idv[ci_total]==0) {ci_total++; continue;}
-
- if (b[2*j]==0) {
- if (b[2*j+1]==0) {gsl_vector_set(x, ci_test, 2); x_mean+=2.0; }
- else {gsl_vector_set(x, ci_test, 1); x_mean+=1.0; }
- }
- else {
- if (b[2*j+1]==1) {gsl_vector_set(x, ci_test, 0); }
- else {gsl_vector_set(x, ci_test, -9); n_miss++; }
- }
-
- ci_total++;
- ci_test++;
- }
- }
-
- x_mean/=(double)(ni_test-n_miss);
-
- for (size_t i=0; i<ni_test; ++i) {
- geno=gsl_vector_get(x,i);
- if (geno==-9) {gsl_vector_set(x, i, x_mean); geno=x_mean;}
- if (x_mean>1) {
- gsl_vector_set(x, i, 2-geno);
- }
- }
-
- // Calculate statistics.
- time_start=clock();
- gsl_blas_dgemv (CblasTrans, 1.0, U, x, 0.0, &X_row1.vector);
- gsl_vector_mul (x, env);
- gsl_blas_dgemv (CblasTrans, 1.0, U, x, 0.0, &X_row2.vector);
- time_UtX+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
-
- // Initial values.
- gsl_matrix_memcpy (V_g, V_g_null);
- gsl_matrix_memcpy (V_e, V_e_null);
- gsl_matrix_memcpy (B, B_null);
-
- if (a_mode==2 || a_mode==3 || a_mode==4) {
- if (a_mode==3 || a_mode==4) {
- logl_H0=MphEM ('R', em_iter/10, em_prec*10, eval,
- &X_sub2.matrix, Y, U_hat, E_hat, OmegaU, OmegaE,
- UltVehiY, UltVehiBX, UltVehiU, UltVehiE, V_g,
- V_e, &B_sub2.matrix);
- logl_H0=MphNR ('R', nr_iter/10, nr_prec*10, eval,
- &X_sub2.matrix, Y, Hi_all, &xHi_all_sub2.matrix,
- Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, crt_c);
- MphCalcBeta (eval, &X_sub2.matrix, Y, V_g, V_e, UltVehiY,
- &B_sub2.matrix, se_B_null2);
- }
-
- if (a_mode==2 || a_mode==4) {
- logl_H0=MphEM ('L', em_iter/10, em_prec*10, eval,
- &X_sub2.matrix, Y, U_hat, E_hat, OmegaU, OmegaE,
- UltVehiY, UltVehiBX, UltVehiU, UltVehiE, V_g,
- V_e, &B_sub2.matrix);
- logl_H0=MphNR ('L', nr_iter/10, nr_prec*10, eval,
- &X_sub2.matrix, Y, Hi_all, &xHi_all_sub2.matrix,
- Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, crt_c);
- MphCalcBeta (eval, &X_sub2.matrix, Y, V_g, V_e, UltVehiY,
- &B_sub2.matrix, se_B_null2);
- }
- }
-
- time_start=clock();
-
- // 3 is before 1.
- if (a_mode==3 || a_mode==4) {
- p_score=MphCalcP (eval, &X_row2.vector, &X_sub2.matrix, Y,
- V_g_null, V_e_null, UltVehiY, beta, Vbeta);
-
- if (p_score<p_nr && crt==1) {
- logl_H1=MphNR ('R', 1, nr_prec*10, eval, X, Y, Hi_all, xHi_all,
- Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, crt_c);
- p_score=PCRT (3, d_size, p_score, crt_a, crt_b, crt_c);
- }
- }
-
- if (a_mode==2 || a_mode==4) {
- logl_H1=MphEM ('L', em_iter/10, em_prec*10, eval, X, Y, U_hat,
- E_hat, OmegaU, OmegaE, UltVehiY, UltVehiBX,
- UltVehiU, UltVehiE, V_g, V_e, B);
-
- // Calculate beta and Vbeta.
- p_lrt=MphCalcP (eval, &X_row2.vector, &X_sub2.matrix, Y, V_g,
- V_e, UltVehiY, beta, Vbeta);
- p_lrt=gsl_cdf_chisq_Q (2.0*(logl_H1-logl_H0), (double)d_size );
-
- if (p_lrt<p_nr) {
- logl_H1=MphNR ('L', nr_iter/10, nr_prec*10, eval, X, Y, Hi_all,
- xHi_all, Hiy_all, V_g, V_e, Hessian, crt_a,
- crt_b, crt_c);
-
- // Calculate beta and Vbeta.
- p_lrt=MphCalcP (eval, &X_row2.vector, &X_sub2.matrix, Y, V_g,
- V_e, UltVehiY, beta, Vbeta);
- p_lrt=gsl_cdf_chisq_Q (2.0*(logl_H1-logl_H0), (double)d_size );
- if (crt==1) {
- p_lrt=PCRT (2, d_size, p_lrt, crt_a, crt_b, crt_c);
- }
- }
- }
-
- if (a_mode==1 || a_mode==4) {
- logl_H1=MphEM ('R', em_iter/10, em_prec*10, eval, X, Y, U_hat,
- E_hat, OmegaU, OmegaE, UltVehiY, UltVehiBX,
- UltVehiU, UltVehiE, V_g, V_e, B);
- p_wald=MphCalcP (eval, &X_row2.vector, &X_sub2.matrix, Y, V_g,
- V_e, UltVehiY, beta, Vbeta);
-
- if (p_wald<p_nr) {
- logl_H1=MphNR ('R', nr_iter/10, nr_prec*10, eval, X, Y, Hi_all,
- xHi_all, Hiy_all, V_g, V_e, Hessian, crt_a,
- crt_b, crt_c);
- p_wald=MphCalcP (eval, &X_row2.vector, &X_sub2.matrix, Y, V_g,
- V_e, UltVehiY, beta, Vbeta);
-
- if (crt==1) {
- p_wald=PCRT (1, d_size, p_wald, crt_a, crt_b, crt_c);
- }
- }
- }
-
- if (x_mean>1) {gsl_vector_scale(beta, -1.0);}
-
- time_opt+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
-
- // Store summary data.
- for (size_t i=0; i<d_size; i++) {
- v_beta[i]=gsl_vector_get (beta, i);
- }
-
- c=0;
- for (size_t i=0; i<d_size; i++) {
- for (size_t j=i; j<d_size; j++) {
- v_Vg[c]=gsl_matrix_get (V_g, i, j);
- v_Ve[c]=gsl_matrix_get (V_e, i, j);
- v_Vbeta[c]=gsl_matrix_get (Vbeta, i, j);
- c++;
- }
- }
-
- MPHSUMSTAT SNPs={v_beta, p_wald, p_lrt, p_score,
- v_Vg, v_Ve, v_Vbeta};
- sumStat.push_back(SNPs);
- }
- cout<<endl;
-
- infile.close();
- infile.clear();
-
- gsl_matrix_free(U_hat);
- gsl_matrix_free(E_hat);
- gsl_matrix_free(OmegaU);
- gsl_matrix_free(OmegaE);
- gsl_matrix_free(UltVehiY);
- gsl_matrix_free(UltVehiBX);
- gsl_matrix_free(UltVehiU);
- gsl_matrix_free(UltVehiE);
-
- gsl_matrix_free(Hi_all);
- gsl_matrix_free(Hiy_all);
- gsl_matrix_free(xHi_all);
- gsl_matrix_free(Hessian);
-
- gsl_vector_free(x);
-
- gsl_matrix_free(Y);
- gsl_matrix_free(X);
- gsl_matrix_free(V_g);
- gsl_matrix_free(V_e);
- gsl_matrix_free(B);
- gsl_vector_free(beta);
- gsl_matrix_free(Vbeta);
-
- gsl_matrix_free(V_g_null);
- gsl_matrix_free(V_e_null);
- gsl_matrix_free(B_null);
- gsl_matrix_free(se_B_null1);
- gsl_matrix_free(se_B_null2);
-
- return;
+void MVLMM::AnalyzePlinkGXE(const gsl_matrix *U, const gsl_vector *eval,
+ const gsl_matrix *UtW, const gsl_matrix *UtY,
+ const gsl_vector *env) {
+ string file_bed = file_bfile + ".bed";
+ ifstream infile(file_bed.c_str(), ios::binary);
+ if (!infile) {
+ cout << "error reading bed file:" << file_bed << endl;
+ return;
+ }
+
+ clock_t time_start = clock();
+ time_UtX = 0;
+ time_opt = 0;
+
+ char ch[1];
+ bitset<8> b;
+
+ double logl_H0 = 0.0, logl_H1 = 0.0, p_wald = 0, p_lrt = 0, p_score = 0;
+ double crt_a, crt_b, crt_c;
+ int n_bit, n_miss, ci_total, ci_test;
+ double geno, x_mean;
+ size_t c = 0;
+ size_t n_size = UtY->size1, d_size = UtY->size2, c_size = UtW->size2 + 2;
+ size_t dc_size = d_size * (c_size + 1), v_size = d_size * (d_size + 1) / 2;
+
+ // Large matrices for EM.
+ gsl_matrix *U_hat = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *E_hat = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *OmegaU = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *OmegaE = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *UltVehiY = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *UltVehiBX = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *UltVehiU = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *UltVehiE = gsl_matrix_alloc(d_size, n_size);
+
+ // Large matrices for NR.
+ // Each dxd block is H_k^{-1}.
+ gsl_matrix *Hi_all = gsl_matrix_alloc(d_size, d_size * n_size);
+
+ // Each column is H_k^{-1}y_k
+ gsl_matrix *Hiy_all = gsl_matrix_alloc(d_size, n_size);
+
+ // Each dcxdc block is x_k\otimes H_k^{-1}.
+ gsl_matrix *xHi_all = gsl_matrix_alloc(dc_size, d_size * n_size);
+ gsl_matrix *Hessian = gsl_matrix_alloc(v_size * 2, v_size * 2);
+
+ gsl_vector *x = gsl_vector_alloc(n_size);
+
+ gsl_matrix *Y = gsl_matrix_alloc(d_size, n_size);
+ gsl_matrix *X = gsl_matrix_alloc(c_size + 1, n_size);
+ gsl_matrix *V_g = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *V_e = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *B = gsl_matrix_alloc(d_size, c_size + 1);
+ gsl_vector *beta = gsl_vector_alloc(d_size);
+ gsl_matrix *Vbeta = gsl_matrix_alloc(d_size, d_size);
+
+ // Null estimates for initial values.
+ gsl_matrix *V_g_null = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *V_e_null = gsl_matrix_alloc(d_size, d_size);
+ gsl_matrix *B_null = gsl_matrix_alloc(d_size, c_size + 1);
+ gsl_matrix *se_B_null1 = gsl_matrix_alloc(d_size, c_size - 1);
+ gsl_matrix *se_B_null2 = gsl_matrix_alloc(d_size, c_size);
+
+ gsl_matrix_view X_sub1 = gsl_matrix_submatrix(X, 0, 0, c_size - 1, n_size);
+ gsl_matrix_view B_sub1 = gsl_matrix_submatrix(B, 0, 0, d_size, c_size - 1);
+ gsl_matrix_view xHi_all_sub1 = gsl_matrix_submatrix(
+ xHi_all, 0, 0, d_size * (c_size - 1), d_size * n_size);
+
+ gsl_matrix_view X_sub2 = gsl_matrix_submatrix(X, 0, 0, c_size, n_size);
+ gsl_matrix_view B_sub2 = gsl_matrix_submatrix(B, 0, 0, d_size, c_size);
+ gsl_matrix_view xHi_all_sub2 =
+ gsl_matrix_submatrix(xHi_all, 0, 0, d_size * c_size, d_size * n_size);
+
+ gsl_matrix_transpose_memcpy(Y, UtY);
+
+ gsl_matrix_view X_sub0 = gsl_matrix_submatrix(X, 0, 0, c_size - 2, n_size);
+ gsl_matrix_transpose_memcpy(&X_sub0.matrix, UtW);
+ gsl_vector_view X_row0 = gsl_matrix_row(X, c_size - 2);
+ gsl_blas_dgemv(CblasTrans, 1.0, U, env, 0.0, &X_row0.vector);
+
+ gsl_vector_view X_row1 = gsl_matrix_row(X, c_size - 1);
+ gsl_vector_set_zero(&X_row1.vector);
+ gsl_vector_view X_row2 = gsl_matrix_row(X, c_size);
+ gsl_vector_set_zero(&X_row2.vector);
+
+ gsl_vector_view B_col1 = gsl_matrix_column(B, c_size - 1);
+ gsl_vector_set_zero(&B_col1.vector);
+ gsl_vector_view B_col2 = gsl_matrix_column(B, c_size);
+ gsl_vector_set_zero(&B_col2.vector);
+
+ MphInitial(em_iter, em_prec, nr_iter, nr_prec, eval, &X_sub1.matrix, Y, l_min,
+ l_max, n_region, V_g, V_e, &B_sub1.matrix);
+
+ logl_H0 = MphEM('R', em_iter, em_prec, eval, &X_sub1.matrix, Y, U_hat, E_hat,
+ OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU, UltVehiE, V_g,
+ V_e, &B_sub1.matrix);
+ logl_H0 = MphNR('R', nr_iter, nr_prec, eval, &X_sub1.matrix, Y, Hi_all,
+ &xHi_all_sub1.matrix, Hiy_all, V_g, V_e, Hessian, crt_a,
+ crt_b, crt_c);
+ MphCalcBeta(eval, &X_sub1.matrix, Y, V_g, V_e, UltVehiY, &B_sub1.matrix,
+ se_B_null1);
+
+ c = 0;
+ Vg_remle_null.clear();
+ Ve_remle_null.clear();
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = i; j < d_size; j++) {
+ Vg_remle_null.push_back(gsl_matrix_get(V_g, i, j));
+ Ve_remle_null.push_back(gsl_matrix_get(V_e, i, j));
+ VVg_remle_null.push_back(gsl_matrix_get(Hessian, c, c));
+ VVe_remle_null.push_back(gsl_matrix_get(Hessian, c + v_size, c + v_size));
+ c++;
+ }
+ }
+ beta_remle_null.clear();
+ se_beta_remle_null.clear();
+ for (size_t i = 0; i < se_B_null1->size1; i++) {
+ for (size_t j = 0; j < se_B_null1->size2; j++) {
+ beta_remle_null.push_back(gsl_matrix_get(B, i, j));
+ se_beta_remle_null.push_back(gsl_matrix_get(se_B_null1, i, j));
+ }
+ }
+ logl_remle_H0 = logl_H0;
+
+ cout.setf(std::ios_base::fixed, std::ios_base::floatfield);
+ cout.precision(4);
+ cout << "REMLE estimate for Vg in the null model: " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ cout << gsl_matrix_get(V_g, i, j) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "se(Vg): " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ c = GetIndex(i, j, d_size);
+ cout << sqrt(gsl_matrix_get(Hessian, c, c)) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "REMLE estimate for Ve in the null model: " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ cout << gsl_matrix_get(V_e, i, j) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "se(Ve): " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ c = GetIndex(i, j, d_size);
+ cout << sqrt(gsl_matrix_get(Hessian, c + v_size, c + v_size)) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "REMLE likelihood = " << logl_H0 << endl;
+
+ logl_H0 = MphEM('L', em_iter, em_prec, eval, &X_sub1.matrix, Y, U_hat, E_hat,
+ OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU, UltVehiE, V_g,
+ V_e, &B_sub1.matrix);
+ logl_H0 = MphNR('L', nr_iter, nr_prec, eval, &X_sub1.matrix, Y, Hi_all,
+ &xHi_all_sub1.matrix, Hiy_all, V_g, V_e, Hessian, crt_a,
+ crt_b, crt_c);
+ MphCalcBeta(eval, &X_sub1.matrix, Y, V_g, V_e, UltVehiY, &B_sub1.matrix,
+ se_B_null1);
+
+ c = 0;
+ Vg_mle_null.clear();
+ Ve_mle_null.clear();
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = i; j < d_size; j++) {
+ Vg_mle_null.push_back(gsl_matrix_get(V_g, i, j));
+ Ve_mle_null.push_back(gsl_matrix_get(V_e, i, j));
+ VVg_mle_null.push_back(gsl_matrix_get(Hessian, c, c));
+ VVe_mle_null.push_back(gsl_matrix_get(Hessian, c + v_size, c + v_size));
+ c++;
+ }
+ }
+ beta_mle_null.clear();
+ se_beta_mle_null.clear();
+ for (size_t i = 0; i < se_B_null1->size1; i++) {
+ for (size_t j = 0; j < se_B_null1->size2; j++) {
+ beta_mle_null.push_back(gsl_matrix_get(B, i, j));
+ se_beta_mle_null.push_back(gsl_matrix_get(se_B_null1, i, j));
+ }
+ }
+ logl_mle_H0 = logl_H0;
+
+ cout << "MLE estimate for Vg in the null model: " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ cout << gsl_matrix_get(V_g, i, j) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "se(Vg): " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ c = GetIndex(i, j, d_size);
+ cout << sqrt(gsl_matrix_get(Hessian, c, c)) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "MLE estimate for Ve in the null model: " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ cout << gsl_matrix_get(V_e, i, j) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "se(Ve): " << endl;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = 0; j <= i; j++) {
+ c = GetIndex(i, j, d_size);
+ cout << sqrt(gsl_matrix_get(Hessian, c + v_size, c + v_size)) << "\t";
+ }
+ cout << endl;
+ }
+ cout << "MLE likelihood = " << logl_H0 << endl;
+
+ vector<double> v_beta, v_Vg, v_Ve, v_Vbeta;
+ for (size_t i = 0; i < d_size; i++) {
+ v_beta.push_back(0.0);
+ }
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = i; j < d_size; j++) {
+ v_Vg.push_back(0.0);
+ v_Ve.push_back(0.0);
+ v_Vbeta.push_back(0.0);
+ }
+ }
+
+ gsl_matrix_memcpy(V_g_null, V_g);
+ gsl_matrix_memcpy(V_e_null, V_e);
+ gsl_matrix_memcpy(B_null, B);
+
+ // Start reading genotypes and analyze.
+ // Calculate n_bit and c, the number of bit for each SNP.
+ if (ni_total % 4 == 0) {
+ n_bit = ni_total / 4;
+ } else {
+ n_bit = ni_total / 4 + 1;
+ }
+
+ // Print the first three magic numbers.
+ for (int i = 0; i < 3; ++i) {
+ infile.read(ch, 1);
+ b = ch[0];
+ }
+
+ for (vector<SNPINFO>::size_type t = 0; t < snpInfo.size(); ++t) {
+ if (t % d_pace == 0 || t == snpInfo.size() - 1) {
+ ProgressBar("Reading SNPs ", t, snpInfo.size() - 1);
+ }
+ if (indicator_snp[t] == 0) {
+ continue;
+ }
+
+ // n_bit, and 3 is the number of magic numbers.
+ infile.seekg(t * n_bit + 3);
+
+ // Read genotypes.
+ x_mean = 0.0;
+ n_miss = 0;
+ ci_total = 0;
+ ci_test = 0;
+ for (int i = 0; i < n_bit; ++i) {
+ infile.read(ch, 1);
+ b = ch[0];
+
+ // Minor allele homozygous: 2.0; major: 0.0.
+ for (size_t j = 0; j < 4; ++j) {
+
+ if ((i == (n_bit - 1)) && ci_total == (int)ni_total) {
+ break;
+ }
+ if (indicator_idv[ci_total] == 0) {
+ ci_total++;
+ continue;
+ }
+
+ if (b[2 * j] == 0) {
+ if (b[2 * j + 1] == 0) {
+ gsl_vector_set(x, ci_test, 2);
+ x_mean += 2.0;
+ } else {
+ gsl_vector_set(x, ci_test, 1);
+ x_mean += 1.0;
+ }
+ } else {
+ if (b[2 * j + 1] == 1) {
+ gsl_vector_set(x, ci_test, 0);
+ } else {
+ gsl_vector_set(x, ci_test, -9);
+ n_miss++;
+ }
+ }
+
+ ci_total++;
+ ci_test++;
+ }
+ }
+
+ x_mean /= (double)(ni_test - n_miss);
+
+ for (size_t i = 0; i < ni_test; ++i) {
+ geno = gsl_vector_get(x, i);
+ if (geno == -9) {
+ gsl_vector_set(x, i, x_mean);
+ geno = x_mean;
+ }
+ if (x_mean > 1) {
+ gsl_vector_set(x, i, 2 - geno);
+ }
+ }
+
+ // Calculate statistics.
+ time_start = clock();
+ gsl_blas_dgemv(CblasTrans, 1.0, U, x, 0.0, &X_row1.vector);
+ gsl_vector_mul(x, env);
+ gsl_blas_dgemv(CblasTrans, 1.0, U, x, 0.0, &X_row2.vector);
+ time_UtX += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
+
+ // Initial values.
+ gsl_matrix_memcpy(V_g, V_g_null);
+ gsl_matrix_memcpy(V_e, V_e_null);
+ gsl_matrix_memcpy(B, B_null);
+
+ if (a_mode == 2 || a_mode == 3 || a_mode == 4) {
+ if (a_mode == 3 || a_mode == 4) {
+ logl_H0 = MphEM('R', em_iter / 10, em_prec * 10, eval, &X_sub2.matrix,
+ Y, U_hat, E_hat, OmegaU, OmegaE, UltVehiY, UltVehiBX,
+ UltVehiU, UltVehiE, V_g, V_e, &B_sub2.matrix);
+ logl_H0 = MphNR('R', nr_iter / 10, nr_prec * 10, eval, &X_sub2.matrix,
+ Y, Hi_all, &xHi_all_sub2.matrix, Hiy_all, V_g, V_e,
+ Hessian, crt_a, crt_b, crt_c);
+ MphCalcBeta(eval, &X_sub2.matrix, Y, V_g, V_e, UltVehiY, &B_sub2.matrix,
+ se_B_null2);
+ }
+
+ if (a_mode == 2 || a_mode == 4) {
+ logl_H0 = MphEM('L', em_iter / 10, em_prec * 10, eval, &X_sub2.matrix,
+ Y, U_hat, E_hat, OmegaU, OmegaE, UltVehiY, UltVehiBX,
+ UltVehiU, UltVehiE, V_g, V_e, &B_sub2.matrix);
+ logl_H0 = MphNR('L', nr_iter / 10, nr_prec * 10, eval, &X_sub2.matrix,
+ Y, Hi_all, &xHi_all_sub2.matrix, Hiy_all, V_g, V_e,
+ Hessian, crt_a, crt_b, crt_c);
+ MphCalcBeta(eval, &X_sub2.matrix, Y, V_g, V_e, UltVehiY, &B_sub2.matrix,
+ se_B_null2);
+ }
+ }
+
+ time_start = clock();
+
+ // 3 is before 1.
+ if (a_mode == 3 || a_mode == 4) {
+ p_score = MphCalcP(eval, &X_row2.vector, &X_sub2.matrix, Y, V_g_null,
+ V_e_null, UltVehiY, beta, Vbeta);
+
+ if (p_score < p_nr && crt == 1) {
+ logl_H1 = MphNR('R', 1, nr_prec * 10, eval, X, Y, Hi_all, xHi_all,
+ Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, crt_c);
+ p_score = PCRT(3, d_size, p_score, crt_a, crt_b, crt_c);
+ }
+ }
+
+ if (a_mode == 2 || a_mode == 4) {
+ logl_H1 = MphEM('L', em_iter / 10, em_prec * 10, eval, X, Y, U_hat, E_hat,
+ OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU, UltVehiE,
+ V_g, V_e, B);
+
+ // Calculate beta and Vbeta.
+ p_lrt = MphCalcP(eval, &X_row2.vector, &X_sub2.matrix, Y, V_g, V_e,
+ UltVehiY, beta, Vbeta);
+ p_lrt = gsl_cdf_chisq_Q(2.0 * (logl_H1 - logl_H0), (double)d_size);
+
+ if (p_lrt < p_nr) {
+ logl_H1 =
+ MphNR('L', nr_iter / 10, nr_prec * 10, eval, X, Y, Hi_all, xHi_all,
+ Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, crt_c);
+
+ // Calculate beta and Vbeta.
+ p_lrt = MphCalcP(eval, &X_row2.vector, &X_sub2.matrix, Y, V_g, V_e,
+ UltVehiY, beta, Vbeta);
+ p_lrt = gsl_cdf_chisq_Q(2.0 * (logl_H1 - logl_H0), (double)d_size);
+ if (crt == 1) {
+ p_lrt = PCRT(2, d_size, p_lrt, crt_a, crt_b, crt_c);
+ }
+ }
+ }
+
+ if (a_mode == 1 || a_mode == 4) {
+ logl_H1 = MphEM('R', em_iter / 10, em_prec * 10, eval, X, Y, U_hat, E_hat,
+ OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU, UltVehiE,
+ V_g, V_e, B);
+ p_wald = MphCalcP(eval, &X_row2.vector, &X_sub2.matrix, Y, V_g, V_e,
+ UltVehiY, beta, Vbeta);
+
+ if (p_wald < p_nr) {
+ logl_H1 =
+ MphNR('R', nr_iter / 10, nr_prec * 10, eval, X, Y, Hi_all, xHi_all,
+ Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, crt_c);
+ p_wald = MphCalcP(eval, &X_row2.vector, &X_sub2.matrix, Y, V_g, V_e,
+ UltVehiY, beta, Vbeta);
+
+ if (crt == 1) {
+ p_wald = PCRT(1, d_size, p_wald, crt_a, crt_b, crt_c);
+ }
+ }
+ }
+
+ if (x_mean > 1) {
+ gsl_vector_scale(beta, -1.0);
+ }
+
+ time_opt += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
+
+ // Store summary data.
+ for (size_t i = 0; i < d_size; i++) {
+ v_beta[i] = gsl_vector_get(beta, i);
+ }
+
+ c = 0;
+ for (size_t i = 0; i < d_size; i++) {
+ for (size_t j = i; j < d_size; j++) {
+ v_Vg[c] = gsl_matrix_get(V_g, i, j);
+ v_Ve[c] = gsl_matrix_get(V_e, i, j);
+ v_Vbeta[c] = gsl_matrix_get(Vbeta, i, j);
+ c++;
+ }
+ }
+
+ MPHSUMSTAT SNPs = {v_beta, p_wald, p_lrt, p_score, v_Vg, v_Ve, v_Vbeta};
+ sumStat.push_back(SNPs);
+ }
+ cout << endl;
+
+ infile.close();
+ infile.clear();
+
+ gsl_matrix_free(U_hat);
+ gsl_matrix_free(E_hat);
+ gsl_matrix_free(OmegaU);
+ gsl_matrix_free(OmegaE);
+ gsl_matrix_free(UltVehiY);
+ gsl_matrix_free(UltVehiBX);
+ gsl_matrix_free(UltVehiU);
+ gsl_matrix_free(UltVehiE);
+
+ gsl_matrix_free(Hi_all);
+ gsl_matrix_free(Hiy_all);
+ gsl_matrix_free(xHi_all);
+ gsl_matrix_free(Hessian);
+
+ gsl_vector_free(x);
+
+ gsl_matrix_free(Y);
+ gsl_matrix_free(X);
+ gsl_matrix_free(V_g);
+ gsl_matrix_free(V_e);
+ gsl_matrix_free(B);
+ gsl_vector_free(beta);
+ gsl_matrix_free(Vbeta);
+
+ gsl_matrix_free(V_g_null);
+ gsl_matrix_free(V_e_null);
+ gsl_matrix_free(B_null);
+ gsl_matrix_free(se_B_null1);
+ gsl_matrix_free(se_B_null2);
+
+ return;
}