aboutsummaryrefslogtreecommitdiff
path: root/src/logistic.h
diff options
context:
space:
mode:
authorPeter Carbonetto2017-05-04 14:43:12 -0500
committerPeter Carbonetto2017-05-04 14:43:12 -0500
commit0dd4e05fc8babc1517de1d7981a99ad0a5241a5e (patch)
tree759b47320ed404951ecb745e228c1fcc0a2200d5 /src/logistic.h
parentc18588b6d00650b9ce742229fdf1eca7133f58fc (diff)
downloadpangemma-0dd4e05fc8babc1517de1d7981a99ad0a5241a5e.tar.gz
Added new files shared by Xiang via email on May 4, 2017.
Diffstat (limited to 'src/logistic.h')
-rw-r--r--src/logistic.h70
1 files changed, 70 insertions, 0 deletions
diff --git a/src/logistic.h b/src/logistic.h
new file mode 100644
index 0000000..a68ee09
--- /dev/null
+++ b/src/logistic.h
@@ -0,0 +1,70 @@
+#ifndef LOGISTIC_H_ /* Include guard */
+#define LOGISTIC_H_
+
+/* Mixed interface */
+void logistic_mixed_pred(gsl_vector *beta // Vector of parameters length = 1 + Sum_k(C_k - 1) + Kc
+ ,gsl_matrix_int *X //Matrix Nobs x K
+ ,gsl_vector_int *nlev // Vector with number categories
+ ,gsl_matrix *Xc // continuous covariates Matrix Nobs x Kc
+ ,gsl_vector *yhat //Vector of prob. predicted by the logistic
+ );
+
+int logistic_mixed_fit(gsl_vector *beta // Vector of parameters length = 1 + Sum_k(C_k - 1) + Kc
+ ,gsl_matrix_int *X //Matrix Nobs x K
+ ,gsl_vector_int *nlev // Vector with number categories
+ ,gsl_matrix *Xc // continuous covariates Matrix Nobs x Kc
+ ,gsl_vector *y //Vector of prob. to predict
+ ,double lambdaL1 // Regularization L1 0.0 if not used
+ ,double lambdaL2); // Regularization L2 0.0 if not used
+
+double fLogit_mixed(gsl_vector *beta
+ ,gsl_matrix_int *X
+ ,gsl_vector_int *nlev
+ ,gsl_matrix *Xc // continuous covariates Matrix Nobs x Kc
+ ,gsl_vector *y
+ ,double lambdaL1
+ ,double lambdaL2);
+
+
+/* Categorical only interface */
+void logistic_cat_pred(gsl_vector *beta // Vector of parameters length = 1 + Sum_k(C_k - 1) + Kc
+ ,gsl_matrix_int *X //Matrix Nobs x K
+ ,gsl_vector_int *nlev // Vector with number categories
+ ,gsl_vector *yhat //Vector of prob. predicted by the logistic
+ );
+
+int logistic_cat_fit(gsl_vector *beta // Vector of parameters length = 1 + Sum_k(C_k - 1) + Kc
+ ,gsl_matrix_int *X //Matrix Nobs x K
+ ,gsl_vector_int *nlev // Vector with number categories
+ ,gsl_vector *y //Vector of prob. to predict
+ ,double lambdaL1 // Regularization L1 0.0 if not used
+ ,double lambdaL2); // Regularization L2 0.0 if not used
+
+double fLogit_cat(gsl_vector *beta
+ ,gsl_matrix_int *X
+ ,gsl_vector_int *nlev
+ ,gsl_vector *y
+ ,double lambdaL1
+ ,double lambdaL2);
+
+
+/* Continuous only interface */
+void logistic_cont_pred(gsl_vector *beta // Vector of parameters length = 1 + Sum_k(C_k - 1) + Kc
+ ,gsl_matrix *Xc // continuous covariates Matrix Nobs x Kc
+ ,gsl_vector *yhat //Vector of prob. predicted by the logistic
+ );
+
+int logistic_cont_fit(gsl_vector *beta // Vector of parameters length = 1 + Sum_k(C_k - 1) + Kc
+ ,gsl_matrix *Xc // continuous covariates Matrix Nobs x Kc
+ ,gsl_vector *y //Vector of prob. to predict
+ ,double lambdaL1 // Regularization L1 0.0 if not used
+ ,double lambdaL2); // Regularization L2 0.0 if not used
+
+double fLogit_cont(gsl_vector *beta
+ ,gsl_matrix *Xc // continuous covariates Matrix Nobs x Kc
+ ,gsl_vector *y
+ ,double lambdaL1
+ ,double lambdaL2);
+
+
+#endif // LOGISTIC_H_