diff options
author | xiangzhou | 2014-09-22 11:06:02 -0400 |
---|---|---|
committer | xiangzhou | 2014-09-22 11:06:02 -0400 |
commit | 7762722f264adc402ea3b0f21923b18f072253ba (patch) | |
tree | 879ed22943d424b52bd04b4ee6fbdf51616dc9a9 /src/lmm.cpp | |
parent | 44faf98d2c6fe56c916cace02fe498fc1271bd9d (diff) | |
download | pangemma-7762722f264adc402ea3b0f21923b18f072253ba.tar.gz |
version 0.95alpha
Diffstat (limited to 'src/lmm.cpp')
-rw-r--r-- | src/lmm.cpp | 1771 |
1 files changed, 1771 insertions, 0 deletions
diff --git a/src/lmm.cpp b/src/lmm.cpp new file mode 100644 index 0000000..e0b4160 --- /dev/null +++ b/src/lmm.cpp @@ -0,0 +1,1771 @@ +/* + Genome-wide Efficient Mixed Model Association (GEMMA) + Copyright (C) 2011 Xiang Zhou + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see <http://www.gnu.org/licenses/>. +*/ + + + +#include <iostream> +#include <fstream> +#include <sstream> + +#include <iomanip> +#include <cmath> +#include <iostream> +#include <stdio.h> +#include <stdlib.h> +#include <bitset> +#include <cstring> + +#include "gsl/gsl_vector.h" +#include "gsl/gsl_matrix.h" +#include "gsl/gsl_linalg.h" +#include "gsl/gsl_blas.h" + + +#include "gsl/gsl_cdf.h" +#include "gsl/gsl_roots.h" +#include "gsl/gsl_min.h" +#include "gsl/gsl_integration.h" + +#include "io.h" +#include "lapack.h" +#include "gzstream.h" + +#ifdef FORCE_FLOAT +#include "lmm_float.h" +#else +#include "lmm.h" +#endif + + +using namespace std; + + + + + +void LMM::CopyFromParam (PARAM &cPar) +{ + a_mode=cPar.a_mode; + d_pace=cPar.d_pace; + + file_bfile=cPar.file_bfile; + file_geno=cPar.file_geno; + file_out=cPar.file_out; + path_out=cPar.path_out; + file_gene=cPar.file_gene; + + l_min=cPar.l_min; + l_max=cPar.l_max; + n_region=cPar.n_region; + l_mle_null=cPar.l_mle_null; + logl_mle_H0=cPar.logl_mle_H0; + + time_UtX=0.0; + time_opt=0.0; + + ni_total=cPar.ni_total; + ns_total=cPar.ns_total; + ni_test=cPar.ni_test; + ns_test=cPar.ns_test; + n_cvt=cPar.n_cvt; + + ng_total=cPar.ng_total; + ng_test=0; + + indicator_idv=cPar.indicator_idv; + indicator_snp=cPar.indicator_snp; + snpInfo=cPar.snpInfo; + + return; +} + + +void LMM::CopyToParam (PARAM &cPar) +{ + cPar.time_UtX=time_UtX; + cPar.time_opt=time_opt; + + cPar.ng_test=ng_test; + + return; +} + + + +void LMM::WriteFiles () +{ + string file_str; + file_str=path_out+"/"+file_out; + file_str+=".assoc.txt"; + + ofstream outfile (file_str.c_str(), ofstream::out); + if (!outfile) {cout<<"error writing file: "<<file_str.c_str()<<endl; return;} + + if (!file_gene.empty()) { + outfile<<"geneID"<<"\t"; + + if (a_mode==1) { + outfile<<"beta"<<"\t"<<"se"<<"\t"<<"l_remle"<<"\t"<<"p_wald"<<endl; + } else if (a_mode==2) { + outfile<<"l_mle"<<"\t"<<"p_lrt"<<endl; + } else if (a_mode==3) { + outfile<<"beta"<<"\t"<<"se"<<"\t"<<"p_score"<<endl; + } else if (a_mode==4) { + outfile<<"beta"<<"\t"<<"se"<<"\t"<<"l_remle"<<"\t"<<"l_mle"<<"\t"<<"p_wald"<<"\t"<<"p_lrt"<<"\t"<<"p_score"<<endl; + } else {} + + for (vector<SUMSTAT>::size_type t=0; t<sumStat.size(); ++t) { + outfile<<snpInfo[t].rs_number<<"\t"; + + if (a_mode==1) { + outfile<<scientific<<setprecision(6)<<sumStat[t].beta<<"\t"<<sumStat[t].se<<"\t"<<sumStat[t].lambda_remle<<"\t"<<sumStat[t].p_wald <<endl; + } else if (a_mode==2) { + outfile<<scientific<<setprecision(6)<<sumStat[t].lambda_mle<<"\t"<<sumStat[t].p_lrt<<endl; + } else if (a_mode==3) { + outfile<<scientific<<setprecision(6)<<sumStat[t].beta<<"\t"<<sumStat[t].se<<"\t"<<sumStat[t].p_score<<endl; + } else if (a_mode==4) { + outfile<<scientific<<setprecision(6)<<sumStat[t].beta<<"\t"<<sumStat[t].se<<"\t"<<sumStat[t].lambda_remle<<"\t"<<sumStat[t].lambda_mle<<"\t"<<sumStat[t].p_wald <<"\t"<<sumStat[t].p_lrt<<"\t"<<sumStat[t].p_score<<endl; + } else {} + } + } else { + outfile<<"chr"<<"\t"<<"rs"<<"\t"<<"ps"<<"\t"<<"n_miss"<<"\t"<<"allele1"<<"\t"<<"allele0"<<"\t"<<"af"<<"\t"; + + if (a_mode==1) { + outfile<<"beta"<<"\t"<<"se"<<"\t"<<"l_remle"<<"\t"<<"p_wald"<<endl; + } else if (a_mode==2) { + outfile<<"l_mle"<<"\t"<<"p_lrt"<<endl; + } else if (a_mode==3) { + outfile<<"beta"<<"\t"<<"se"<<"\t"<<"p_score"<<endl; + } else if (a_mode==4) { + outfile<<"beta"<<"\t"<<"se"<<"\t"<<"l_remle"<<"\t"<<"l_mle"<<"\t"<<"p_wald"<<"\t"<<"p_lrt"<<"\t"<<"p_score"<<endl; + } else {} + + size_t t=0; + for (size_t i=0; i<snpInfo.size(); ++i) { + if (indicator_snp[i]==0) {continue;} + + outfile<<snpInfo[i].chr<<"\t"<<snpInfo[i].rs_number<<"\t"<<snpInfo[i].base_position<<"\t"<<snpInfo[i].n_miss<<"\t"<<snpInfo[i].a_minor<<"\t"<<snpInfo[i].a_major<<"\t"<<fixed<<setprecision(3)<<snpInfo[i].maf<<"\t"; + + if (a_mode==1) { + outfile<<scientific<<setprecision(6)<<sumStat[t].beta<<"\t"<<sumStat[t].se<<"\t"<<sumStat[t].lambda_remle<<"\t"<<sumStat[t].p_wald <<endl; + } else if (a_mode==2) { + outfile<<scientific<<setprecision(6)<<sumStat[t].lambda_mle<<"\t"<<sumStat[t].p_lrt<<endl; + } else if (a_mode==3) { + outfile<<scientific<<setprecision(6)<<sumStat[t].beta<<"\t"<<sumStat[t].se<<"\t"<<sumStat[t].p_score<<endl; + } else if (a_mode==4) { + outfile<<scientific<<setprecision(6)<<sumStat[t].beta<<"\t"<<sumStat[t].se<<"\t"<<sumStat[t].lambda_remle<<"\t"<<sumStat[t].lambda_mle<<"\t"<<sumStat[t].p_wald <<"\t"<<sumStat[t].p_lrt<<"\t"<<sumStat[t].p_score<<endl; + } else {} + t++; + } + } + + + outfile.close(); + outfile.clear(); + return; +} + + + + + + + + + + + +//map a number 1-(n_cvt+2) to an index between 0 and [(n_c+2)^2+(n_c+2)]/2-1 +size_t GetabIndex (const size_t a, const size_t b, const size_t n_cvt) { + if (a>n_cvt+2 || b>n_cvt+2 || a<=0 || b<=0) {cout<<"error in GetabIndex."<<endl; return 0;} + size_t index; + size_t l, h; + if (b>a) {l=a; h=b;} else {l=b; h=a;} + + size_t n=n_cvt+2; + index=(2*n-l+2)*(l-1)/2+h-l; + + return index; +} + + +void CalcPab (const size_t n_cvt, const size_t e_mode, const gsl_vector *Hi_eval, const gsl_matrix *Uab, const gsl_vector *ab, gsl_matrix *Pab) +{ + size_t index_ab, index_aw, index_bw, index_ww; + double p_ab; + double ps_ab, ps_aw, ps_bw, ps_ww; + + for (size_t p=0; p<=n_cvt+1; ++p) { + for (size_t a=p+1; a<=n_cvt+2; ++a) { + for (size_t b=a; b<=n_cvt+2; ++b) { + index_ab=GetabIndex (a, b, n_cvt); + if (p==0) { + gsl_vector_const_view Uab_col=gsl_matrix_const_column (Uab, index_ab); + gsl_blas_ddot (Hi_eval, &Uab_col.vector, &p_ab); + if (e_mode!=0) {p_ab=gsl_vector_get (ab, index_ab)-p_ab;} + gsl_matrix_set (Pab, 0, index_ab, p_ab); + } + else { + index_aw=GetabIndex (a, p, n_cvt); + index_bw=GetabIndex (b, p, n_cvt); + index_ww=GetabIndex (p, p, n_cvt); + + ps_ab=gsl_matrix_get (Pab, p-1, index_ab); + ps_aw=gsl_matrix_get (Pab, p-1, index_aw); + ps_bw=gsl_matrix_get (Pab, p-1, index_bw); + ps_ww=gsl_matrix_get (Pab, p-1, index_ww); + + p_ab=ps_ab-ps_aw*ps_bw/ps_ww; + gsl_matrix_set (Pab, p, index_ab, p_ab); + } + } + } + } + return; +} + + +void CalcPPab (const size_t n_cvt, const size_t e_mode, const gsl_vector *HiHi_eval, const gsl_matrix *Uab, const gsl_vector *ab, const gsl_matrix *Pab, gsl_matrix *PPab) +{ + size_t index_ab, index_aw, index_bw, index_ww; + double p2_ab; + double ps2_ab, ps_aw, ps_bw, ps_ww, ps2_aw, ps2_bw, ps2_ww; + + for (size_t p=0; p<=n_cvt+1; ++p) { + for (size_t a=p+1; a<=n_cvt+2; ++a) { + for (size_t b=a; b<=n_cvt+2; ++b) { + index_ab=GetabIndex (a, b, n_cvt); + if (p==0) { + gsl_vector_const_view Uab_col=gsl_matrix_const_column (Uab, index_ab); + gsl_blas_ddot (HiHi_eval, &Uab_col.vector, &p2_ab); + if (e_mode!=0) {p2_ab=p2_ab-gsl_vector_get (ab, index_ab)+2.0*gsl_matrix_get (Pab, 0, index_ab);} + gsl_matrix_set (PPab, 0, index_ab, p2_ab); + } + else { + index_aw=GetabIndex (a, p, n_cvt); + index_bw=GetabIndex (b, p, n_cvt); + index_ww=GetabIndex (p, p, n_cvt); + + ps2_ab=gsl_matrix_get (PPab, p-1, index_ab); + ps_aw=gsl_matrix_get (Pab, p-1, index_aw); + ps_bw=gsl_matrix_get (Pab, p-1, index_bw); + ps_ww=gsl_matrix_get (Pab, p-1, index_ww); + ps2_aw=gsl_matrix_get (PPab, p-1, index_aw); + ps2_bw=gsl_matrix_get (PPab, p-1, index_bw); + ps2_ww=gsl_matrix_get (PPab, p-1, index_ww); + + p2_ab=ps2_ab+ps_aw*ps_bw*ps2_ww/(ps_ww*ps_ww); + p2_ab-=(ps_aw*ps2_bw+ps_bw*ps2_aw)/ps_ww; + gsl_matrix_set (PPab, p, index_ab, p2_ab); + + } + } + } + } + return; +} + + +void CalcPPPab (const size_t n_cvt, const size_t e_mode, const gsl_vector *HiHiHi_eval, const gsl_matrix *Uab, const gsl_vector *ab, const gsl_matrix *Pab, const gsl_matrix *PPab, gsl_matrix *PPPab) +{ + size_t index_ab, index_aw, index_bw, index_ww; + double p3_ab; + double ps3_ab, ps_aw, ps_bw, ps_ww, ps2_aw, ps2_bw, ps2_ww, ps3_aw, ps3_bw, ps3_ww; + + for (size_t p=0; p<=n_cvt+1; ++p) { + for (size_t a=p+1; a<=n_cvt+2; ++a) { + for (size_t b=a; b<=n_cvt+2; ++b) { + index_ab=GetabIndex (a, b, n_cvt); + if (p==0) { + gsl_vector_const_view Uab_col=gsl_matrix_const_column (Uab, index_ab); + gsl_blas_ddot (HiHiHi_eval, &Uab_col.vector, &p3_ab); + if (e_mode!=0) {p3_ab=gsl_vector_get (ab, index_ab)-p3_ab+3.0*gsl_matrix_get (PPab, 0, index_ab)-3.0*gsl_matrix_get (Pab, 0, index_ab);} + gsl_matrix_set (PPPab, 0, index_ab, p3_ab); + } + else { + index_aw=GetabIndex (a, p, n_cvt); + index_bw=GetabIndex (b, p, n_cvt); + index_ww=GetabIndex (p, p, n_cvt); + + ps3_ab=gsl_matrix_get (PPPab, p-1, index_ab); + ps_aw=gsl_matrix_get (Pab, p-1, index_aw); + ps_bw=gsl_matrix_get (Pab, p-1, index_bw); + ps_ww=gsl_matrix_get (Pab, p-1, index_ww); + ps2_aw=gsl_matrix_get (PPab, p-1, index_aw); + ps2_bw=gsl_matrix_get (PPab, p-1, index_bw); + ps2_ww=gsl_matrix_get (PPab, p-1, index_ww); + ps3_aw=gsl_matrix_get (PPPab, p-1, index_aw); + ps3_bw=gsl_matrix_get (PPPab, p-1, index_bw); + ps3_ww=gsl_matrix_get (PPPab, p-1, index_ww); + + p3_ab=ps3_ab-ps_aw*ps_bw*ps2_ww*ps2_ww/(ps_ww*ps_ww*ps_ww); + p3_ab-=(ps_aw*ps3_bw+ps_bw*ps3_aw+ps2_aw*ps2_bw)/ps_ww; + p3_ab+=(ps_aw*ps2_bw*ps2_ww+ps_bw*ps2_aw*ps2_ww+ps_aw*ps_bw*ps3_ww)/(ps_ww*ps_ww); + + gsl_matrix_set (PPPab, p, index_ab, p3_ab); + } + } + } + } + return; +} + + + +double LogL_f (double l, void *params) +{ + FUNC_PARAM *p=(FUNC_PARAM *) params; + size_t n_cvt=p->n_cvt; + size_t ni_test=p->ni_test; + size_t n_index=(n_cvt+2+1)*(n_cvt+2)/2; + + size_t nc_total; + if (p->calc_null==true) {nc_total=n_cvt;} else {nc_total=n_cvt+1;} + + double f=0.0, logdet_h=0.0, d; + size_t index_yy; + + gsl_matrix *Pab=gsl_matrix_alloc (n_cvt+2, n_index); + gsl_vector *Hi_eval=gsl_vector_alloc((p->eval)->size); + gsl_vector *v_temp=gsl_vector_alloc((p->eval)->size); + + gsl_vector_memcpy (v_temp, p->eval); + gsl_vector_scale (v_temp, l); + if (p->e_mode==0) {gsl_vector_set_all (Hi_eval, 1.0);} else {gsl_vector_memcpy (Hi_eval, v_temp);} + gsl_vector_add_constant (v_temp, 1.0); + gsl_vector_div (Hi_eval, v_temp); + + for (size_t i=0; i<(p->eval)->size; ++i) { + d=gsl_vector_get (v_temp, i); + logdet_h+=log(fabs(d)); + } + + CalcPab (n_cvt, p->e_mode, Hi_eval, p->Uab, p->ab, Pab); + + double c=0.5*(double)ni_test*(log((double)ni_test)-log(2*M_PI)-1.0); + + index_yy=GetabIndex (n_cvt+2, n_cvt+2, n_cvt); + double P_yy=gsl_matrix_get (Pab, nc_total, index_yy); + f=c-0.5*logdet_h-0.5*(double)ni_test*log(P_yy); + + gsl_matrix_free (Pab); + gsl_vector_free (Hi_eval); + gsl_vector_free (v_temp); + return f; +} + + + + + + +double LogL_dev1 (double l, void *params) +{ + FUNC_PARAM *p=(FUNC_PARAM *) params; + size_t n_cvt=p->n_cvt; + size_t ni_test=p->ni_test; + size_t n_index=(n_cvt+2+1)*(n_cvt+2)/2; + + size_t nc_total; + if (p->calc_null==true) {nc_total=n_cvt;} else {nc_total=n_cvt+1;} + + double dev1=0.0, trace_Hi=0.0; + size_t index_yy; + + gsl_matrix *Pab=gsl_matrix_alloc (n_cvt+2, n_index); + gsl_matrix *PPab=gsl_matrix_alloc (n_cvt+2, n_index); + gsl_vector *Hi_eval=gsl_vector_alloc((p->eval)->size); + gsl_vector *HiHi_eval=gsl_vector_alloc((p->eval)->size); + gsl_vector *v_temp=gsl_vector_alloc((p->eval)->size); + + gsl_vector_memcpy (v_temp, p->eval); + gsl_vector_scale (v_temp, l); + if (p->e_mode==0) {gsl_vector_set_all (Hi_eval, 1.0);} else {gsl_vector_memcpy (Hi_eval, v_temp);} + gsl_vector_add_constant (v_temp, 1.0); + gsl_vector_div (Hi_eval, v_temp); + + gsl_vector_memcpy (HiHi_eval, Hi_eval); + gsl_vector_mul (HiHi_eval, Hi_eval); + + gsl_vector_set_all (v_temp, 1.0); + gsl_blas_ddot (Hi_eval, v_temp, &trace_Hi); + + if (p->e_mode!=0) {trace_Hi=(double)ni_test-trace_Hi;} + + CalcPab (n_cvt, p->e_mode, Hi_eval, p->Uab, p->ab, Pab); + CalcPPab (n_cvt, p->e_mode, HiHi_eval, p->Uab, p->ab, Pab, PPab); + + double trace_HiK=((double)ni_test-trace_Hi)/l; + + index_yy=GetabIndex (n_cvt+2, n_cvt+2, n_cvt); + + double P_yy=gsl_matrix_get (Pab, nc_total, index_yy); + double PP_yy=gsl_matrix_get (PPab, nc_total, index_yy); + double yPKPy=(P_yy-PP_yy)/l; + dev1=-0.5*trace_HiK+0.5*(double)ni_test*yPKPy/P_yy; + + gsl_matrix_free (Pab); + gsl_matrix_free (PPab); + gsl_vector_free (Hi_eval); + gsl_vector_free (HiHi_eval); + gsl_vector_free (v_temp); + + return dev1; +} + + + + +double LogL_dev2 (double l, void *params) +{ + FUNC_PARAM *p=(FUNC_PARAM *) params; + size_t n_cvt=p->n_cvt; + size_t ni_test=p->ni_test; + size_t n_index=(n_cvt+2+1)*(n_cvt+2)/2; + + size_t nc_total; + if (p->calc_null==true) {nc_total=n_cvt;} else {nc_total=n_cvt+1;} + + double dev2=0.0, trace_Hi=0.0, trace_HiHi=0.0; + size_t index_yy; + + gsl_matrix *Pab=gsl_matrix_alloc (n_cvt+2, n_index); + gsl_matrix *PPab=gsl_matrix_alloc (n_cvt+2, n_index); + gsl_matrix *PPPab=gsl_matrix_alloc (n_cvt+2, n_index); + gsl_vector *Hi_eval=gsl_vector_alloc((p->eval)->size); + gsl_vector *HiHi_eval=gsl_vector_alloc((p->eval)->size); + gsl_vector *HiHiHi_eval=gsl_vector_alloc((p->eval)->size); + gsl_vector *v_temp=gsl_vector_alloc((p->eval)->size); + + gsl_vector_memcpy (v_temp, p->eval); + gsl_vector_scale (v_temp, l); + if (p->e_mode==0) {gsl_vector_set_all (Hi_eval, 1.0);} else {gsl_vector_memcpy (Hi_eval, v_temp);} + gsl_vector_add_constant (v_temp, 1.0); + gsl_vector_div (Hi_eval, v_temp); + + gsl_vector_memcpy (HiHi_eval, Hi_eval); + gsl_vector_mul (HiHi_eval, Hi_eval); + gsl_vector_memcpy (HiHiHi_eval, HiHi_eval); + gsl_vector_mul (HiHiHi_eval, Hi_eval); + + gsl_vector_set_all (v_temp, 1.0); + gsl_blas_ddot (Hi_eval, v_temp, &trace_Hi); + gsl_blas_ddot (HiHi_eval, v_temp, &trace_HiHi); + + if (p->e_mode!=0) { + trace_Hi=(double)ni_test-trace_Hi; + trace_HiHi=2*trace_Hi+trace_HiHi-(double)ni_test; + } + + CalcPab (n_cvt, p->e_mode, Hi_eval, p->Uab, p->ab, Pab); + CalcPPab (n_cvt, p->e_mode, HiHi_eval, p->Uab, p->ab, Pab, PPab); + CalcPPPab (n_cvt, p->e_mode, HiHiHi_eval, p->Uab, p->ab, Pab, PPab, PPPab); + + double trace_HiKHiK=((double)ni_test+trace_HiHi-2*trace_Hi)/(l*l); + + index_yy=GetabIndex (n_cvt+2, n_cvt+2, n_cvt); + double P_yy=gsl_matrix_get (Pab, nc_total, index_yy); + double PP_yy=gsl_matrix_get (PPab, nc_total, index_yy); + double PPP_yy=gsl_matrix_get (PPPab, nc_total, index_yy); + + double yPKPy=(P_yy-PP_yy)/l; + double yPKPKPy=(P_yy+PPP_yy-2.0*PP_yy)/(l*l); + + dev2=0.5*trace_HiKHiK-0.5*(double)ni_test*(2.0*yPKPKPy*P_yy-yPKPy*yPKPy)/(P_yy*P_yy); + + gsl_matrix_free (Pab); + gsl_matrix_free (PPab); + gsl_matrix_free (PPPab); + gsl_vector_free (Hi_eval); + gsl_vector_free (HiHi_eval); + gsl_vector_free (HiHiHi_eval); + gsl_vector_free (v_temp); + + return dev2; +} + + + + + +void LogL_dev12 (double l, void *params, double *dev1, double *dev2) +{ + FUNC_PARAM *p=(FUNC_PARAM *) params; + size_t n_cvt=p->n_cvt; + size_t ni_test=p->ni_test; + size_t n_index=(n_cvt+2+1)*(n_cvt+2)/2; + + size_t nc_total; + if (p->calc_null==true) {nc_total=n_cvt;} else {nc_total=n_cvt+1;} + + double trace_Hi=0.0, trace_HiHi=0.0; + size_t index_yy; + + gsl_matrix *Pab=gsl_matrix_alloc (n_cvt+2, n_index); + gsl_matrix *PPab=gsl_matrix_alloc (n_cvt+2, n_index); + gsl_matrix *PPPab=gsl_matrix_alloc (n_cvt+2, n_index); + gsl_vector *Hi_eval=gsl_vector_alloc((p->eval)->size); + gsl_vector *HiHi_eval=gsl_vector_alloc((p->eval)->size); + gsl_vector *HiHiHi_eval=gsl_vector_alloc((p->eval)->size); + gsl_vector *v_temp=gsl_vector_alloc((p->eval)->size); + + gsl_vector_memcpy (v_temp, p->eval); + gsl_vector_scale (v_temp, l); + if (p->e_mode==0) {gsl_vector_set_all (Hi_eval, 1.0);} else {gsl_vector_memcpy (Hi_eval, v_temp);} + gsl_vector_add_constant (v_temp, 1.0); + gsl_vector_div (Hi_eval, v_temp); + + gsl_vector_memcpy (HiHi_eval, Hi_eval); + gsl_vector_mul (HiHi_eval, Hi_eval); + gsl_vector_memcpy (HiHiHi_eval, HiHi_eval); + gsl_vector_mul (HiHiHi_eval, Hi_eval); + + gsl_vector_set_all (v_temp, 1.0); + gsl_blas_ddot (Hi_eval, v_temp, &trace_Hi); + gsl_blas_ddot (HiHi_eval, v_temp, &trace_HiHi); + + if (p->e_mode!=0) { + trace_Hi=(double)ni_test-trace_Hi; + trace_HiHi=2*trace_Hi+trace_HiHi-(double)ni_test; + } + + CalcPab (n_cvt, p->e_mode, Hi_eval, p->Uab, p->ab, Pab); + CalcPPab (n_cvt, p->e_mode, HiHi_eval, p->Uab, p->ab, Pab, PPab); + CalcPPPab (n_cvt, p->e_mode, HiHiHi_eval, p->Uab, p->ab, Pab, PPab, PPPab); + + double trace_HiK=((double)ni_test-trace_Hi)/l; + double trace_HiKHiK=((double)ni_test+trace_HiHi-2*trace_Hi)/(l*l); + + index_yy=GetabIndex (n_cvt+2, n_cvt+2, n_cvt); + + double P_yy=gsl_matrix_get (Pab, nc_total, index_yy); + double PP_yy=gsl_matrix_get (PPab, nc_total, index_yy); + double PPP_yy=gsl_matrix_get (PPPab, nc_total, index_yy); + + double yPKPy=(P_yy-PP_yy)/l; + double yPKPKPy=(P_yy+PPP_yy-2.0*PP_yy)/(l*l); + + *dev1=-0.5*trace_HiK+0.5*(double)ni_test*yPKPy/P_yy; + *dev2=0.5*trace_HiKHiK-0.5*(double)ni_test*(2.0*yPKPKPy*P_yy-yPKPy*yPKPy)/(P_yy*P_yy); + + gsl_matrix_free (Pab); + gsl_matrix_free (PPab); + gsl_matrix_free (PPPab); + gsl_vector_free (Hi_eval); + gsl_vector_free (HiHi_eval); + gsl_vector_free (HiHiHi_eval); + gsl_vector_free (v_temp); + + return; +} + + + +double LogRL_f (double l, void *params) +{ + FUNC_PARAM *p=(FUNC_PARAM *) params; + size_t n_cvt=p->n_cvt; + size_t ni_test=p->ni_test; + size_t n_index=(n_cvt+2+1)*(n_cvt+2)/2; + + double df; + size_t nc_total; + if (p->calc_null==true) {nc_total=n_cvt; df=(double)ni_test-(double)n_cvt; } + else {nc_total=n_cvt+1; df=(double)ni_test-(double)n_cvt-1.0;} + + double f=0.0, logdet_h=0.0, logdet_hiw=0.0, d; + size_t index_ww; + + gsl_matrix *Pab=gsl_matrix_alloc (n_cvt+2, n_index); + gsl_matrix *Iab=gsl_matrix_alloc (n_cvt+2, n_index); + gsl_vector *Hi_eval=gsl_vector_alloc((p->eval)->size); + gsl_vector *v_temp=gsl_vector_alloc((p->eval)->size); + + gsl_vector_memcpy (v_temp, p->eval); + gsl_vector_scale (v_temp, l); + if (p->e_mode==0) {gsl_vector_set_all (Hi_eval, 1.0);} else {gsl_vector_memcpy (Hi_eval, v_temp);} + gsl_vector_add_constant (v_temp, 1.0); + gsl_vector_div (Hi_eval, v_temp); + + for (size_t i=0; i<(p->eval)->size; ++i) { + d=gsl_vector_get (v_temp, i); + logdet_h+=log(fabs(d)); + } + + CalcPab (n_cvt, p->e_mode, Hi_eval, p->Uab, p->ab, Pab); + gsl_vector_set_all (v_temp, 1.0); + CalcPab (n_cvt, p->e_mode, v_temp, p->Uab, p->ab, Iab); + + //calculate |WHiW|-|WW| + logdet_hiw=0.0; + for (size_t i=0; i<nc_total; ++i) { + index_ww=GetabIndex (i+1, i+1, n_cvt); + d=gsl_matrix_get (Pab, i, index_ww); + logdet_hiw+=log(d); + d=gsl_matrix_get (Iab, i, index_ww); + logdet_hiw-=log(d); + } + index_ww=GetabIndex (n_cvt+2, n_cvt+2, n_cvt); + double P_yy=gsl_matrix_get (Pab, nc_total, index_ww); + + double c=0.5*df*(log(df)-log(2*M_PI)-1.0); + f=c-0.5*logdet_h-0.5*logdet_hiw-0.5*df*log(P_yy); + + gsl_matrix_free (Pab); + gsl_matrix_free (Iab); + gsl_vector_free (Hi_eval); + gsl_vector_free (v_temp); + return f; +} + + + +double LogRL_dev1 (double l, void *params) +{ + FUNC_PARAM *p=(FUNC_PARAM *) params; + size_t n_cvt=p->n_cvt; + size_t ni_test=p->ni_test; + size_t n_index=(n_cvt+2+1)*(n_cvt+2)/2; + + double df; + size_t nc_total; + if (p->calc_null==true) {nc_total=n_cvt; df=(double)ni_test-(double)n_cvt; } + else {nc_total=n_cvt+1; df=(double)ni_test-(double)n_cvt-1.0;} + + double dev1=0.0, trace_Hi=0.0; + size_t index_ww; + + gsl_matrix *Pab=gsl_matrix_alloc (n_cvt+2, n_index); + gsl_matrix *PPab=gsl_matrix_alloc (n_cvt+2, n_index); + gsl_vector *Hi_eval=gsl_vector_alloc((p->eval)->size); + gsl_vector *HiHi_eval=gsl_vector_alloc((p->eval)->size); + gsl_vector *v_temp=gsl_vector_alloc((p->eval)->size); + + gsl_vector_memcpy (v_temp, p->eval); + gsl_vector_scale (v_temp, l); + if (p->e_mode==0) {gsl_vector_set_all (Hi_eval, 1.0);} else {gsl_vector_memcpy (Hi_eval, v_temp);} + gsl_vector_add_constant (v_temp, 1.0); + gsl_vector_div (Hi_eval, v_temp); + + gsl_vector_memcpy (HiHi_eval, Hi_eval); + gsl_vector_mul (HiHi_eval, Hi_eval); + + gsl_vector_set_all (v_temp, 1.0); + gsl_blas_ddot (Hi_eval, v_temp, &trace_Hi); + + if (p->e_mode!=0) { + trace_Hi=(double)ni_test-trace_Hi; + } + + CalcPab (n_cvt, p->e_mode, Hi_eval, p->Uab, p->ab, Pab); + CalcPPab (n_cvt, p->e_mode, HiHi_eval, p->Uab, p->ab, Pab, PPab); + + //calculate tracePK and trace PKPK + double trace_P=trace_Hi; + double ps_ww, ps2_ww; + for (size_t i=0; i<nc_total; ++i) { + index_ww=GetabIndex (i+1, i+1, n_cvt); + ps_ww=gsl_matrix_get (Pab, i, index_ww); + ps2_ww=gsl_matrix_get (PPab, i, index_ww); + trace_P-=ps2_ww/ps_ww; + } + double trace_PK=(df-trace_P)/l; + + //calculate yPKPy, yPKPKPy + index_ww=GetabIndex (n_cvt+2, n_cvt+2, n_cvt); + double P_yy=gsl_matrix_get (Pab, nc_total, index_ww); + double PP_yy=gsl_matrix_get (PPab, nc_total, index_ww); + double yPKPy=(P_yy-PP_yy)/l; + + dev1=-0.5*trace_PK+0.5*df*yPKPy/P_yy; + + gsl_matrix_free (Pab); + gsl_matrix_free (PPab); + gsl_vector_free (Hi_eval); + gsl_vector_free (HiHi_eval); + gsl_vector_free (v_temp); + + return dev1; +} + + + + +double LogRL_dev2 (double l, void *params) +{ + FUNC_PARAM *p=(FUNC_PARAM *) params; + size_t n_cvt=p->n_cvt; + size_t ni_test=p->ni_test; + size_t n_index=(n_cvt+2+1)*(n_cvt+2)/2; + + double df; + size_t nc_total; + if (p->calc_null==true) {nc_total=n_cvt; df=(double)ni_test-(double)n_cvt; } + else {nc_total=n_cvt+1; df=(double)ni_test-(double)n_cvt-1.0;} + + double dev2=0.0, trace_Hi=0.0, trace_HiHi=0.0; + size_t index_ww; + + gsl_matrix *Pab=gsl_matrix_alloc (n_cvt+2, n_index); + gsl_matrix *PPab=gsl_matrix_alloc (n_cvt+2, n_index); + gsl_matrix *PPPab=gsl_matrix_alloc (n_cvt+2, n_index); + gsl_vector *Hi_eval=gsl_vector_alloc((p->eval)->size); + gsl_vector *HiHi_eval=gsl_vector_alloc((p->eval)->size); + gsl_vector *HiHiHi_eval=gsl_vector_alloc((p->eval)->size); + gsl_vector *v_temp=gsl_vector_alloc((p->eval)->size); + + gsl_vector_memcpy (v_temp, p->eval); + gsl_vector_scale (v_temp, l); + if (p->e_mode==0) {gsl_vector_set_all (Hi_eval, 1.0);} else {gsl_vector_memcpy (Hi_eval, v_temp);} + gsl_vector_add_constant (v_temp, 1.0); + gsl_vector_div (Hi_eval, v_temp); + + gsl_vector_memcpy (HiHi_eval, Hi_eval); + gsl_vector_mul (HiHi_eval, Hi_eval); + gsl_vector_memcpy (HiHiHi_eval, HiHi_eval); + gsl_vector_mul (HiHiHi_eval, Hi_eval); + + gsl_vector_set_all (v_temp, 1.0); + gsl_blas_ddot (Hi_eval, v_temp, &trace_Hi); + gsl_blas_ddot (HiHi_eval, v_temp, &trace_HiHi); + + if (p->e_mode!=0) { + trace_Hi=(double)ni_test-trace_Hi; + trace_HiHi=2*trace_Hi+trace_HiHi-(double)ni_test; + } + + CalcPab (n_cvt, p->e_mode, Hi_eval, p->Uab, p->ab, Pab); + CalcPPab (n_cvt, p->e_mode, HiHi_eval, p->Uab, p->ab, Pab, PPab); + CalcPPPab (n_cvt, p->e_mode, HiHiHi_eval, p->Uab, p->ab, Pab, PPab, PPPab); + + //calculate tracePK and trace PKPK + double trace_P=trace_Hi, trace_PP=trace_HiHi; + double ps_ww, ps2_ww, ps3_ww; + for (size_t i=0; i<nc_total; ++i) { + index_ww=GetabIndex (i+1, i+1, n_cvt); + ps_ww=gsl_matrix_get (Pab, i, index_ww); + ps2_ww=gsl_matrix_get (PPab, i, index_ww); + ps3_ww=gsl_matrix_get (PPPab, i, index_ww); + trace_P-=ps2_ww/ps_ww; + trace_PP+=ps2_ww*ps2_ww/(ps_ww*ps_ww)-2.0*ps3_ww/ps_ww; + } + double trace_PKPK=(df+trace_PP-2.0*trace_P)/(l*l); + + //calculate yPKPy, yPKPKPy + index_ww=GetabIndex (n_cvt+2, n_cvt+2, n_cvt); + double P_yy=gsl_matrix_get (Pab, nc_total, index_ww); + double PP_yy=gsl_matrix_get (PPab, nc_total, index_ww); + double PPP_yy=gsl_matrix_get (PPPab, nc_total, index_ww); + double yPKPy=(P_yy-PP_yy)/l; + double yPKPKPy=(P_yy+PPP_yy-2.0*PP_yy)/(l*l); + + dev2=0.5*trace_PKPK-0.5*df*(2.0*yPKPKPy*P_yy-yPKPy*yPKPy)/(P_yy*P_yy); + + gsl_matrix_free (Pab); + gsl_matrix_free (PPab); + gsl_matrix_free (PPPab); + gsl_vector_free (Hi_eval); + gsl_vector_free (HiHi_eval); + gsl_vector_free (HiHiHi_eval); + gsl_vector_free (v_temp); + + return dev2; +} + + + + +void LogRL_dev12 (double l, void *params, double *dev1, double *dev2) +{ + FUNC_PARAM *p=(FUNC_PARAM *) params; + size_t n_cvt=p->n_cvt; + size_t ni_test=p->ni_test; + size_t n_index=(n_cvt+2+1)*(n_cvt+2)/2; + + double df; + size_t nc_total; + if (p->calc_null==true) {nc_total=n_cvt; df=(double)ni_test-(double)n_cvt; } + else {nc_total=n_cvt+1; df=(double)ni_test-(double)n_cvt-1.0;} + + double trace_Hi=0.0, trace_HiHi=0.0; + size_t index_ww; + + gsl_matrix *Pab=gsl_matrix_alloc (n_cvt+2, n_index); + gsl_matrix *PPab=gsl_matrix_alloc (n_cvt+2, n_index); + gsl_matrix *PPPab=gsl_matrix_alloc (n_cvt+2, n_index); + gsl_vector *Hi_eval=gsl_vector_alloc((p->eval)->size); + gsl_vector *HiHi_eval=gsl_vector_alloc((p->eval)->size); + gsl_vector *HiHiHi_eval=gsl_vector_alloc((p->eval)->size); + gsl_vector *v_temp=gsl_vector_alloc((p->eval)->size); + + gsl_vector_memcpy (v_temp, p->eval); + gsl_vector_scale (v_temp, l); + if (p->e_mode==0) {gsl_vector_set_all (Hi_eval, 1.0);} else {gsl_vector_memcpy (Hi_eval, v_temp);} + gsl_vector_add_constant (v_temp, 1.0); + gsl_vector_div (Hi_eval, v_temp); + + gsl_vector_memcpy (HiHi_eval, Hi_eval); + gsl_vector_mul (HiHi_eval, Hi_eval); + gsl_vector_memcpy (HiHiHi_eval, HiHi_eval); + gsl_vector_mul (HiHiHi_eval, Hi_eval); + + gsl_vector_set_all (v_temp, 1.0); + gsl_blas_ddot (Hi_eval, v_temp, &trace_Hi); + gsl_blas_ddot (HiHi_eval, v_temp, &trace_HiHi); + + if (p->e_mode!=0) { + trace_Hi=(double)ni_test-trace_Hi; + trace_HiHi=2*trace_Hi+trace_HiHi-(double)ni_test; + } + + CalcPab (n_cvt, p->e_mode, Hi_eval, p->Uab, p->ab, Pab); + CalcPPab (n_cvt, p->e_mode, HiHi_eval, p->Uab, p->ab, Pab, PPab); + CalcPPPab (n_cvt, p->e_mode, HiHiHi_eval, p->Uab, p->ab, Pab, PPab, PPPab); + + //calculate tracePK and trace PKPK + double trace_P=trace_Hi, trace_PP=trace_HiHi; + double ps_ww, ps2_ww, ps3_ww; + for (size_t i=0; i<nc_total; ++i) { + index_ww=GetabIndex (i+1, i+1, n_cvt); + ps_ww=gsl_matrix_get (Pab, i, index_ww); + ps2_ww=gsl_matrix_get (PPab, i, index_ww); + ps3_ww=gsl_matrix_get (PPPab, i, index_ww); + trace_P-=ps2_ww/ps_ww; + trace_PP+=ps2_ww*ps2_ww/(ps_ww*ps_ww)-2.0*ps3_ww/ps_ww; + } + double trace_PK=(df-trace_P)/l; + double trace_PKPK=(df+trace_PP-2.0*trace_P)/(l*l); + + //calculate yPKPy, yPKPKPy + index_ww=GetabIndex (n_cvt+2, n_cvt+2, n_cvt); + double P_yy=gsl_matrix_get (Pab, nc_total, index_ww); + double PP_yy=gsl_matrix_get (PPab, nc_total, index_ww); + double PPP_yy=gsl_matrix_get (PPPab, nc_total, index_ww); + double yPKPy=(P_yy-PP_yy)/l; + double yPKPKPy=(P_yy+PPP_yy-2.0*PP_yy)/(l*l); + + *dev1=-0.5*trace_PK+0.5*df*yPKPy/P_yy; + *dev2=0.5*trace_PKPK-0.5*df*(2.0*yPKPKPy*P_yy-yPKPy*yPKPy)/(P_yy*P_yy); + + gsl_matrix_free (Pab); + gsl_matrix_free (PPab); + gsl_matrix_free (PPPab); + gsl_vector_free (Hi_eval); + gsl_vector_free (HiHi_eval); + gsl_vector_free (HiHiHi_eval); + gsl_vector_free (v_temp); + + return ; +} + + + + + + + + +void LMM::CalcRLWald (const double &l, const FUNC_PARAM ¶ms, double &beta, double &se, double &p_wald) +{ + size_t n_cvt=params.n_cvt; + size_t n_index=(n_cvt+2+1)*(n_cvt+2)/2; + + int df=(int)ni_test-(int)n_cvt-1; + + gsl_matrix *Pab=gsl_matrix_alloc (n_cvt+2, n_index); + gsl_vector *Hi_eval=gsl_vector_alloc(params.eval->size); + gsl_vector *v_temp=gsl_vector_alloc(params.eval->size); + + gsl_vector_memcpy (v_temp, params.eval); + gsl_vector_scale (v_temp, l); + if (params.e_mode==0) {gsl_vector_set_all (Hi_eval, 1.0);} else {gsl_vector_memcpy (Hi_eval, v_temp);} + gsl_vector_add_constant (v_temp, 1.0); + gsl_vector_div (Hi_eval, v_temp); + + CalcPab (n_cvt, params.e_mode, Hi_eval, params.Uab, params.ab, Pab); + + size_t index_yy=GetabIndex (n_cvt+2, n_cvt+2, n_cvt); + size_t index_xx=GetabIndex (n_cvt+1, n_cvt+1, n_cvt); + size_t index_xy=GetabIndex (n_cvt+2, n_cvt+1, n_cvt); + double P_yy=gsl_matrix_get (Pab, n_cvt, index_yy); + double P_xx=gsl_matrix_get (Pab, n_cvt, index_xx); + double P_xy=gsl_matrix_get (Pab, n_cvt, index_xy); + double Px_yy=gsl_matrix_get (Pab, n_cvt+1, index_yy); + + beta=P_xy/P_xx; + double tau=(double)df/Px_yy; + se=sqrt(1.0/(tau*P_xx)); + p_wald=gsl_cdf_fdist_Q ((P_yy-Px_yy)*tau, 1.0, df); +// p_wald=gsl_cdf_chisq_Q ((P_yy-Px_yy)*tau, 1); + + gsl_matrix_free (Pab); + gsl_vector_free (Hi_eval); + gsl_vector_free (v_temp); + return ; +} + + +void LMM::CalcRLScore (const double &l, const FUNC_PARAM ¶ms, double &beta, double &se, double &p_score) +{ + size_t n_cvt=params.n_cvt; + size_t n_index=(n_cvt+2+1)*(n_cvt+2)/2; + + int df=(int)ni_test-(int)n_cvt-1; + + gsl_matrix *Pab=gsl_matrix_alloc (n_cvt+2, n_index); + gsl_vector *Hi_eval=gsl_vector_alloc(params.eval->size); + gsl_vector *v_temp=gsl_vector_alloc(params.eval->size); + + gsl_vector_memcpy (v_temp, params.eval); + gsl_vector_scale (v_temp, l); + if (params.e_mode==0) {gsl_vector_set_all (Hi_eval, 1.0);} else {gsl_vector_memcpy (Hi_eval, v_temp);} + gsl_vector_add_constant (v_temp, 1.0); + gsl_vector_div (Hi_eval, v_temp); + + CalcPab (n_cvt, params.e_mode, Hi_eval, params.Uab, params.ab, Pab); + + size_t index_yy=GetabIndex (n_cvt+2, n_cvt+2, n_cvt); + size_t index_xx=GetabIndex (n_cvt+1, n_cvt+1, n_cvt); + size_t index_xy=GetabIndex (n_cvt+2, n_cvt+1, n_cvt); + double P_yy=gsl_matrix_get (Pab, n_cvt, index_yy); + double P_xx=gsl_matrix_get (Pab, n_cvt, index_xx); + double P_xy=gsl_matrix_get (Pab, n_cvt, index_xy); + double Px_yy=gsl_matrix_get (Pab, n_cvt+1, index_yy); + + beta=P_xy/P_xx; + double tau=(double)df/Px_yy; + se=sqrt(1.0/(tau*P_xx)); + + p_score=gsl_cdf_fdist_Q ((double)ni_test*P_xy*P_xy/(P_yy*P_xx), 1.0, df); +// p_score=gsl_cdf_chisq_Q ((double)ni_test*P_xy*P_xy/(P_yy*P_xx), 1); + + gsl_matrix_free (Pab); + gsl_vector_free (Hi_eval); + gsl_vector_free (v_temp); + return ; +} + + + + + + + + +void CalcUab (const gsl_matrix *UtW, const gsl_vector *Uty, gsl_matrix *Uab) +{ + size_t index_ab; + size_t n_cvt=UtW->size2; + + gsl_vector *u_a=gsl_vector_alloc (Uty->size); + + for (size_t a=1; a<=n_cvt+2; ++a) { + if (a==n_cvt+1) {continue;} + + if (a==n_cvt+2) {gsl_vector_memcpy (u_a, Uty);} + else { + gsl_vector_const_view UtW_col=gsl_matrix_const_column (UtW, a-1); + gsl_vector_memcpy (u_a, &UtW_col.vector); + } + + for (size_t b=a; b>=1; --b) { + if (b==n_cvt+1) {continue;} + + index_ab=GetabIndex (a, b, n_cvt); + gsl_vector_view Uab_col=gsl_matrix_column (Uab, index_ab); + + if (b==n_cvt+2) {gsl_vector_memcpy (&Uab_col.vector, Uty);} + else { + gsl_vector_const_view UtW_col=gsl_matrix_const_column (UtW, b-1); + gsl_vector_memcpy (&Uab_col.vector, &UtW_col.vector); + } + + gsl_vector_mul(&Uab_col.vector, u_a); + } + } + + gsl_vector_free (u_a); + return; +} + + +void CalcUab (const gsl_matrix *UtW, const gsl_vector *Uty, const gsl_vector *Utx, gsl_matrix *Uab) +{ + size_t index_ab; + size_t n_cvt=UtW->size2; + + for (size_t b=1; b<=n_cvt+2; ++b) { + index_ab=GetabIndex (n_cvt+1, b, n_cvt); + gsl_vector_view Uab_col=gsl_matrix_column (Uab, index_ab); + + if (b==n_cvt+2) {gsl_vector_memcpy (&Uab_col.vector, Uty);} + else if (b==n_cvt+1) {gsl_vector_memcpy (&Uab_col.vector, Utx);} + else { + gsl_vector_const_view UtW_col=gsl_matrix_const_column (UtW, b-1); + gsl_vector_memcpy (&Uab_col.vector, &UtW_col.vector); + } + + gsl_vector_mul(&Uab_col.vector, Utx); + } + + return; +} + + + +void Calcab (const gsl_matrix *W, const gsl_vector *y, gsl_vector *ab) +{ + size_t index_ab; + size_t n_cvt=W->size2; + + double d; + gsl_vector *v_a=gsl_vector_alloc (y->size); + gsl_vector *v_b=gsl_vector_alloc (y->size); + + for (size_t a=1; a<=n_cvt+2; ++a) { + if (a==n_cvt+1) {continue;} + + if (a==n_cvt+2) {gsl_vector_memcpy (v_a, y);} + else { + gsl_vector_const_view W_col=gsl_matrix_const_column (W, a-1); + gsl_vector_memcpy (v_a, &W_col.vector); + } + + for (size_t b=a; b>=1; --b) { + if (b==n_cvt+1) {continue;} + + index_ab=GetabIndex (a, b, n_cvt); + + if (b==n_cvt+2) {gsl_vector_memcpy (v_b, y);} + else { + gsl_vector_const_view W_col=gsl_matrix_const_column (W, b-1); + gsl_vector_memcpy (v_b, &W_col.vector); + } + + gsl_blas_ddot (v_a, v_b, &d); + gsl_vector_set(ab, index_ab, d); + } + } + + gsl_vector_free (v_a); + gsl_vector_free (v_b); + return; +} + + +void Calcab (const gsl_matrix *W, const gsl_vector *y, const gsl_vector *x, gsl_vector *ab) +{ + size_t index_ab; + size_t n_cvt=W->size2; + + double d; + gsl_vector *v_b=gsl_vector_alloc (y->size); + + for (size_t b=1; b<=n_cvt+2; ++b) { + index_ab=GetabIndex (n_cvt+1, b, n_cvt); + + if (b==n_cvt+2) {gsl_vector_memcpy (v_b, y);} + else if (b==n_cvt+1) {gsl_vector_memcpy (v_b, x);} + else { + gsl_vector_const_view W_col=gsl_matrix_const_column (W, b-1); + gsl_vector_memcpy (v_b, &W_col.vector); + } + + gsl_blas_ddot (x, v_b, &d); + gsl_vector_set(ab, index_ab, d); + } + + gsl_vector_free (v_b); + + return; +} + + + + + +void LMM::AnalyzeGene (const gsl_matrix *U, const gsl_vector *eval, const gsl_matrix *UtW, const gsl_vector *Utx, const gsl_matrix *W, const gsl_vector *x) +{ + ifstream infile (file_gene.c_str(), ifstream::in); + if (!infile) {cout<<"error reading gene expression file:"<<file_gene<<endl; return;} + + clock_t time_start=clock(); + + string line; + char *ch_ptr; + + double lambda_mle=0, lambda_remle=0, beta=0, se=0, p_wald=0, p_lrt=0, p_score=0; + double logl_H1=0.0, logl_H0=0.0, l_H0; + int c_phen; + string rs; //gene id + double d; + + //Calculate basic quantities + size_t n_index=(n_cvt+2+1)*(n_cvt+2)/2; + + gsl_vector *y=gsl_vector_alloc (U->size1); + gsl_vector *Uty=gsl_vector_alloc (U->size2); + gsl_matrix *Uab=gsl_matrix_alloc (U->size2, n_index); + gsl_vector *ab=gsl_vector_alloc (n_index); + + //header + getline(infile, line); + + for (size_t t=0; t<ng_total; t++) { + !safeGetline(infile, line).eof(); + if (t%d_pace==0 || t==ng_total-1) {ProgressBar ("Performing Analysis ", t, ng_total-1);} + ch_ptr=strtok ((char *)line.c_str(), " , \t"); + rs=ch_ptr; + + c_phen=0; + for (size_t i=0; i<indicator_idv.size(); ++i) { + ch_ptr=strtok (NULL, " , \t"); + if (indicator_idv[i]==0) {continue;} + + d=atof(ch_ptr); + gsl_vector_set(y, c_phen, d); + + c_phen++; + } + + time_start=clock(); + gsl_blas_dgemv (CblasTrans, 1.0, U, y, 0.0, Uty); + time_UtX+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0); + + //calculate null + time_start=clock(); + + gsl_matrix_set_zero (Uab); + + CalcUab (UtW, Uty, Uab); + FUNC_PARAM param0={false, ni_test, n_cvt, eval, Uab, ab, 0}; + + if (a_mode==2 || a_mode==3 || a_mode==4) { + CalcLambda('L', param0, l_min, l_max, n_region, l_H0, logl_H0); + } + + //calculate alternative + CalcUab(UtW, Uty, Utx, Uab); + FUNC_PARAM param1={false, ni_test, n_cvt, eval, Uab, ab, 0}; + + //3 is before 1 + if (a_mode==3 || a_mode==4) { + CalcRLScore (l_H0, param1, beta, se, p_score); + } + + if (a_mode==1 || a_mode==4) { + CalcLambda ('R', param1, l_min, l_max, n_region, lambda_remle, logl_H1); + CalcRLWald (lambda_remle, param1, beta, se, p_wald); + } + + if (a_mode==2 || a_mode==4) { + CalcLambda ('L', param1, l_min, l_max, n_region, lambda_mle, logl_H1); + p_lrt=gsl_cdf_chisq_Q (2.0*(logl_H1-logl_H0), 1); + } + + time_opt+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0); + + //store summary data + SUMSTAT SNPs={beta, se, lambda_remle, lambda_mle, p_wald, p_lrt, p_score}; + sumStat.push_back(SNPs); + } + cout<<endl; + + gsl_vector_free (y); + gsl_vector_free (Uty); + gsl_matrix_free (Uab); + gsl_vector_free (ab); + + infile.close(); + infile.clear(); + + return; +} + + + + + +void LMM::AnalyzeBimbam (const gsl_matrix *U, const gsl_vector *eval, const gsl_matrix *UtW, const gsl_vector *Uty, const gsl_matrix *W, const gsl_vector *y) +{ + igzstream infile (file_geno.c_str(), igzstream::in); +// ifstream infile (file_geno.c_str(), ifstream::in); + if (!infile) {cout<<"error reading genotype file:"<<file_geno<<endl; return;} + + clock_t time_start=clock(); + + string line; + char *ch_ptr; + + double lambda_mle=0, lambda_remle=0, beta=0, se=0, p_wald=0, p_lrt=0, p_score=0; + double logl_H1=0.0; + int n_miss, c_phen; + double geno, x_mean; + + //Calculate basic quantities + size_t n_index=(n_cvt+2+1)*(n_cvt+2)/2; + + gsl_vector *x=gsl_vector_alloc (U->size1); + gsl_vector *x_miss=gsl_vector_alloc (U->size1); + gsl_vector *Utx=gsl_vector_alloc (U->size2); + gsl_matrix *Uab=gsl_matrix_alloc (U->size2, n_index); + gsl_vector *ab=gsl_vector_alloc (n_index); + + gsl_matrix_set_zero (Uab); + CalcUab (UtW, Uty, Uab); +// if (e_mode!=0) { +// gsl_vector_set_zero (ab); +// Calcab (W, y, ab); +// } + + //start reading genotypes and analyze + for (size_t t=0; t<indicator_snp.size(); ++t) { +// if (t>1) {break;} + !safeGetline(infile, line).eof(); + if (t%d_pace==0 || t==(ns_total-1)) {ProgressBar ("Reading SNPs ", t, ns_total-1);} + if (indicator_snp[t]==0) {continue;} + + ch_ptr=strtok ((char *)line.c_str(), " , \t"); + ch_ptr=strtok (NULL, " , \t"); + ch_ptr=strtok (NULL, " , \t"); + + x_mean=0.0; c_phen=0; n_miss=0; + gsl_vector_set_zero(x_miss); + for (size_t i=0; i<ni_total; ++i) { + ch_ptr=strtok (NULL, " , \t"); + if (indicator_idv[i]==0) {continue;} + + if (strcmp(ch_ptr, "NA")==0) {gsl_vector_set(x_miss, c_phen, 0.0); n_miss++;} + else { + geno=atof(ch_ptr); + + gsl_vector_set(x, c_phen, geno); + gsl_vector_set(x_miss, c_phen, 1.0); + x_mean+=geno; + } + c_phen++; + } + + x_mean/=(double)(ni_test-n_miss); + + for (size_t i=0; i<ni_test; ++i) { + if (gsl_vector_get (x_miss, i)==0) {gsl_vector_set(x, i, x_mean);} + geno=gsl_vector_get(x, i); + if (x_mean>1) { + gsl_vector_set(x, i, 2-geno); + } + } + + + //calculate statistics + time_start=clock(); + gsl_blas_dgemv (CblasTrans, 1.0, U, x, 0.0, Utx); + time_UtX+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0); + + CalcUab(UtW, Uty, Utx, Uab); +// if (e_mode!=0) { +// Calcab (W, y, x, ab); +// } + + time_start=clock(); + FUNC_PARAM param1={false, ni_test, n_cvt, eval, Uab, ab, 0}; + + //3 is before 1 + if (a_mode==3 || a_mode==4) { + CalcRLScore (l_mle_null, param1, beta, se, p_score); + } + + if (a_mode==1 || a_mode==4) { + CalcLambda ('R', param1, l_min, l_max, n_region, lambda_remle, logl_H1); + CalcRLWald (lambda_remle, param1, beta, se, p_wald); + } + + if (a_mode==2 || a_mode==4) { + CalcLambda ('L', param1, l_min, l_max, n_region, lambda_mle, logl_H1); + p_lrt=gsl_cdf_chisq_Q (2.0*(logl_H1-logl_mle_H0), 1); + } + + if (x_mean>1) {beta*=-1;} + + time_opt+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0); + + //store summary data + SUMSTAT SNPs={beta, se, lambda_remle, lambda_mle, p_wald, p_lrt, p_score}; + sumStat.push_back(SNPs); + } + cout<<endl; + + gsl_vector_free (x); + gsl_vector_free (x_miss); + gsl_vector_free (Utx); + gsl_matrix_free (Uab); + gsl_vector_free (ab); + + infile.close(); + infile.clear(); + + return; +} + + + + + + + +void LMM::AnalyzePlink (const gsl_matrix *U, const gsl_vector *eval, const gsl_matrix *UtW, const gsl_vector *Uty, const gsl_matrix *W, const gsl_vector *y) +{ + string file_bed=file_bfile+".bed"; + ifstream infile (file_bed.c_str(), ios::binary); + if (!infile) {cout<<"error reading bed file:"<<file_bed<<endl; return;} + + clock_t time_start=clock(); + + char ch[1]; + bitset<8> b; + + double lambda_mle=0, lambda_remle=0, beta=0, se=0, p_wald=0, p_lrt=0, p_score=0; + double logl_H1=0.0; + int n_bit, n_miss, ci_total, ci_test; + double geno, x_mean; + + //Calculate basic quantities + size_t n_index=(n_cvt+2+1)*(n_cvt+2)/2; + + gsl_vector *x=gsl_vector_alloc (U->size1); + gsl_vector *Utx=gsl_vector_alloc (U->size2); + gsl_matrix *Uab=gsl_matrix_alloc (U->size2, n_index); + gsl_vector *ab=gsl_vector_alloc (n_index); + + gsl_matrix_set_zero (Uab); + CalcUab (UtW, Uty, Uab); +// if (e_mode!=0) { +// gsl_vector_set_zero (ab); +// Calcab (W, y, ab); +// } + + //calculate n_bit and c, the number of bit for each snp + if (ni_total%4==0) {n_bit=ni_total/4;} + else {n_bit=ni_total/4+1; } + + //print the first three majic numbers + for (int i=0; i<3; ++i) { + infile.read(ch,1); + b=ch[0]; + } + + + for (vector<SNPINFO>::size_type t=0; t<snpInfo.size(); ++t) { + if (t%d_pace==0 || t==snpInfo.size()-1) {ProgressBar ("Reading SNPs ", t, snpInfo.size()-1);} + if (indicator_snp[t]==0) {continue;} + + infile.seekg(t*n_bit+3); //n_bit, and 3 is the number of magic numbers + + //read genotypes + x_mean=0.0; n_miss=0; ci_total=0; ci_test=0; + for (int i=0; i<n_bit; ++i) { + infile.read(ch,1); + b=ch[0]; + for (size_t j=0; j<4; ++j) { //minor allele homozygous: 2.0; major: 0.0; + if ((i==(n_bit-1)) && ci_total==(int)ni_total) {break;} + if (indicator_idv[ci_total]==0) {ci_total++; continue;} + + if (b[2*j]==0) { + if (b[2*j+1]==0) {gsl_vector_set(x, ci_test, 2); x_mean+=2.0; } + else {gsl_vector_set(x, ci_test, 1); x_mean+=1.0; } + } + else { + if (b[2*j+1]==1) {gsl_vector_set(x, ci_test, 0); } + else {gsl_vector_set(x, ci_test, -9); n_miss++; } + } + + ci_total++; + ci_test++; + } + } + + x_mean/=(double)(ni_test-n_miss); + + for (size_t i=0; i<ni_test; ++i) { + geno=gsl_vector_get(x,i); + if (geno==-9) {gsl_vector_set(x, i, x_mean); geno=x_mean;} + if (x_mean>1) { + gsl_vector_set(x, i, 2-geno); + } + } + + //calculate statistics + time_start=clock(); + gsl_blas_dgemv (CblasTrans, 1.0, U, x, 0.0, Utx); + time_UtX+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0); + + CalcUab(UtW, Uty, Utx, Uab); +// if (e_mode!=0) { +// Calcab (W, y, x, ab); +// } + + time_start=clock(); + FUNC_PARAM param1={false, ni_test, n_cvt, eval, Uab, ab, 0}; + + //3 is before 1, for beta + if (a_mode==3 || a_mode==4) { + CalcRLScore (l_mle_null, param1, beta, se, p_score); + } + + if (a_mode==1 || a_mode==4) { + CalcLambda ('R', param1, l_min, l_max, n_region, lambda_remle, logl_H1); + CalcRLWald (lambda_remle, param1, beta, se, p_wald); + } + + if (a_mode==2 || a_mode==4) { + CalcLambda ('L', param1, l_min, l_max, n_region, lambda_mle, logl_H1); + p_lrt=gsl_cdf_chisq_Q (2.0*(logl_H1-logl_mle_H0), 1); + } + + if (x_mean>1) {beta*=-1;} + + time_opt+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0); + + //store summary data + SUMSTAT SNPs={beta, se, lambda_remle, lambda_mle, p_wald, p_lrt, p_score}; + sumStat.push_back(SNPs); + } + cout<<endl; + + gsl_vector_free (x); + gsl_vector_free (Utx); + gsl_matrix_free (Uab); + gsl_vector_free (ab); + + infile.close(); + infile.clear(); + + return; +} + + + + + +void MatrixCalcLR (const gsl_matrix *U, const gsl_matrix *UtX, const gsl_vector *Uty, const gsl_vector *K_eval, const double l_min, const double l_max, const size_t n_region, vector<pair<size_t, double> > &pos_loglr) +{ + double logl_H0, logl_H1, log_lr, lambda0, lambda1; + + gsl_vector *w=gsl_vector_alloc (Uty->size); + gsl_matrix *Utw=gsl_matrix_alloc (Uty->size, 1); + gsl_matrix *Uab=gsl_matrix_alloc (Uty->size, 6); + gsl_vector *ab=gsl_vector_alloc (6); + + gsl_vector_set_zero(ab); + gsl_vector_set_all (w, 1.0); + gsl_vector_view Utw_col=gsl_matrix_column (Utw, 0); + gsl_blas_dgemv (CblasTrans, 1.0, U, w, 0.0, &Utw_col.vector); + + CalcUab (Utw, Uty, Uab) ; + FUNC_PARAM param0={true, Uty->size, 1, K_eval, Uab, ab, 0}; + + CalcLambda('L', param0, l_min, l_max, n_region, lambda0, logl_H0); + + for (size_t i=0; i<UtX->size2; ++i) { + gsl_vector_const_view UtX_col=gsl_matrix_const_column (UtX, i); + CalcUab(Utw, Uty, &UtX_col.vector, Uab); + FUNC_PARAM param1={false, UtX->size1, 1, K_eval, Uab, ab, 0}; + + CalcLambda ('L', param1, l_min, l_max, n_region, lambda1, logl_H1); + log_lr=logl_H1-logl_H0; + + pos_loglr.push_back(make_pair(i,log_lr) ); + } + + gsl_vector_free (w); + gsl_matrix_free (Utw); + gsl_matrix_free (Uab); + gsl_vector_free (ab); + + return; +} + + + + +void CalcLambda (const char func_name, FUNC_PARAM ¶ms, const double l_min, const double l_max, const size_t n_region, double &lambda, double &logf) +{ + if (func_name!='R' && func_name!='L' && func_name!='r' && func_name!='l') {cout<<"func_name only takes 'R' or 'L': 'R' for log-restricted likelihood, 'L' for log-likelihood."<<endl; return;} + + vector<pair<double, double> > lambda_lh; + + //evaluate first order derivates in different intervals + double lambda_l, lambda_h, lambda_interval=log(l_max/l_min)/(double)n_region; + double dev1_l, dev1_h, logf_l, logf_h; + + for (size_t i=0; i<n_region; ++i) { + lambda_l=l_min*exp(lambda_interval*i); + lambda_h=l_min*exp(lambda_interval*(i+1.0)); + + if (func_name=='R' || func_name=='r') { + dev1_l=LogRL_dev1 (lambda_l, ¶ms); + dev1_h=LogRL_dev1 (lambda_h, ¶ms); + } + else { + dev1_l=LogL_dev1 (lambda_l, ¶ms); + dev1_h=LogL_dev1 (lambda_h, ¶ms); + } + + if (dev1_l*dev1_h<=0) { + lambda_lh.push_back(make_pair(lambda_l, lambda_h)); + } + } + + //if derivates do not change signs in any interval + if (lambda_lh.empty()) { + if (func_name=='R' || func_name=='r') { + logf_l=LogRL_f (l_min, ¶ms); + logf_h=LogRL_f (l_max, ¶ms); + } + else { + logf_l=LogL_f (l_min, ¶ms); + logf_h=LogL_f (l_max, ¶ms); + } + + if (logf_l>=logf_h) {lambda=l_min; logf=logf_l;} else {lambda=l_max; logf=logf_h;} + } + else { + //if derivates change signs + int status; + int iter=0, max_iter=100; + double l, l_temp; + + gsl_function F; + gsl_function_fdf FDF; + + F.params=¶ms; + FDF.params=¶ms; + + if (func_name=='R' || func_name=='r') { + F.function=&LogRL_dev1; + FDF.f=&LogRL_dev1; + FDF.df=&LogRL_dev2; + FDF.fdf=&LogRL_dev12; + } + else { + F.function=&LogL_dev1; + FDF.f=&LogL_dev1; + FDF.df=&LogL_dev2; + FDF.fdf=&LogL_dev12; + } + + const gsl_root_fsolver_type *T_f; + gsl_root_fsolver *s_f; + T_f=gsl_root_fsolver_brent; + s_f=gsl_root_fsolver_alloc (T_f); + + const gsl_root_fdfsolver_type *T_fdf; + gsl_root_fdfsolver *s_fdf; + T_fdf=gsl_root_fdfsolver_newton; + s_fdf=gsl_root_fdfsolver_alloc(T_fdf); + + for (vector<double>::size_type i=0; i<lambda_lh.size(); ++i) { + lambda_l=lambda_lh[i].first; lambda_h=lambda_lh[i].second; + + gsl_root_fsolver_set (s_f, &F, lambda_l, lambda_h); + + do { + iter++; + status=gsl_root_fsolver_iterate (s_f); + l=gsl_root_fsolver_root (s_f); + lambda_l=gsl_root_fsolver_x_lower (s_f); + lambda_h=gsl_root_fsolver_x_upper (s_f); + status=gsl_root_test_interval (lambda_l, lambda_h, 0, 1e-1); + } + while (status==GSL_CONTINUE && iter<max_iter); + + iter=0; + + gsl_root_fdfsolver_set (s_fdf, &FDF, l); + + do { + iter++; + status=gsl_root_fdfsolver_iterate (s_fdf); + l_temp=l; + l=gsl_root_fdfsolver_root (s_fdf); + status=gsl_root_test_delta (l, l_temp, 0, 1e-5); + } + while (status==GSL_CONTINUE && iter<max_iter && l>l_min && l<l_max); + + l=l_temp; + if (l<l_min) {l=l_min;} + if (l>l_max) {l=l_max;} + if (func_name=='R' || func_name=='r') {logf_l=LogRL_f (l, ¶ms);} else {logf_l=LogL_f (l, ¶ms);} + + if (i==0) {logf=logf_l; lambda=l;} + else if (logf<logf_l) {logf=logf_l; lambda=l;} + else {} + } + gsl_root_fsolver_free (s_f); + gsl_root_fdfsolver_free (s_fdf); + + if (func_name=='R' || func_name=='r') { + logf_l=LogRL_f (l_min, ¶ms); + logf_h=LogRL_f (l_max, ¶ms); + } + else { + logf_l=LogL_f (l_min, ¶ms); + logf_h=LogL_f (l_max, ¶ms); + } + + if (logf_l>logf) {lambda=l_min; logf=logf_l;} + if (logf_h>logf) {lambda=l_max; logf=logf_h;} + } + + return; +} + + + + + +//calculate lambda in the null model +void CalcLambda (const char func_name, const gsl_vector *eval, const gsl_matrix *UtW, const gsl_vector *Uty, const double l_min, const double l_max, const size_t n_region, double &lambda, double &logl_H0) +{ + if (func_name!='R' && func_name!='L' && func_name!='r' && func_name!='l') {cout<<"func_name only takes 'R' or 'L': 'R' for log-restricted likelihood, 'L' for log-likelihood."<<endl; return;} + + size_t n_cvt=UtW->size2, ni_test=UtW->size1; + size_t n_index=(n_cvt+2+1)*(n_cvt+2)/2; + + gsl_matrix *Uab=gsl_matrix_alloc (ni_test, n_index); + gsl_vector *ab=gsl_vector_alloc (n_index); + + gsl_matrix_set_zero (Uab); + CalcUab (UtW, Uty, Uab); +// if (e_mode!=0) { +// gsl_vector_set_zero (ab); +// Calcab (W, y, ab); +// } + + FUNC_PARAM param0={true, ni_test, n_cvt, eval, Uab, ab, 0}; + + CalcLambda(func_name, param0, l_min, l_max, n_region, lambda, logl_H0); + + gsl_matrix_free(Uab); + gsl_vector_free(ab); + + return; +} + + +//obtain REMLE estimate for PVE using lambda_remle +void CalcPve (const gsl_vector *eval, const gsl_matrix *UtW, const gsl_vector *Uty, const double lambda, const double trace_G, double &pve, double &pve_se) +{ + size_t n_cvt=UtW->size2, ni_test=UtW->size1; + size_t n_index=(n_cvt+2+1)*(n_cvt+2)/2; + + gsl_matrix *Uab=gsl_matrix_alloc (ni_test, n_index); + gsl_vector *ab=gsl_vector_alloc (n_index); + + gsl_matrix_set_zero (Uab); + CalcUab (UtW, Uty, Uab); + // if (e_mode!=0) { + // gsl_vector_set_zero (ab); + // Calcab (W, y, ab); + // } + + FUNC_PARAM param0={true, ni_test, n_cvt, eval, Uab, ab, 0}; + + double se=sqrt(-1.0/LogRL_dev2 (lambda, ¶m0)); + + pve=trace_G*lambda/(trace_G*lambda+1.0); + pve_se=trace_G/((trace_G*lambda+1.0)*(trace_G*lambda+1.0))*se; + + gsl_matrix_free (Uab); + gsl_vector_free (ab); + return; +} + +//obtain REML estimate for Vg and Ve using lambda_remle +//obtain beta and se(beta) for coefficients +//ab is not used when e_mode==0 +void CalcLmmVgVeBeta (const gsl_vector *eval, const gsl_matrix *UtW, const gsl_vector *Uty, const double lambda, double &vg, double &ve, gsl_vector *beta, gsl_vector *se_beta) +{ + size_t n_cvt=UtW->size2, ni_test=UtW->size1; + size_t n_index=(n_cvt+2+1)*(n_cvt+2)/2; + + gsl_matrix *Uab=gsl_matrix_alloc (ni_test, n_index); + gsl_vector *ab=gsl_vector_alloc (n_index); + gsl_matrix *Pab=gsl_matrix_alloc (n_cvt+2, n_index); + gsl_vector *Hi_eval=gsl_vector_alloc(eval->size); + gsl_vector *v_temp=gsl_vector_alloc(eval->size); + gsl_matrix *HiW=gsl_matrix_alloc(eval->size, UtW->size2); + gsl_matrix *WHiW=gsl_matrix_alloc(UtW->size2, UtW->size2); + gsl_vector *WHiy=gsl_vector_alloc(UtW->size2); + gsl_matrix *Vbeta=gsl_matrix_alloc(UtW->size2, UtW->size2); + + gsl_matrix_set_zero (Uab); + CalcUab (UtW, Uty, Uab); + + gsl_vector_memcpy (v_temp, eval); + gsl_vector_scale (v_temp, lambda); + gsl_vector_set_all (Hi_eval, 1.0); + gsl_vector_add_constant (v_temp, 1.0); + gsl_vector_div (Hi_eval, v_temp); + + //calculate beta + gsl_matrix_memcpy (HiW, UtW); + for (size_t i=0; i<UtW->size2; i++) { + gsl_vector_view HiW_col=gsl_matrix_column(HiW, i); + gsl_vector_mul(&HiW_col.vector, Hi_eval); + } + gsl_blas_dgemm (CblasTrans, CblasNoTrans, 1.0, HiW, UtW, 0.0, WHiW); + gsl_blas_dgemv (CblasTrans, 1.0, HiW, Uty, 0.0, WHiy); + + int sig; + gsl_permutation * pmt=gsl_permutation_alloc (UtW->size2); + LUDecomp (WHiW, pmt, &sig); + LUSolve (WHiW, pmt, WHiy, beta); + LUInvert (WHiW, pmt, Vbeta); + + //calculate vg and ve + CalcPab (n_cvt, 0, Hi_eval, Uab, ab, Pab); + + size_t index_yy=GetabIndex (n_cvt+2, n_cvt+2, n_cvt); + double P_yy=gsl_matrix_get (Pab, n_cvt, index_yy); + + ve=P_yy/(double)(ni_test-n_cvt); + vg=ve*lambda; + + //with ve, calculate se(beta) + gsl_matrix_scale(Vbeta, ve); + + //obtain se_beta + for (size_t i=0; i<Vbeta->size1; i++) { + gsl_vector_set (se_beta, i, sqrt(gsl_matrix_get(Vbeta, i, i) ) ); + } + + gsl_matrix_free(Uab); + gsl_matrix_free(Pab); + gsl_vector_free(ab); + gsl_vector_free(Hi_eval); + gsl_vector_free(v_temp); + gsl_matrix_free(HiW); + gsl_matrix_free(WHiW); + gsl_vector_free(WHiy); + gsl_matrix_free(Vbeta); + + gsl_permutation_free(pmt); + return; +} + |