aboutsummaryrefslogtreecommitdiff
path: root/src/lmm.cpp
diff options
context:
space:
mode:
authorPjotr Prins2017-08-02 08:46:58 +0000
committerPjotr Prins2017-08-02 08:46:58 +0000
commit3935ba39d30666dd7d4a831155631847c77b70c4 (patch)
treec45fc682b473618a219e324d5c85b5e1f9361d0c /src/lmm.cpp
parent84360c191f418bf8682b35e0c8235fcc3bd19a06 (diff)
downloadpangemma-3935ba39d30666dd7d4a831155631847c77b70c4.tar.gz
Massive patch using LLVM coding style. It was generated with:
clang-format -style=LLVM -i *.cpp *.h Please set your editor to replace tabs with spaces and use indentation of 2 spaces.
Diffstat (limited to 'src/lmm.cpp')
-rw-r--r--src/lmm.cpp4813
1 files changed, 2455 insertions, 2358 deletions
diff --git a/src/lmm.cpp b/src/lmm.cpp
index 2b5ca84..3f51073 100644
--- a/src/lmm.cpp
+++ b/src/lmm.cpp
@@ -16,2488 +16,2585 @@
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
-#include <iostream>
#include <fstream>
+#include <iostream>
#include <sstream>
-#include <iomanip>
+#include <assert.h>
+#include <bitset>
#include <cmath>
+#include <cstring>
+#include <iomanip>
#include <iostream>
-#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
-#include <bitset>
-#include <cstring>
-#include "gsl/gsl_vector.h"
-#include "gsl/gsl_matrix.h"
-#include "gsl/gsl_linalg.h"
#include "gsl/gsl_blas.h"
#include "gsl/gsl_cdf.h"
-#include "gsl/gsl_roots.h"
-#include "gsl/gsl_min.h"
#include "gsl/gsl_integration.h"
+#include "gsl/gsl_linalg.h"
+#include "gsl/gsl_matrix.h"
+#include "gsl/gsl_min.h"
+#include "gsl/gsl_roots.h"
+#include "gsl/gsl_vector.h"
-#include "io.h"
#include "eigenlib.h"
-#include "lapack.h"
#include "gzstream.h"
+#include "io.h"
+#include "lapack.h"
#include "lmm.h"
using namespace std;
-void LMM::CopyFromParam (PARAM &cPar) {
- a_mode=cPar.a_mode;
- d_pace=cPar.d_pace;
+void LMM::CopyFromParam(PARAM &cPar) {
+ a_mode = cPar.a_mode;
+ d_pace = cPar.d_pace;
- file_bfile=cPar.file_bfile;
- file_geno=cPar.file_geno;
- file_out=cPar.file_out;
- path_out=cPar.path_out;
- file_gene=cPar.file_gene;
+ file_bfile = cPar.file_bfile;
+ file_geno = cPar.file_geno;
+ file_out = cPar.file_out;
+ path_out = cPar.path_out;
+ file_gene = cPar.file_gene;
- // WJA added.
- file_oxford=cPar.file_oxford;
+ // WJA added.
+ file_oxford = cPar.file_oxford;
- l_min=cPar.l_min;
- l_max=cPar.l_max;
- n_region=cPar.n_region;
- l_mle_null=cPar.l_mle_null;
- logl_mle_H0=cPar.logl_mle_H0;
+ l_min = cPar.l_min;
+ l_max = cPar.l_max;
+ n_region = cPar.n_region;
+ l_mle_null = cPar.l_mle_null;
+ logl_mle_H0 = cPar.logl_mle_H0;
- time_UtX=0.0;
- time_opt=0.0;
+ time_UtX = 0.0;
+ time_opt = 0.0;
- ni_total=cPar.ni_total;
- ns_total=cPar.ns_total;
- ni_test=cPar.ni_test;
- ns_test=cPar.ns_test;
- n_cvt=cPar.n_cvt;
+ ni_total = cPar.ni_total;
+ ns_total = cPar.ns_total;
+ ni_test = cPar.ni_test;
+ ns_test = cPar.ns_test;
+ n_cvt = cPar.n_cvt;
- ng_total=cPar.ng_total;
- ng_test=0;
+ ng_total = cPar.ng_total;
+ ng_test = 0;
- indicator_idv=cPar.indicator_idv;
- indicator_snp=cPar.indicator_snp;
- snpInfo=cPar.snpInfo;
+ indicator_idv = cPar.indicator_idv;
+ indicator_snp = cPar.indicator_snp;
+ snpInfo = cPar.snpInfo;
- return;
+ return;
}
-void LMM::CopyToParam (PARAM &cPar) {
- cPar.time_UtX=time_UtX;
- cPar.time_opt=time_opt;
+void LMM::CopyToParam(PARAM &cPar) {
+ cPar.time_UtX = time_UtX;
+ cPar.time_opt = time_opt;
- cPar.ng_test=ng_test;
+ cPar.ng_test = ng_test;
- return;
+ return;
}
-void LMM::WriteFiles () {
- string file_str;
- file_str=path_out+"/"+file_out;
- file_str+=".assoc.txt";
-
- ofstream outfile (file_str.c_str(), ofstream::out);
- if (!outfile) {
- cout<<"error writing file: "<<file_str.c_str()<<endl;
- return;
- }
-
- if (!file_gene.empty()) {
- outfile<<"geneID"<<"\t";
-
- if (a_mode==1) {
- outfile<<"beta"<<"\t"<<"se"<<"\t"<<"l_remle"<<
- "\t"<<"p_wald"<<endl;
- } else if (a_mode==2) {
- outfile<<"l_mle"<<"\t"<<"p_lrt"<<endl;
- } else if (a_mode==3) {
- outfile<<"beta"<<"\t"<<"se"<<"\t"<<"p_score"<<endl;
- } else if (a_mode==4) {
- outfile<<"beta"<<"\t"<<"se"<<"\t"<<"l_remle"<<
- "\t"<<"l_mle"<<"\t"<<"p_wald"<<"\t"<<"p_lrt"<<
- "\t"<<"p_score"<<endl;
- } else {}
-
- for (vector<SUMSTAT>::size_type t=0; t<sumStat.size(); ++t) {
- outfile<<snpInfo[t].rs_number<<"\t";
-
- if (a_mode==1) {
- outfile<<scientific<<setprecision(6)<<
- sumStat[t].beta<<"\t"<<sumStat[t].se<<"\t"<<
- sumStat[t].lambda_remle<<"\t"<<
- sumStat[t].p_wald <<endl;
- } else if (a_mode==2) {
- outfile<<scientific<<setprecision(6)<<
- sumStat[t].lambda_mle<<"\t"<<
- sumStat[t].p_lrt<<endl;
- } else if (a_mode==3) {
- outfile<<scientific<<setprecision(6)<<
- sumStat[t].beta<<"\t"<<sumStat[t].se<<
- "\t"<<sumStat[t].p_score<<endl;
- } else if (a_mode==4) {
- outfile<<scientific<<setprecision(6)<<
- sumStat[t].beta<<"\t"<<sumStat[t].se<<"\t"<<
- sumStat[t].lambda_remle<<"\t"<<
- sumStat[t].lambda_mle<<"\t"<<
- sumStat[t].p_wald <<"\t"<<
- sumStat[t].p_lrt<<"\t"<<
- sumStat[t].p_score<<endl;
- } else {}
- }
- } else {
- outfile<<"chr"<<"\t"<<"rs"<<"\t"<<"ps"<<"\t"<<"n_miss"<<"\t"
- <<"allele1"<<"\t"<<"allele0"<<"\t"<<"af"<<"\t";
-
- if (a_mode==1) {
- outfile<<"beta"<<"\t"<<"se"<<"\t"<<"l_remle"<<"\t"
- <<"p_wald"<<endl;
- } else if (a_mode==2) {
- outfile<<"l_mle"<<"\t"<<"p_lrt"<<endl;
- } else if (a_mode==3) {
- outfile<<"beta"<<"\t"<<"se"<<"\t"<<"p_score"<<endl;
- } else if (a_mode==4) {
- outfile<<"beta"<<"\t"<<"se"<<"\t"<<"l_remle"<<"\t"
- <<"l_mle"<<"\t"<<"p_wald"<<"\t"<<"p_lrt"<<
- "\t"<<"p_score"<<endl;
- } else {}
-
- size_t t=0;
- for (size_t i=0; i<snpInfo.size(); ++i) {
- if (indicator_snp[i]==0) {continue;}
-
- outfile<<snpInfo[i].chr<<"\t"<<snpInfo[i].rs_number<<
- "\t"<<snpInfo[i].base_position<<"\t"<<
- snpInfo[i].n_miss<<"\t"<<snpInfo[i].a_minor<<"\t"<<
- snpInfo[i].a_major<<"\t"<<fixed<<setprecision(3)<<
- snpInfo[i].maf<<"\t";
-
- if (a_mode==1) {
- outfile<<scientific<<setprecision(6)<<
- sumStat[t].beta<<"\t"<<sumStat[t].se<<
- "\t"<<sumStat[t].lambda_remle<<"\t"<<
- sumStat[t].p_wald <<endl;
- } else if (a_mode==2) {
- outfile<<scientific<<setprecision(6)<<
- sumStat[t].lambda_mle<<"\t"<<
- sumStat[t].p_lrt<<endl;
- } else if (a_mode==3) {
- outfile<<scientific<<setprecision(6)<<
- sumStat[t].beta<<"\t"<<sumStat[t].se<<
- "\t"<<sumStat[t].p_score<<endl;
- } else if (a_mode==4) {
- outfile<<scientific<<setprecision(6)<<
- sumStat[t].beta<<"\t"<<sumStat[t].se<<
- "\t"<<sumStat[t].lambda_remle<<"\t"<<
- sumStat[t].lambda_mle<<"\t"<<
- sumStat[t].p_wald <<"\t"<<
- sumStat[t].p_lrt<<"\t"<<
- sumStat[t].p_score<<endl;
- } else {}
- t++;
- }
- }
-
- outfile.close();
- outfile.clear();
- return;
+void LMM::WriteFiles() {
+ string file_str;
+ file_str = path_out + "/" + file_out;
+ file_str += ".assoc.txt";
+
+ ofstream outfile(file_str.c_str(), ofstream::out);
+ if (!outfile) {
+ cout << "error writing file: " << file_str.c_str() << endl;
+ return;
+ }
+
+ if (!file_gene.empty()) {
+ outfile << "geneID"
+ << "\t";
+
+ if (a_mode == 1) {
+ outfile << "beta"
+ << "\t"
+ << "se"
+ << "\t"
+ << "l_remle"
+ << "\t"
+ << "p_wald" << endl;
+ } else if (a_mode == 2) {
+ outfile << "l_mle"
+ << "\t"
+ << "p_lrt" << endl;
+ } else if (a_mode == 3) {
+ outfile << "beta"
+ << "\t"
+ << "se"
+ << "\t"
+ << "p_score" << endl;
+ } else if (a_mode == 4) {
+ outfile << "beta"
+ << "\t"
+ << "se"
+ << "\t"
+ << "l_remle"
+ << "\t"
+ << "l_mle"
+ << "\t"
+ << "p_wald"
+ << "\t"
+ << "p_lrt"
+ << "\t"
+ << "p_score" << endl;
+ } else {
+ }
+
+ for (vector<SUMSTAT>::size_type t = 0; t < sumStat.size(); ++t) {
+ outfile << snpInfo[t].rs_number << "\t";
+
+ if (a_mode == 1) {
+ outfile << scientific << setprecision(6) << sumStat[t].beta << "\t"
+ << sumStat[t].se << "\t" << sumStat[t].lambda_remle << "\t"
+ << sumStat[t].p_wald << endl;
+ } else if (a_mode == 2) {
+ outfile << scientific << setprecision(6) << sumStat[t].lambda_mle
+ << "\t" << sumStat[t].p_lrt << endl;
+ } else if (a_mode == 3) {
+ outfile << scientific << setprecision(6) << sumStat[t].beta << "\t"
+ << sumStat[t].se << "\t" << sumStat[t].p_score << endl;
+ } else if (a_mode == 4) {
+ outfile << scientific << setprecision(6) << sumStat[t].beta << "\t"
+ << sumStat[t].se << "\t" << sumStat[t].lambda_remle << "\t"
+ << sumStat[t].lambda_mle << "\t" << sumStat[t].p_wald << "\t"
+ << sumStat[t].p_lrt << "\t" << sumStat[t].p_score << endl;
+ } else {
+ }
+ }
+ } else {
+ outfile << "chr"
+ << "\t"
+ << "rs"
+ << "\t"
+ << "ps"
+ << "\t"
+ << "n_miss"
+ << "\t"
+ << "allele1"
+ << "\t"
+ << "allele0"
+ << "\t"
+ << "af"
+ << "\t";
+
+ if (a_mode == 1) {
+ outfile << "beta"
+ << "\t"
+ << "se"
+ << "\t"
+ << "l_remle"
+ << "\t"
+ << "p_wald" << endl;
+ } else if (a_mode == 2) {
+ outfile << "l_mle"
+ << "\t"
+ << "p_lrt" << endl;
+ } else if (a_mode == 3) {
+ outfile << "beta"
+ << "\t"
+ << "se"
+ << "\t"
+ << "p_score" << endl;
+ } else if (a_mode == 4) {
+ outfile << "beta"
+ << "\t"
+ << "se"
+ << "\t"
+ << "l_remle"
+ << "\t"
+ << "l_mle"
+ << "\t"
+ << "p_wald"
+ << "\t"
+ << "p_lrt"
+ << "\t"
+ << "p_score" << endl;
+ } else {
+ }
+
+ size_t t = 0;
+ for (size_t i = 0; i < snpInfo.size(); ++i) {
+ if (indicator_snp[i] == 0) {
+ continue;
+ }
+
+ outfile << snpInfo[i].chr << "\t" << snpInfo[i].rs_number << "\t"
+ << snpInfo[i].base_position << "\t" << snpInfo[i].n_miss << "\t"
+ << snpInfo[i].a_minor << "\t" << snpInfo[i].a_major << "\t"
+ << fixed << setprecision(3) << snpInfo[i].maf << "\t";
+
+ if (a_mode == 1) {
+ outfile << scientific << setprecision(6) << sumStat[t].beta << "\t"
+ << sumStat[t].se << "\t" << sumStat[t].lambda_remle << "\t"
+ << sumStat[t].p_wald << endl;
+ } else if (a_mode == 2) {
+ outfile << scientific << setprecision(6) << sumStat[t].lambda_mle
+ << "\t" << sumStat[t].p_lrt << endl;
+ } else if (a_mode == 3) {
+ outfile << scientific << setprecision(6) << sumStat[t].beta << "\t"
+ << sumStat[t].se << "\t" << sumStat[t].p_score << endl;
+ } else if (a_mode == 4) {
+ outfile << scientific << setprecision(6) << sumStat[t].beta << "\t"
+ << sumStat[t].se << "\t" << sumStat[t].lambda_remle << "\t"
+ << sumStat[t].lambda_mle << "\t" << sumStat[t].p_wald << "\t"
+ << sumStat[t].p_lrt << "\t" << sumStat[t].p_score << endl;
+ } else {
+ }
+ t++;
+ }
+ }
+
+ outfile.close();
+ outfile.clear();
+ return;
}
-void CalcPab (const size_t n_cvt, const size_t e_mode,
- const gsl_vector *Hi_eval, const gsl_matrix *Uab,
- const gsl_vector *ab, gsl_matrix *Pab) {
- size_t index_ab, index_aw, index_bw, index_ww;
- double p_ab;
- double ps_ab, ps_aw, ps_bw, ps_ww;
-
- for (size_t p=0; p<=n_cvt+1; ++p) {
- for (size_t a=p+1; a<=n_cvt+2; ++a) {
- for (size_t b=a; b<=n_cvt+2; ++b) {
- index_ab=GetabIndex (a, b, n_cvt);
- if (p==0) {
- gsl_vector_const_view Uab_col=
- gsl_matrix_const_column (Uab, index_ab);
- gsl_blas_ddot(Hi_eval,&Uab_col.vector,&p_ab);
- if (e_mode!=0) {
- p_ab=gsl_vector_get (ab, index_ab)-p_ab;
- }
- gsl_matrix_set (Pab, 0, index_ab, p_ab);
- }
- else {
- index_aw=GetabIndex (a, p, n_cvt);
- index_bw=GetabIndex (b, p, n_cvt);
- index_ww=GetabIndex (p, p, n_cvt);
-
- ps_ab=gsl_matrix_get (Pab, p-1, index_ab);
- ps_aw=gsl_matrix_get (Pab, p-1, index_aw);
- ps_bw=gsl_matrix_get (Pab, p-1, index_bw);
- ps_ww=gsl_matrix_get (Pab, p-1, index_ww);
-
- p_ab=ps_ab-ps_aw*ps_bw/ps_ww;
- gsl_matrix_set (Pab, p, index_ab, p_ab);
- }
- }
- }
- }
- return;
+void CalcPab(const size_t n_cvt, const size_t e_mode, const gsl_vector *Hi_eval,
+ const gsl_matrix *Uab, const gsl_vector *ab, gsl_matrix *Pab) {
+ size_t index_ab, index_aw, index_bw, index_ww;
+ double p_ab;
+ double ps_ab, ps_aw, ps_bw, ps_ww;
+
+ for (size_t p = 0; p <= n_cvt + 1; ++p) {
+ for (size_t a = p + 1; a <= n_cvt + 2; ++a) {
+ for (size_t b = a; b <= n_cvt + 2; ++b) {
+ index_ab = GetabIndex(a, b, n_cvt);
+ if (p == 0) {
+ gsl_vector_const_view Uab_col =
+ gsl_matrix_const_column(Uab, index_ab);
+ gsl_blas_ddot(Hi_eval, &Uab_col.vector, &p_ab);
+ if (e_mode != 0) {
+ p_ab = gsl_vector_get(ab, index_ab) - p_ab;
+ }
+ gsl_matrix_set(Pab, 0, index_ab, p_ab);
+ } else {
+ index_aw = GetabIndex(a, p, n_cvt);
+ index_bw = GetabIndex(b, p, n_cvt);
+ index_ww = GetabIndex(p, p, n_cvt);
+
+ ps_ab = gsl_matrix_get(Pab, p - 1, index_ab);
+ ps_aw = gsl_matrix_get(Pab, p - 1, index_aw);
+ ps_bw = gsl_matrix_get(Pab, p - 1, index_bw);
+ ps_ww = gsl_matrix_get(Pab, p - 1, index_ww);
+
+ p_ab = ps_ab - ps_aw * ps_bw / ps_ww;
+ gsl_matrix_set(Pab, p, index_ab, p_ab);
+ }
+ }
+ }
+ }
+ return;
}
-void CalcPPab (const size_t n_cvt, const size_t e_mode,
- const gsl_vector *HiHi_eval, const gsl_matrix *Uab,
- const gsl_vector *ab, const gsl_matrix *Pab, gsl_matrix *PPab) {
- size_t index_ab, index_aw, index_bw, index_ww;
- double p2_ab;
- double ps2_ab, ps_aw, ps_bw, ps_ww, ps2_aw, ps2_bw, ps2_ww;
-
- for (size_t p=0; p<=n_cvt+1; ++p) {
- for (size_t a=p+1; a<=n_cvt+2; ++a) {
- for (size_t b=a; b<=n_cvt+2; ++b) {
- index_ab=GetabIndex (a, b, n_cvt);
- if (p==0) {
- gsl_vector_const_view Uab_col=
- gsl_matrix_const_column (Uab, index_ab);
- gsl_blas_ddot (HiHi_eval, &Uab_col.vector,
- &p2_ab);
- if (e_mode!=0) {
- p2_ab=p2_ab-gsl_vector_get(ab,index_ab) +
- 2.0*gsl_matrix_get (Pab, 0, index_ab);
- }
- gsl_matrix_set (PPab, 0, index_ab, p2_ab);
- }
- else {
- index_aw=GetabIndex (a, p, n_cvt);
- index_bw=GetabIndex (b, p, n_cvt);
- index_ww=GetabIndex (p, p, n_cvt);
-
- ps2_ab=gsl_matrix_get (PPab, p-1, index_ab);
- ps_aw=gsl_matrix_get (Pab, p-1, index_aw);
- ps_bw=gsl_matrix_get (Pab, p-1, index_bw);
- ps_ww=gsl_matrix_get (Pab, p-1, index_ww);
- ps2_aw=gsl_matrix_get (PPab, p-1, index_aw);
- ps2_bw=gsl_matrix_get (PPab, p-1, index_bw);
- ps2_ww=gsl_matrix_get (PPab, p-1, index_ww);
-
- p2_ab=ps2_ab+ps_aw*ps_bw*
- ps2_ww/(ps_ww*ps_ww);
- p2_ab-=(ps_aw*ps2_bw+ps_bw*ps2_aw)/ps_ww;
- gsl_matrix_set (PPab, p, index_ab, p2_ab);
- }
- }
- }
- }
- return;
+void CalcPPab(const size_t n_cvt, const size_t e_mode,
+ const gsl_vector *HiHi_eval, const gsl_matrix *Uab,
+ const gsl_vector *ab, const gsl_matrix *Pab, gsl_matrix *PPab) {
+ size_t index_ab, index_aw, index_bw, index_ww;
+ double p2_ab;
+ double ps2_ab, ps_aw, ps_bw, ps_ww, ps2_aw, ps2_bw, ps2_ww;
+
+ for (size_t p = 0; p <= n_cvt + 1; ++p) {
+ for (size_t a = p + 1; a <= n_cvt + 2; ++a) {
+ for (size_t b = a; b <= n_cvt + 2; ++b) {
+ index_ab = GetabIndex(a, b, n_cvt);
+ if (p == 0) {
+ gsl_vector_const_view Uab_col =
+ gsl_matrix_const_column(Uab, index_ab);
+ gsl_blas_ddot(HiHi_eval, &Uab_col.vector, &p2_ab);
+ if (e_mode != 0) {
+ p2_ab = p2_ab - gsl_vector_get(ab, index_ab) +
+ 2.0 * gsl_matrix_get(Pab, 0, index_ab);
+ }
+ gsl_matrix_set(PPab, 0, index_ab, p2_ab);
+ } else {
+ index_aw = GetabIndex(a, p, n_cvt);
+ index_bw = GetabIndex(b, p, n_cvt);
+ index_ww = GetabIndex(p, p, n_cvt);
+
+ ps2_ab = gsl_matrix_get(PPab, p - 1, index_ab);
+ ps_aw = gsl_matrix_get(Pab, p - 1, index_aw);
+ ps_bw = gsl_matrix_get(Pab, p - 1, index_bw);
+ ps_ww = gsl_matrix_get(Pab, p - 1, index_ww);
+ ps2_aw = gsl_matrix_get(PPab, p - 1, index_aw);
+ ps2_bw = gsl_matrix_get(PPab, p - 1, index_bw);
+ ps2_ww = gsl_matrix_get(PPab, p - 1, index_ww);
+
+ p2_ab = ps2_ab + ps_aw * ps_bw * ps2_ww / (ps_ww * ps_ww);
+ p2_ab -= (ps_aw * ps2_bw + ps_bw * ps2_aw) / ps_ww;
+ gsl_matrix_set(PPab, p, index_ab, p2_ab);
+ }
+ }
+ }
+ }
+ return;
}
-void CalcPPPab (const size_t n_cvt, const size_t e_mode,
- const gsl_vector *HiHiHi_eval, const gsl_matrix *Uab,
- const gsl_vector *ab, const gsl_matrix *Pab,
- const gsl_matrix *PPab, gsl_matrix *PPPab) {
- size_t index_ab, index_aw, index_bw, index_ww;
- double p3_ab;
- double ps3_ab, ps_aw, ps_bw, ps_ww, ps2_aw, ps2_bw, ps2_ww,
- ps3_aw, ps3_bw, ps3_ww;
-
- for (size_t p=0; p<=n_cvt+1; ++p) {
- for (size_t a=p+1; a<=n_cvt+2; ++a) {
- for (size_t b=a; b<=n_cvt+2; ++b) {
- index_ab=GetabIndex (a, b, n_cvt);
- if (p==0) {
- gsl_vector_const_view Uab_col=
- gsl_matrix_const_column (Uab, index_ab);
- gsl_blas_ddot (HiHiHi_eval, &Uab_col.vector,
- &p3_ab);
- if (e_mode!=0) {
- p3_ab=gsl_vector_get (ab, index_ab)-
- p3_ab+3.0*gsl_matrix_get(PPab,0,index_ab)
- -3.0*gsl_matrix_get (Pab, 0, index_ab);
- }
- gsl_matrix_set (PPPab, 0, index_ab, p3_ab);
- }
- else {
- index_aw=GetabIndex (a, p, n_cvt);
- index_bw=GetabIndex (b, p, n_cvt);
- index_ww=GetabIndex (p, p, n_cvt);
-
- ps3_ab=gsl_matrix_get (PPPab, p-1, index_ab);
- ps_aw=gsl_matrix_get (Pab, p-1, index_aw);
- ps_bw=gsl_matrix_get (Pab, p-1, index_bw);
- ps_ww=gsl_matrix_get (Pab, p-1, index_ww);
- ps2_aw=gsl_matrix_get (PPab, p-1, index_aw);
- ps2_bw=gsl_matrix_get (PPab, p-1, index_bw);
- ps2_ww=gsl_matrix_get (PPab, p-1, index_ww);
- ps3_aw=gsl_matrix_get (PPPab, p-1, index_aw);
- ps3_bw=gsl_matrix_get (PPPab, p-1, index_bw);
- ps3_ww=gsl_matrix_get (PPPab, p-1, index_ww);
-
- p3_ab=ps3_ab-ps_aw*ps_bw*ps2_ww*ps2_ww
- /(ps_ww*ps_ww*ps_ww);
- p3_ab-=(ps_aw*ps3_bw+ps_bw*ps3_aw +
- ps2_aw*ps2_bw)/ps_ww;
- p3_ab+=(ps_aw*ps2_bw*ps2_ww+ps_bw*
- ps2_aw*ps2_ww+ps_aw*ps_bw*ps3_ww)/
- (ps_ww*ps_ww);
-
- gsl_matrix_set (PPPab, p, index_ab, p3_ab);
- }
- }
- }
- }
- return;
+void CalcPPPab(const size_t n_cvt, const size_t e_mode,
+ const gsl_vector *HiHiHi_eval, const gsl_matrix *Uab,
+ const gsl_vector *ab, const gsl_matrix *Pab,
+ const gsl_matrix *PPab, gsl_matrix *PPPab) {
+ size_t index_ab, index_aw, index_bw, index_ww;
+ double p3_ab;
+ double ps3_ab, ps_aw, ps_bw, ps_ww, ps2_aw, ps2_bw, ps2_ww, ps3_aw, ps3_bw,
+ ps3_ww;
+
+ for (size_t p = 0; p <= n_cvt + 1; ++p) {
+ for (size_t a = p + 1; a <= n_cvt + 2; ++a) {
+ for (size_t b = a; b <= n_cvt + 2; ++b) {
+ index_ab = GetabIndex(a, b, n_cvt);
+ if (p == 0) {
+ gsl_vector_const_view Uab_col =
+ gsl_matrix_const_column(Uab, index_ab);
+ gsl_blas_ddot(HiHiHi_eval, &Uab_col.vector, &p3_ab);
+ if (e_mode != 0) {
+ p3_ab = gsl_vector_get(ab, index_ab) - p3_ab +
+ 3.0 * gsl_matrix_get(PPab, 0, index_ab) -
+ 3.0 * gsl_matrix_get(Pab, 0, index_ab);
+ }
+ gsl_matrix_set(PPPab, 0, index_ab, p3_ab);
+ } else {
+ index_aw = GetabIndex(a, p, n_cvt);
+ index_bw = GetabIndex(b, p, n_cvt);
+ index_ww = GetabIndex(p, p, n_cvt);
+
+ ps3_ab = gsl_matrix_get(PPPab, p - 1, index_ab);
+ ps_aw = gsl_matrix_get(Pab, p - 1, index_aw);
+ ps_bw = gsl_matrix_get(Pab, p - 1, index_bw);
+ ps_ww = gsl_matrix_get(Pab, p - 1, index_ww);
+ ps2_aw = gsl_matrix_get(PPab, p - 1, index_aw);
+ ps2_bw = gsl_matrix_get(PPab, p - 1, index_bw);
+ ps2_ww = gsl_matrix_get(PPab, p - 1, index_ww);
+ ps3_aw = gsl_matrix_get(PPPab, p - 1, index_aw);
+ ps3_bw = gsl_matrix_get(PPPab, p - 1, index_bw);
+ ps3_ww = gsl_matrix_get(PPPab, p - 1, index_ww);
+
+ p3_ab = ps3_ab -
+ ps_aw * ps_bw * ps2_ww * ps2_ww / (ps_ww * ps_ww * ps_ww);
+ p3_ab -= (ps_aw * ps3_bw + ps_bw * ps3_aw + ps2_aw * ps2_bw) / ps_ww;
+ p3_ab += (ps_aw * ps2_bw * ps2_ww + ps_bw * ps2_aw * ps2_ww +
+ ps_aw * ps_bw * ps3_ww) /
+ (ps_ww * ps_ww);
+
+ gsl_matrix_set(PPPab, p, index_ab, p3_ab);
+ }
+ }
+ }
+ }
+ return;
}
-double LogL_f (double l, void *params) {
- FUNC_PARAM *p=(FUNC_PARAM *) params;
- size_t n_cvt=p->n_cvt;
- size_t ni_test=p->ni_test;
- size_t n_index=(n_cvt+2+1)*(n_cvt+2)/2;
-
- size_t nc_total;
- if (p->calc_null==true) {nc_total=n_cvt;} else {nc_total=n_cvt+1;}
-
- double f=0.0, logdet_h=0.0, d;
- size_t index_yy;
-
- gsl_matrix *Pab=gsl_matrix_alloc (n_cvt+2, n_index);
- gsl_vector *Hi_eval=gsl_vector_alloc((p->eval)->size);
- gsl_vector *v_temp=gsl_vector_alloc((p->eval)->size);
-
- gsl_vector_memcpy (v_temp, p->eval);
- gsl_vector_scale (v_temp, l);
- if (p->e_mode==0) {
- gsl_vector_set_all (Hi_eval, 1.0);
- } else {
- gsl_vector_memcpy (Hi_eval, v_temp);
- }
- gsl_vector_add_constant (v_temp, 1.0);
- gsl_vector_div (Hi_eval, v_temp);
-
- for (size_t i=0; i<(p->eval)->size; ++i) {
- d=gsl_vector_get (v_temp, i);
- logdet_h+=log(fabs(d));
- }
-
- CalcPab (n_cvt, p->e_mode, Hi_eval, p->Uab, p->ab, Pab);
-
- double c=0.5*(double)ni_test*(log((double)ni_test)-log(2*M_PI)-1.0);
-
- index_yy=GetabIndex (n_cvt+2, n_cvt+2, n_cvt);
- double P_yy=gsl_matrix_get (Pab, nc_total, index_yy);
- f=c-0.5*logdet_h-0.5*(double)ni_test*log(P_yy);
-
- gsl_matrix_free (Pab);
- gsl_vector_free (Hi_eval);
- gsl_vector_free (v_temp);
- return f;
+double LogL_f(double l, void *params) {
+ FUNC_PARAM *p = (FUNC_PARAM *)params;
+ size_t n_cvt = p->n_cvt;
+ size_t ni_test = p->ni_test;
+ size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2;
+
+ size_t nc_total;
+ if (p->calc_null == true) {
+ nc_total = n_cvt;
+ } else {
+ nc_total = n_cvt + 1;
+ }
+
+ double f = 0.0, logdet_h = 0.0, d;
+ size_t index_yy;
+
+ gsl_matrix *Pab = gsl_matrix_alloc(n_cvt + 2, n_index);
+ gsl_vector *Hi_eval = gsl_vector_alloc((p->eval)->size);
+ gsl_vector *v_temp = gsl_vector_alloc((p->eval)->size);
+
+ gsl_vector_memcpy(v_temp, p->eval);
+ gsl_vector_scale(v_temp, l);
+ if (p->e_mode == 0) {
+ gsl_vector_set_all(Hi_eval, 1.0);
+ } else {
+ gsl_vector_memcpy(Hi_eval, v_temp);
+ }
+ gsl_vector_add_constant(v_temp, 1.0);
+ gsl_vector_div(Hi_eval, v_temp);
+
+ for (size_t i = 0; i < (p->eval)->size; ++i) {
+ d = gsl_vector_get(v_temp, i);
+ logdet_h += log(fabs(d));
+ }
+
+ CalcPab(n_cvt, p->e_mode, Hi_eval, p->Uab, p->ab, Pab);
+
+ double c =
+ 0.5 * (double)ni_test * (log((double)ni_test) - log(2 * M_PI) - 1.0);
+
+ index_yy = GetabIndex(n_cvt + 2, n_cvt + 2, n_cvt);
+ double P_yy = gsl_matrix_get(Pab, nc_total, index_yy);
+ f = c - 0.5 * logdet_h - 0.5 * (double)ni_test * log(P_yy);
+
+ gsl_matrix_free(Pab);
+ gsl_vector_free(Hi_eval);
+ gsl_vector_free(v_temp);
+ return f;
}
-double LogL_dev1 (double l, void *params) {
- FUNC_PARAM *p=(FUNC_PARAM *) params;
- size_t n_cvt=p->n_cvt;
- size_t ni_test=p->ni_test;
- size_t n_index=(n_cvt+2+1)*(n_cvt+2)/2;
+double LogL_dev1(double l, void *params) {
+ FUNC_PARAM *p = (FUNC_PARAM *)params;
+ size_t n_cvt = p->n_cvt;
+ size_t ni_test = p->ni_test;
+ size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2;
+
+ size_t nc_total;
+ if (p->calc_null == true) {
+ nc_total = n_cvt;
+ } else {
+ nc_total = n_cvt + 1;
+ }
+
+ double dev1 = 0.0, trace_Hi = 0.0;
+ size_t index_yy;
+
+ gsl_matrix *Pab = gsl_matrix_alloc(n_cvt + 2, n_index);
+ gsl_matrix *PPab = gsl_matrix_alloc(n_cvt + 2, n_index);
+ gsl_vector *Hi_eval = gsl_vector_alloc((p->eval)->size);
+ gsl_vector *HiHi_eval = gsl_vector_alloc((p->eval)->size);
+ gsl_vector *v_temp = gsl_vector_alloc((p->eval)->size);
+
+ gsl_vector_memcpy(v_temp, p->eval);
+ gsl_vector_scale(v_temp, l);
+ if (p->e_mode == 0) {
+ gsl_vector_set_all(Hi_eval, 1.0);
+ } else {
+ gsl_vector_memcpy(Hi_eval, v_temp);
+ }
+ gsl_vector_add_constant(v_temp, 1.0);
+ gsl_vector_div(Hi_eval, v_temp);
+
+ gsl_vector_memcpy(HiHi_eval, Hi_eval);
+ gsl_vector_mul(HiHi_eval, Hi_eval);
+
+ gsl_vector_set_all(v_temp, 1.0);
+ gsl_blas_ddot(Hi_eval, v_temp, &trace_Hi);
+
+ if (p->e_mode != 0) {
+ trace_Hi = (double)ni_test - trace_Hi;
+ }
+
+ CalcPab(n_cvt, p->e_mode, Hi_eval, p->Uab, p->ab, Pab);
+ CalcPPab(n_cvt, p->e_mode, HiHi_eval, p->Uab, p->ab, Pab, PPab);
+
+ double trace_HiK = ((double)ni_test - trace_Hi) / l;
+
+ index_yy = GetabIndex(n_cvt + 2, n_cvt + 2, n_cvt);
+
+ double P_yy = gsl_matrix_get(Pab, nc_total, index_yy);
+ double PP_yy = gsl_matrix_get(PPab, nc_total, index_yy);
+ double yPKPy = (P_yy - PP_yy) / l;
+ dev1 = -0.5 * trace_HiK + 0.5 * (double)ni_test * yPKPy / P_yy;
+
+ gsl_matrix_free(Pab);
+ gsl_matrix_free(PPab);
+ gsl_vector_free(Hi_eval);
+ gsl_vector_free(HiHi_eval);
+ gsl_vector_free(v_temp);
+
+ return dev1;
+}
- size_t nc_total;
- if (p->calc_null==true) {nc_total=n_cvt;} else {nc_total=n_cvt+1;}
+double LogL_dev2(double l, void *params) {
+ FUNC_PARAM *p = (FUNC_PARAM *)params;
+ size_t n_cvt = p->n_cvt;
+ size_t ni_test = p->ni_test;
+ size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2;
+
+ size_t nc_total;
+ if (p->calc_null == true) {
+ nc_total = n_cvt;
+ } else {
+ nc_total = n_cvt + 1;
+ }
+
+ double dev2 = 0.0, trace_Hi = 0.0, trace_HiHi = 0.0;
+ size_t index_yy;
+
+ gsl_matrix *Pab = gsl_matrix_alloc(n_cvt + 2, n_index);
+ gsl_matrix *PPab = gsl_matrix_alloc(n_cvt + 2, n_index);
+ gsl_matrix *PPPab = gsl_matrix_alloc(n_cvt + 2, n_index);
+ gsl_vector *Hi_eval = gsl_vector_alloc((p->eval)->size);
+ gsl_vector *HiHi_eval = gsl_vector_alloc((p->eval)->size);
+ gsl_vector *HiHiHi_eval = gsl_vector_alloc((p->eval)->size);
+ gsl_vector *v_temp = gsl_vector_alloc((p->eval)->size);
+
+ gsl_vector_memcpy(v_temp, p->eval);
+ gsl_vector_scale(v_temp, l);
+ if (p->e_mode == 0) {
+ gsl_vector_set_all(Hi_eval, 1.0);
+ } else {
+ gsl_vector_memcpy(Hi_eval, v_temp);
+ }
+ gsl_vector_add_constant(v_temp, 1.0);
+ gsl_vector_div(Hi_eval, v_temp);
+
+ gsl_vector_memcpy(HiHi_eval, Hi_eval);
+ gsl_vector_mul(HiHi_eval, Hi_eval);
+ gsl_vector_memcpy(HiHiHi_eval, HiHi_eval);
+ gsl_vector_mul(HiHiHi_eval, Hi_eval);
+
+ gsl_vector_set_all(v_temp, 1.0);
+ gsl_blas_ddot(Hi_eval, v_temp, &trace_Hi);
+ gsl_blas_ddot(HiHi_eval, v_temp, &trace_HiHi);
+
+ if (p->e_mode != 0) {
+ trace_Hi = (double)ni_test - trace_Hi;
+ trace_HiHi = 2 * trace_Hi + trace_HiHi - (double)ni_test;
+ }
+
+ CalcPab(n_cvt, p->e_mode, Hi_eval, p->Uab, p->ab, Pab);
+ CalcPPab(n_cvt, p->e_mode, HiHi_eval, p->Uab, p->ab, Pab, PPab);
+ CalcPPPab(n_cvt, p->e_mode, HiHiHi_eval, p->Uab, p->ab, Pab, PPab, PPPab);
+
+ double trace_HiKHiK = ((double)ni_test + trace_HiHi - 2 * trace_Hi) / (l * l);
+
+ index_yy = GetabIndex(n_cvt + 2, n_cvt + 2, n_cvt);
+ double P_yy = gsl_matrix_get(Pab, nc_total, index_yy);
+ double PP_yy = gsl_matrix_get(PPab, nc_total, index_yy);
+ double PPP_yy = gsl_matrix_get(PPPab, nc_total, index_yy);
+
+ double yPKPy = (P_yy - PP_yy) / l;
+ double yPKPKPy = (P_yy + PPP_yy - 2.0 * PP_yy) / (l * l);
+
+ dev2 = 0.5 * trace_HiKHiK -
+ 0.5 * (double)ni_test * (2.0 * yPKPKPy * P_yy - yPKPy * yPKPy) /
+ (P_yy * P_yy);
+
+ gsl_matrix_free(Pab);
+ gsl_matrix_free(PPab);
+ gsl_matrix_free(PPPab);
+ gsl_vector_free(Hi_eval);
+ gsl_vector_free(HiHi_eval);
+ gsl_vector_free(HiHiHi_eval);
+ gsl_vector_free(v_temp);
+
+ return dev2;
+}
- double dev1=0.0, trace_Hi=0.0;
- size_t index_yy;
+void LogL_dev12(double l, void *params, double *dev1, double *dev2) {
+ FUNC_PARAM *p = (FUNC_PARAM *)params;
+ size_t n_cvt = p->n_cvt;
+ size_t ni_test = p->ni_test;
+ size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2;
+
+ size_t nc_total;
+ if (p->calc_null == true) {
+ nc_total = n_cvt;
+ } else {
+ nc_total = n_cvt + 1;
+ }
+
+ double trace_Hi = 0.0, trace_HiHi = 0.0;
+ size_t index_yy;
+
+ gsl_matrix *Pab = gsl_matrix_alloc(n_cvt + 2, n_index);
+ gsl_matrix *PPab = gsl_matrix_alloc(n_cvt + 2, n_index);
+ gsl_matrix *PPPab = gsl_matrix_alloc(n_cvt + 2, n_index);
+ gsl_vector *Hi_eval = gsl_vector_alloc((p->eval)->size);
+ gsl_vector *HiHi_eval = gsl_vector_alloc((p->eval)->size);
+ gsl_vector *HiHiHi_eval = gsl_vector_alloc((p->eval)->size);
+ gsl_vector *v_temp = gsl_vector_alloc((p->eval)->size);
+
+ gsl_vector_memcpy(v_temp, p->eval);
+ gsl_vector_scale(v_temp, l);
+ if (p->e_mode == 0) {
+ gsl_vector_set_all(Hi_eval, 1.0);
+ } else {
+ gsl_vector_memcpy(Hi_eval, v_temp);
+ }
+ gsl_vector_add_constant(v_temp, 1.0);
+ gsl_vector_div(Hi_eval, v_temp);
+
+ gsl_vector_memcpy(HiHi_eval, Hi_eval);
+ gsl_vector_mul(HiHi_eval, Hi_eval);
+ gsl_vector_memcpy(HiHiHi_eval, HiHi_eval);
+ gsl_vector_mul(HiHiHi_eval, Hi_eval);
+
+ gsl_vector_set_all(v_temp, 1.0);
+ gsl_blas_ddot(Hi_eval, v_temp, &trace_Hi);
+ gsl_blas_ddot(HiHi_eval, v_temp, &trace_HiHi);
+
+ if (p->e_mode != 0) {
+ trace_Hi = (double)ni_test - trace_Hi;
+ trace_HiHi = 2 * trace_Hi + trace_HiHi - (double)ni_test;
+ }
+
+ CalcPab(n_cvt, p->e_mode, Hi_eval, p->Uab, p->ab, Pab);
+ CalcPPab(n_cvt, p->e_mode, HiHi_eval, p->Uab, p->ab, Pab, PPab);
+ CalcPPPab(n_cvt, p->e_mode, HiHiHi_eval, p->Uab, p->ab, Pab, PPab, PPPab);
+
+ double trace_HiK = ((double)ni_test - trace_Hi) / l;
+ double trace_HiKHiK = ((double)ni_test + trace_HiHi - 2 * trace_Hi) / (l * l);
+
+ index_yy = GetabIndex(n_cvt + 2, n_cvt + 2, n_cvt);
+
+ double P_yy = gsl_matrix_get(Pab, nc_total, index_yy);
+ double PP_yy = gsl_matrix_get(PPab, nc_total, index_yy);
+ double PPP_yy = gsl_matrix_get(PPPab, nc_total, index_yy);
+
+ double yPKPy = (P_yy - PP_yy) / l;
+ double yPKPKPy = (P_yy + PPP_yy - 2.0 * PP_yy) / (l * l);
+
+ *dev1 = -0.5 * trace_HiK + 0.5 * (double)ni_test * yPKPy / P_yy;
+ *dev2 = 0.5 * trace_HiKHiK -
+ 0.5 * (double)ni_test * (2.0 * yPKPKPy * P_yy - yPKPy * yPKPy) /
+ (P_yy * P_yy);
+
+ gsl_matrix_free(Pab);
+ gsl_matrix_free(PPab);
+ gsl_matrix_free(PPPab);
+ gsl_vector_free(Hi_eval);
+ gsl_vector_free(HiHi_eval);
+ gsl_vector_free(HiHiHi_eval);
+ gsl_vector_free(v_temp);
+
+ return;
+}
- gsl_matrix *Pab=gsl_matrix_alloc (n_cvt+2, n_index);
- gsl_matrix *PPab=gsl_matrix_alloc (n_cvt+2, n_index);
- gsl_vector *Hi_eval=gsl_vector_alloc((p->eval)->size);
- gsl_vector *HiHi_eval=gsl_vector_alloc((p->eval)->size);
- gsl_vector *v_temp=gsl_vector_alloc((p->eval)->size);
+double LogRL_f(double l, void *params) {
+ FUNC_PARAM *p = (FUNC_PARAM *)params;
+ size_t n_cvt = p->n_cvt;
+ size_t ni_test = p->ni_test;
+ size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2;
+
+ double df;
+ size_t nc_total;
+ if (p->calc_null == true) {
+ nc_total = n_cvt;
+ df = (double)ni_test - (double)n_cvt;
+ } else {
+ nc_total = n_cvt + 1;
+ df = (double)ni_test - (double)n_cvt - 1.0;
+ }
+
+ double f = 0.0, logdet_h = 0.0, logdet_hiw = 0.0, d;
+ size_t index_ww;
+
+ gsl_matrix *Pab = gsl_matrix_alloc(n_cvt + 2, n_index);
+ gsl_matrix *Iab = gsl_matrix_alloc(n_cvt + 2, n_index);
+ gsl_vector *Hi_eval = gsl_vector_alloc((p->eval)->size);
+ gsl_vector *v_temp = gsl_vector_alloc((p->eval)->size);
+
+ gsl_vector_memcpy(v_temp, p->eval);
+ gsl_vector_scale(v_temp, l);
+ if (p->e_mode == 0) {
+ gsl_vector_set_all(Hi_eval, 1.0);
+ } else {
+ gsl_vector_memcpy(Hi_eval, v_temp);
+ }
+ gsl_vector_add_constant(v_temp, 1.0);
+ gsl_vector_div(Hi_eval, v_temp);
+
+ for (size_t i = 0; i < (p->eval)->size; ++i) {
+ d = gsl_vector_get(v_temp, i);
+ logdet_h += log(fabs(d));
+ }
+
+ CalcPab(n_cvt, p->e_mode, Hi_eval, p->Uab, p->ab, Pab);
+ gsl_vector_set_all(v_temp, 1.0);
+ CalcPab(n_cvt, p->e_mode, v_temp, p->Uab, p->ab, Iab);
+
+ // Calculate |WHiW|-|WW|.
+ logdet_hiw = 0.0;
+ for (size_t i = 0; i < nc_total; ++i) {
+ index_ww = GetabIndex(i + 1, i + 1, n_cvt);
+ d = gsl_matrix_get(Pab, i, index_ww);
+ logdet_hiw += log(d);
+ d = gsl_matrix_get(Iab, i, index_ww);
+ logdet_hiw -= log(d);
+ }
+ index_ww = GetabIndex(n_cvt + 2, n_cvt + 2, n_cvt);
+ double P_yy = gsl_matrix_get(Pab, nc_total, index_ww);
+
+ double c = 0.5 * df * (log(df) - log(2 * M_PI) - 1.0);
+ f = c - 0.5 * logdet_h - 0.5 * logdet_hiw - 0.5 * df * log(P_yy);
+
+ gsl_matrix_free(Pab);
+ gsl_matrix_free(Iab);
+ gsl_vector_free(Hi_eval);
+ gsl_vector_free(v_temp);
+ return f;
+}
- gsl_vector_memcpy (v_temp, p->eval);
- gsl_vector_scale (v_temp, l);
- if (p->e_mode==0) {
- gsl_vector_set_all (Hi_eval, 1.0);
- } else {
- gsl_vector_memcpy (Hi_eval, v_temp);
- }
- gsl_vector_add_constant (v_temp, 1.0);
- gsl_vector_div (Hi_eval, v_temp);
+double LogRL_dev1(double l, void *params) {
+ FUNC_PARAM *p = (FUNC_PARAM *)params;
+ size_t n_cvt = p->n_cvt;
+ size_t ni_test = p->ni_test;
+ size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2;
+
+ double df;
+ size_t nc_total;
+ if (p->calc_null == true) {
+ nc_total = n_cvt;
+ df = (double)ni_test - (double)n_cvt;
+ } else {
+ nc_total = n_cvt + 1;
+ df = (double)ni_test - (double)n_cvt - 1.0;
+ }
+
+ double dev1 = 0.0, trace_Hi = 0.0;
+ size_t index_ww;
+
+ gsl_matrix *Pab = gsl_matrix_alloc(n_cvt + 2, n_index);
+ gsl_matrix *PPab = gsl_matrix_alloc(n_cvt + 2, n_index);
+ gsl_vector *Hi_eval = gsl_vector_alloc((p->eval)->size);
+ gsl_vector *HiHi_eval = gsl_vector_alloc((p->eval)->size);
+ gsl_vector *v_temp = gsl_vector_alloc((p->eval)->size);
+
+ gsl_vector_memcpy(v_temp, p->eval);
+ gsl_vector_scale(v_temp, l);
+ if (p->e_mode == 0) {
+ gsl_vector_set_all(Hi_eval, 1.0);
+ } else {
+ gsl_vector_memcpy(Hi_eval, v_temp);
+ }
+ gsl_vector_add_constant(v_temp, 1.0);
+ gsl_vector_div(Hi_eval, v_temp);
+
+ gsl_vector_memcpy(HiHi_eval, Hi_eval);
+ gsl_vector_mul(HiHi_eval, Hi_eval);
+
+ gsl_vector_set_all(v_temp, 1.0);
+ gsl_blas_ddot(Hi_eval, v_temp, &trace_Hi);
+
+ if (p->e_mode != 0) {
+ trace_Hi = (double)ni_test - trace_Hi;
+ }
+
+ CalcPab(n_cvt, p->e_mode, Hi_eval, p->Uab, p->ab, Pab);
+ CalcPPab(n_cvt, p->e_mode, HiHi_eval, p->Uab, p->ab, Pab, PPab);
+
+ // Calculate tracePK and trace PKPK.
+ double trace_P = trace_Hi;
+ double ps_ww, ps2_ww;
+ for (size_t i = 0; i < nc_total; ++i) {
+ index_ww = GetabIndex(i + 1, i + 1, n_cvt);
+ ps_ww = gsl_matrix_get(Pab, i, index_ww);
+ ps2_ww = gsl_matrix_get(PPab, i, index_ww);
+ trace_P -= ps2_ww / ps_ww;
+ }
+ double trace_PK = (df - trace_P) / l;
+
+ // Calculate yPKPy, yPKPKPy.
+ index_ww = GetabIndex(n_cvt + 2, n_cvt + 2, n_cvt);
+ double P_yy = gsl_matrix_get(Pab, nc_total, index_ww);
+ double PP_yy = gsl_matrix_get(PPab, nc_total, index_ww);
+ double yPKPy = (P_yy - PP_yy) / l;
+
+ dev1 = -0.5 * trace_PK + 0.5 * df * yPKPy / P_yy;
+
+ gsl_matrix_free(Pab);
+ gsl_matrix_free(PPab);
+ gsl_vector_free(Hi_eval);
+ gsl_vector_free(HiHi_eval);
+ gsl_vector_free(v_temp);
+
+ return dev1;
+}
- gsl_vector_memcpy (HiHi_eval, Hi_eval);
- gsl_vector_mul (HiHi_eval, Hi_eval);
+double LogRL_dev2(double l, void *params) {
+ FUNC_PARAM *p = (FUNC_PARAM *)params;
+ size_t n_cvt = p->n_cvt;
+ size_t ni_test = p->ni_test;
+ size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2;
+
+ double df;
+ size_t nc_total;
+ if (p->calc_null == true) {
+ nc_total = n_cvt;
+ df = (double)ni_test - (double)n_cvt;
+ } else {
+ nc_total = n_cvt + 1;
+ df = (double)ni_test - (double)n_cvt - 1.0;
+ }
+
+ double dev2 = 0.0, trace_Hi = 0.0, trace_HiHi = 0.0;
+ size_t index_ww;
+
+ gsl_matrix *Pab = gsl_matrix_alloc(n_cvt + 2, n_index);
+ gsl_matrix *PPab = gsl_matrix_alloc(n_cvt + 2, n_index);
+ gsl_matrix *PPPab = gsl_matrix_alloc(n_cvt + 2, n_index);
+ gsl_vector *Hi_eval = gsl_vector_alloc((p->eval)->size);
+ gsl_vector *HiHi_eval = gsl_vector_alloc((p->eval)->size);
+ gsl_vector *HiHiHi_eval = gsl_vector_alloc((p->eval)->size);
+ gsl_vector *v_temp = gsl_vector_alloc((p->eval)->size);
+
+ gsl_vector_memcpy(v_temp, p->eval);
+ gsl_vector_scale(v_temp, l);
+ if (p->e_mode == 0) {
+ gsl_vector_set_all(Hi_eval, 1.0);
+ } else {
+ gsl_vector_memcpy(Hi_eval, v_temp);
+ }
+ gsl_vector_add_constant(v_temp, 1.0);
+ gsl_vector_div(Hi_eval, v_temp);
+
+ gsl_vector_memcpy(HiHi_eval, Hi_eval);
+ gsl_vector_mul(HiHi_eval, Hi_eval);
+ gsl_vector_memcpy(HiHiHi_eval, HiHi_eval);
+ gsl_vector_mul(HiHiHi_eval, Hi_eval);
+
+ gsl_vector_set_all(v_temp, 1.0);
+ gsl_blas_ddot(Hi_eval, v_temp, &trace_Hi);
+ gsl_blas_ddot(HiHi_eval, v_temp, &trace_HiHi);
+
+ if (p->e_mode != 0) {
+ trace_Hi = (double)ni_test - trace_Hi;
+ trace_HiHi = 2 * trace_Hi + trace_HiHi - (double)ni_test;
+ }
+
+ CalcPab(n_cvt, p->e_mode, Hi_eval, p->Uab, p->ab, Pab);
+ CalcPPab(n_cvt, p->e_mode, HiHi_eval, p->Uab, p->ab, Pab, PPab);
+ CalcPPPab(n_cvt, p->e_mode, HiHiHi_eval, p->Uab, p->ab, Pab, PPab, PPPab);
+
+ // Calculate tracePK and trace PKPK.
+ double trace_P = trace_Hi, trace_PP = trace_HiHi;
+ double ps_ww, ps2_ww, ps3_ww;
+ for (size_t i = 0; i < nc_total; ++i) {
+ index_ww = GetabIndex(i + 1, i + 1, n_cvt);
+ ps_ww = gsl_matrix_get(Pab, i, index_ww);
+ ps2_ww = gsl_matrix_get(PPab, i, index_ww);
+ ps3_ww = gsl_matrix_get(PPPab, i, index_ww);
+ trace_P -= ps2_ww / ps_ww;
+ trace_PP += ps2_ww * ps2_ww / (ps_ww * ps_ww) - 2.0 * ps3_ww / ps_ww;
+ }
+ double trace_PKPK = (df + trace_PP - 2.0 * trace_P) / (l * l);
+
+ // Calculate yPKPy, yPKPKPy.
+ index_ww = GetabIndex(n_cvt + 2, n_cvt + 2, n_cvt);
+ double P_yy = gsl_matrix_get(Pab, nc_total, index_ww);
+ double PP_yy = gsl_matrix_get(PPab, nc_total, index_ww);
+ double PPP_yy = gsl_matrix_get(PPPab, nc_total, index_ww);
+ double yPKPy = (P_yy - PP_yy) / l;
+ double yPKPKPy = (P_yy + PPP_yy - 2.0 * PP_yy) / (l * l);
+
+ dev2 = 0.5 * trace_PKPK -
+ 0.5 * df * (2.0 * yPKPKPy * P_yy - yPKPy * yPKPy) / (P_yy * P_yy);
+
+ gsl_matrix_free(Pab);
+ gsl_matrix_free(PPab);
+ gsl_matrix_free(PPPab);
+ gsl_vector_free(Hi_eval);
+ gsl_vector_free(HiHi_eval);
+ gsl_vector_free(HiHiHi_eval);
+ gsl_vector_free(v_temp);
+
+ return dev2;
+}
- gsl_vector_set_all (v_temp, 1.0);
- gsl_blas_ddot (Hi_eval, v_temp, &trace_Hi);
+void LogRL_dev12(double l, void *params, double *dev1, double *dev2) {
+ FUNC_PARAM *p = (FUNC_PARAM *)params;
+ size_t n_cvt = p->n_cvt;
+ size_t ni_test = p->ni_test;
+ size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2;
+
+ double df;
+ size_t nc_total;
+ if (p->calc_null == true) {
+ nc_total = n_cvt;
+ df = (double)ni_test - (double)n_cvt;
+ } else {
+ nc_total = n_cvt + 1;
+ df = (double)ni_test - (double)n_cvt - 1.0;
+ }
+
+ double trace_Hi = 0.0, trace_HiHi = 0.0;
+ size_t index_ww;
+
+ gsl_matrix *Pab = gsl_matrix_alloc(n_cvt + 2, n_index);
+ gsl_matrix *PPab = gsl_matrix_alloc(n_cvt + 2, n_index);
+ gsl_matrix *PPPab = gsl_matrix_alloc(n_cvt + 2, n_index);
+ gsl_vector *Hi_eval = gsl_vector_alloc((p->eval)->size);
+ gsl_vector *HiHi_eval = gsl_vector_alloc((p->eval)->size);
+ gsl_vector *HiHiHi_eval = gsl_vector_alloc((p->eval)->size);
+ gsl_vector *v_temp = gsl_vector_alloc((p->eval)->size);
+
+ gsl_vector_memcpy(v_temp, p->eval);
+ gsl_vector_scale(v_temp, l);
+ if (p->e_mode == 0) {
+ gsl_vector_set_all(Hi_eval, 1.0);
+ } else {
+ gsl_vector_memcpy(Hi_eval, v_temp);
+ }
+ gsl_vector_add_constant(v_temp, 1.0);
+ gsl_vector_div(Hi_eval, v_temp);
+
+ gsl_vector_memcpy(HiHi_eval, Hi_eval);
+ gsl_vector_mul(HiHi_eval, Hi_eval);
+ gsl_vector_memcpy(HiHiHi_eval, HiHi_eval);
+ gsl_vector_mul(HiHiHi_eval, Hi_eval);
+
+ gsl_vector_set_all(v_temp, 1.0);
+ gsl_blas_ddot(Hi_eval, v_temp, &trace_Hi);
+ gsl_blas_ddot(HiHi_eval, v_temp, &trace_HiHi);
+
+ if (p->e_mode != 0) {
+ trace_Hi = (double)ni_test - trace_Hi;
+ trace_HiHi = 2 * trace_Hi + trace_HiHi - (double)ni_test;
+ }
+
+ CalcPab(n_cvt, p->e_mode, Hi_eval, p->Uab, p->ab, Pab);
+ CalcPPab(n_cvt, p->e_mode, HiHi_eval, p->Uab, p->ab, Pab, PPab);
+ CalcPPPab(n_cvt, p->e_mode, HiHiHi_eval, p->Uab, p->ab, Pab, PPab, PPPab);
+
+ // Calculate tracePK and trace PKPK.
+ double trace_P = trace_Hi, trace_PP = trace_HiHi;
+ double ps_ww, ps2_ww, ps3_ww;
+ for (size_t i = 0; i < nc_total; ++i) {
+ index_ww = GetabIndex(i + 1, i + 1, n_cvt);
+ ps_ww = gsl_matrix_get(Pab, i, index_ww);
+ ps2_ww = gsl_matrix_get(PPab, i, index_ww);
+ ps3_ww = gsl_matrix_get(PPPab, i, index_ww);
+ trace_P -= ps2_ww / ps_ww;
+ trace_PP += ps2_ww * ps2_ww / (ps_ww * ps_ww) - 2.0 * ps3_ww / ps_ww;
+ }
+ double trace_PK = (df - trace_P) / l;
+ double trace_PKPK = (df + trace_PP - 2.0 * trace_P) / (l * l);
+
+ // Calculate yPKPy, yPKPKPy.
+ index_ww = GetabIndex(n_cvt + 2, n_cvt + 2, n_cvt);
+ double P_yy = gsl_matrix_get(Pab, nc_total, index_ww);
+ double PP_yy = gsl_matrix_get(PPab, nc_total, index_ww);
+ double PPP_yy = gsl_matrix_get(PPPab, nc_total, index_ww);
+ double yPKPy = (P_yy - PP_yy) / l;
+ double yPKPKPy = (P_yy + PPP_yy - 2.0 * PP_yy) / (l * l);
+
+ *dev1 = -0.5 * trace_PK + 0.5 * df * yPKPy / P_yy;
+ *dev2 = 0.5 * trace_PKPK -
+ 0.5 * df * (2.0 * yPKPKPy * P_yy - yPKPy * yPKPy) / (P_yy * P_yy);
+
+ gsl_matrix_free(Pab);
+ gsl_matrix_free(PPab);
+ gsl_matrix_free(PPPab);
+ gsl_vector_free(Hi_eval);
+ gsl_vector_free(HiHi_eval);
+ gsl_vector_free(HiHiHi_eval);
+ gsl_vector_free(v_temp);
+
+ return;
+}
- if (p->e_mode!=0) {trace_Hi=(double)ni_test-trace_Hi;}
+void LMM::CalcRLWald(const double &l, const FUNC_PARAM &params, double &beta,
+ double &se, double &p_wald) {
+ size_t n_cvt = params.n_cvt;
+ size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2;
+
+ int df = (int)ni_test - (int)n_cvt - 1;
+
+ gsl_matrix *Pab = gsl_matrix_alloc(n_cvt + 2, n_index);
+ gsl_vector *Hi_eval = gsl_vector_alloc(params.eval->size);
+ gsl_vector *v_temp = gsl_vector_alloc(params.eval->size);
+
+ gsl_vector_memcpy(v_temp, params.eval);
+ gsl_vector_scale(v_temp, l);
+ if (params.e_mode == 0) {
+ gsl_vector_set_all(Hi_eval, 1.0);
+ } else {
+ gsl_vector_memcpy(Hi_eval, v_temp);
+ }
+ gsl_vector_add_constant(v_temp, 1.0);
+ gsl_vector_div(Hi_eval, v_temp);
+
+ CalcPab(n_cvt, params.e_mode, Hi_eval, params.Uab, params.ab, Pab);
+
+ size_t index_yy = GetabIndex(n_cvt + 2, n_cvt + 2, n_cvt);
+ size_t index_xx = GetabIndex(n_cvt + 1, n_cvt + 1, n_cvt);
+ size_t index_xy = GetabIndex(n_cvt + 2, n_cvt + 1, n_cvt);
+ double P_yy = gsl_matrix_get(Pab, n_cvt, index_yy);
+ double P_xx = gsl_matrix_get(Pab, n_cvt, index_xx);
+ double P_xy = gsl_matrix_get(Pab, n_cvt, index_xy);
+ double Px_yy = gsl_matrix_get(Pab, n_cvt + 1, index_yy);
+
+ beta = P_xy / P_xx;
+ double tau = (double)df / Px_yy;
+ se = sqrt(1.0 / (tau * P_xx));
+ p_wald = gsl_cdf_fdist_Q((P_yy - Px_yy) * tau, 1.0, df);
+
+ gsl_matrix_free(Pab);
+ gsl_vector_free(Hi_eval);
+ gsl_vector_free(v_temp);
+ return;
+}
- CalcPab (n_cvt, p->e_mode, Hi_eval, p->Uab, p->ab, Pab);
- CalcPPab (n_cvt, p->e_mode, HiHi_eval, p->Uab, p->ab, Pab, PPab);
+void LMM::CalcRLScore(const double &l, const FUNC_PARAM &params, double &beta,
+ double &se, double &p_score) {
+ size_t n_cvt = params.n_cvt;
+ size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2;
+
+ int df = (int)ni_test - (int)n_cvt - 1;
+
+ gsl_matrix *Pab = gsl_matrix_alloc(n_cvt + 2, n_index);
+ gsl_vector *Hi_eval = gsl_vector_alloc(params.eval->size);
+ gsl_vector *v_temp = gsl_vector_alloc(params.eval->size);
+
+ gsl_vector_memcpy(v_temp, params.eval);
+ gsl_vector_scale(v_temp, l);
+ if (params.e_mode == 0) {
+ gsl_vector_set_all(Hi_eval, 1.0);
+ } else {
+ gsl_vector_memcpy(Hi_eval, v_temp);
+ }
+ gsl_vector_add_constant(v_temp, 1.0);
+ gsl_vector_div(Hi_eval, v_temp);
+
+ CalcPab(n_cvt, params.e_mode, Hi_eval, params.Uab, params.ab, Pab);
+
+ size_t index_yy = GetabIndex(n_cvt + 2, n_cvt + 2, n_cvt);
+ size_t index_xx = GetabIndex(n_cvt + 1, n_cvt + 1, n_cvt);
+ size_t index_xy = GetabIndex(n_cvt + 2, n_cvt + 1, n_cvt);
+ double P_yy = gsl_matrix_get(Pab, n_cvt, index_yy);
+ double P_xx = gsl_matrix_get(Pab, n_cvt, index_xx);
+ double P_xy = gsl_matrix_get(Pab, n_cvt, index_xy);
+ double Px_yy = gsl_matrix_get(Pab, n_cvt + 1, index_yy);
+
+ beta = P_xy / P_xx;
+ double tau = (double)df / Px_yy;
+ se = sqrt(1.0 / (tau * P_xx));
+
+ p_score =
+ gsl_cdf_fdist_Q((double)ni_test * P_xy * P_xy / (P_yy * P_xx), 1.0, df);
+
+ gsl_matrix_free(Pab);
+ gsl_vector_free(Hi_eval);
+ gsl_vector_free(v_temp);
+ return;
+}
- double trace_HiK=((double)ni_test-trace_Hi)/l;
+void CalcUab(const gsl_matrix *UtW, const gsl_vector *Uty, gsl_matrix *Uab) {
+ size_t index_ab;
+ size_t n_cvt = UtW->size2;
- index_yy=GetabIndex (n_cvt+2, n_cvt+2, n_cvt);
+ gsl_vector *u_a = gsl_vector_alloc(Uty->size);
- double P_yy=gsl_matrix_get (Pab, nc_total, index_yy);
- double PP_yy=gsl_matrix_get (PPab, nc_total, index_yy);
- double yPKPy=(P_yy-PP_yy)/l;
- dev1=-0.5*trace_HiK+0.5*(double)ni_test*yPKPy/P_yy;
+ for (size_t a = 1; a <= n_cvt + 2; ++a) {
+ if (a == n_cvt + 1) {
+ continue;
+ }
- gsl_matrix_free (Pab);
- gsl_matrix_free (PPab);
- gsl_vector_free (Hi_eval);
- gsl_vector_free (HiHi_eval);
- gsl_vector_free (v_temp);
+ if (a == n_cvt + 2) {
+ gsl_vector_memcpy(u_a, Uty);
+ } else {
+ gsl_vector_const_view UtW_col = gsl_matrix_const_column(UtW, a - 1);
+ gsl_vector_memcpy(u_a, &UtW_col.vector);
+ }
- return dev1;
-}
+ for (size_t b = a; b >= 1; --b) {
+ if (b == n_cvt + 1) {
+ continue;
+ }
-double LogL_dev2 (double l, void *params) {
- FUNC_PARAM *p=(FUNC_PARAM *) params;
- size_t n_cvt=p->n_cvt;
- size_t ni_test=p->ni_test;
- size_t n_index=(n_cvt+2+1)*(n_cvt+2)/2;
-
- size_t nc_total;
- if (p->calc_null==true) {
- nc_total=n_cvt;
- } else {
- nc_total=n_cvt+1;
- }
-
- double dev2=0.0, trace_Hi=0.0, trace_HiHi=0.0;
- size_t index_yy;
-
- gsl_matrix *Pab=gsl_matrix_alloc (n_cvt+2, n_index);
- gsl_matrix *PPab=gsl_matrix_alloc (n_cvt+2, n_index);
- gsl_matrix *PPPab=gsl_matrix_alloc (n_cvt+2, n_index);
- gsl_vector *Hi_eval=gsl_vector_alloc((p->eval)->size);
- gsl_vector *HiHi_eval=gsl_vector_alloc((p->eval)->size);
- gsl_vector *HiHiHi_eval=gsl_vector_alloc((p->eval)->size);
- gsl_vector *v_temp=gsl_vector_alloc((p->eval)->size);
-
- gsl_vector_memcpy (v_temp, p->eval);
- gsl_vector_scale (v_temp, l);
- if (p->e_mode==0) {
- gsl_vector_set_all (Hi_eval, 1.0);
- } else {
- gsl_vector_memcpy (Hi_eval, v_temp);
- }
- gsl_vector_add_constant (v_temp, 1.0);
- gsl_vector_div (Hi_eval, v_temp);
-
- gsl_vector_memcpy (HiHi_eval, Hi_eval);
- gsl_vector_mul (HiHi_eval, Hi_eval);
- gsl_vector_memcpy (HiHiHi_eval, HiHi_eval);
- gsl_vector_mul (HiHiHi_eval, Hi_eval);
-
- gsl_vector_set_all (v_temp, 1.0);
- gsl_blas_ddot (Hi_eval, v_temp, &trace_Hi);
- gsl_blas_ddot (HiHi_eval, v_temp, &trace_HiHi);
-
- if (p->e_mode!=0) {
- trace_Hi=(double)ni_test-trace_Hi;
- trace_HiHi=2*trace_Hi+trace_HiHi-(double)ni_test;
- }
-
- CalcPab (n_cvt, p->e_mode, Hi_eval, p->Uab, p->ab, Pab);
- CalcPPab (n_cvt, p->e_mode, HiHi_eval, p->Uab, p->ab, Pab, PPab);
- CalcPPPab (n_cvt, p->e_mode, HiHiHi_eval, p->Uab, p->ab, Pab, PPab,
- PPPab);
-
- double trace_HiKHiK=((double)ni_test+trace_HiHi-2*trace_Hi)/(l*l);
-
- index_yy=GetabIndex (n_cvt+2, n_cvt+2, n_cvt);
- double P_yy=gsl_matrix_get (Pab, nc_total, index_yy);
- double PP_yy=gsl_matrix_get (PPab, nc_total, index_yy);
- double PPP_yy=gsl_matrix_get (PPPab, nc_total, index_yy);
-
- double yPKPy=(P_yy-PP_yy)/l;
- double yPKPKPy=(P_yy+PPP_yy-2.0*PP_yy)/(l*l);
-
- dev2=0.5*trace_HiKHiK-0.5*(double)ni_test*
- (2.0*yPKPKPy*P_yy-yPKPy*yPKPy)/(P_yy*P_yy);
-
- gsl_matrix_free (Pab);
- gsl_matrix_free (PPab);
- gsl_matrix_free (PPPab);
- gsl_vector_free (Hi_eval);
- gsl_vector_free (HiHi_eval);
- gsl_vector_free (HiHiHi_eval);
- gsl_vector_free (v_temp);
-
- return dev2;
-}
+ index_ab = GetabIndex(a, b, n_cvt);
+ gsl_vector_view Uab_col = gsl_matrix_column(Uab, index_ab);
-void LogL_dev12 (double l, void *params, double *dev1, double *dev2) {
- FUNC_PARAM *p=(FUNC_PARAM *) params;
- size_t n_cvt=p->n_cvt;
- size_t ni_test=p->ni_test;
- size_t n_index=(n_cvt+2+1)*(n_cvt+2)/2;
-
- size_t nc_total;
- if (p->calc_null==true) {nc_total=n_cvt;} else {nc_total=n_cvt+1;}
-
- double trace_Hi=0.0, trace_HiHi=0.0;
- size_t index_yy;
-
- gsl_matrix *Pab=gsl_matrix_alloc (n_cvt+2, n_index);
- gsl_matrix *PPab=gsl_matrix_alloc (n_cvt+2, n_index);
- gsl_matrix *PPPab=gsl_matrix_alloc (n_cvt+2, n_index);
- gsl_vector *Hi_eval=gsl_vector_alloc((p->eval)->size);
- gsl_vector *HiHi_eval=gsl_vector_alloc((p->eval)->size);
- gsl_vector *HiHiHi_eval=gsl_vector_alloc((p->eval)->size);
- gsl_vector *v_temp=gsl_vector_alloc((p->eval)->size);
-
- gsl_vector_memcpy (v_temp, p->eval);
- gsl_vector_scale (v_temp, l);
- if (p->e_mode==0) {
- gsl_vector_set_all (Hi_eval, 1.0);
- } else {
- gsl_vector_memcpy (Hi_eval, v_temp);
- }
- gsl_vector_add_constant (v_temp, 1.0);
- gsl_vector_div (Hi_eval, v_temp);
-
- gsl_vector_memcpy (HiHi_eval, Hi_eval);
- gsl_vector_mul (HiHi_eval, Hi_eval);
- gsl_vector_memcpy (HiHiHi_eval, HiHi_eval);
- gsl_vector_mul (HiHiHi_eval, Hi_eval);
-
- gsl_vector_set_all (v_temp, 1.0);
- gsl_blas_ddot (Hi_eval, v_temp, &trace_Hi);
- gsl_blas_ddot (HiHi_eval, v_temp, &trace_HiHi);
-
- if (p->e_mode!=0) {
- trace_Hi=(double)ni_test-trace_Hi;
- trace_HiHi=2*trace_Hi+trace_HiHi-(double)ni_test;
- }
-
- CalcPab (n_cvt, p->e_mode, Hi_eval, p->Uab, p->ab, Pab);
- CalcPPab (n_cvt, p->e_mode, HiHi_eval, p->Uab, p->ab, Pab, PPab);
- CalcPPPab (n_cvt, p->e_mode, HiHiHi_eval, p->Uab, p->ab, Pab, PPab,
- PPPab);
-
- double trace_HiK=((double)ni_test-trace_Hi)/l;
- double trace_HiKHiK=((double)ni_test+trace_HiHi-2*trace_Hi)/(l*l);
-
- index_yy=GetabIndex (n_cvt+2, n_cvt+2, n_cvt);
-
- double P_yy=gsl_matrix_get (Pab, nc_total, index_yy);
- double PP_yy=gsl_matrix_get (PPab, nc_total, index_yy);
- double PPP_yy=gsl_matrix_get (PPPab, nc_total, index_yy);
-
- double yPKPy=(P_yy-PP_yy)/l;
- double yPKPKPy=(P_yy+PPP_yy-2.0*PP_yy)/(l*l);
-
- *dev1=-0.5*trace_HiK+0.5*(double)ni_test*yPKPy/P_yy;
- *dev2=0.5*trace_HiKHiK-0.5*(double)ni_test*
- (2.0*yPKPKPy*P_yy-yPKPy*yPKPy)/(P_yy*P_yy);
-
- gsl_matrix_free (Pab);
- gsl_matrix_free (PPab);
- gsl_matrix_free (PPPab);
- gsl_vector_free (Hi_eval);
- gsl_vector_free (HiHi_eval);
- gsl_vector_free (HiHiHi_eval);
- gsl_vector_free (v_temp);
-
- return;
-}
+ if (b == n_cvt + 2) {
+ gsl_vector_memcpy(&Uab_col.vector, Uty);
+ } else {
+ gsl_vector_const_view UtW_col = gsl_matrix_const_column(UtW, b - 1);
+ gsl_vector_memcpy(&Uab_col.vector, &UtW_col.vector);
+ }
-double LogRL_f (double l, void *params) {
- FUNC_PARAM *p=(FUNC_PARAM *) params;
- size_t n_cvt=p->n_cvt;
- size_t ni_test=p->ni_test;
- size_t n_index=(n_cvt+2+1)*(n_cvt+2)/2;
-
- double df;
- size_t nc_total;
- if (p->calc_null==true) {
- nc_total=n_cvt; df=(double)ni_test-(double)n_cvt;
- }
- else {nc_total=n_cvt+1; df=(double)ni_test-(double)n_cvt-1.0;}
-
- double f=0.0, logdet_h=0.0, logdet_hiw=0.0, d;
- size_t index_ww;
-
- gsl_matrix *Pab=gsl_matrix_alloc (n_cvt+2, n_index);
- gsl_matrix *Iab=gsl_matrix_alloc (n_cvt+2, n_index);
- gsl_vector *Hi_eval=gsl_vector_alloc((p->eval)->size);
- gsl_vector *v_temp=gsl_vector_alloc((p->eval)->size);
-
- gsl_vector_memcpy (v_temp, p->eval);
- gsl_vector_scale (v_temp, l);
- if (p->e_mode==0) {
- gsl_vector_set_all (Hi_eval, 1.0);
- } else {
- gsl_vector_memcpy (Hi_eval, v_temp);
- }
- gsl_vector_add_constant (v_temp, 1.0);
- gsl_vector_div (Hi_eval, v_temp);
-
- for (size_t i=0; i<(p->eval)->size; ++i) {
- d=gsl_vector_get (v_temp, i);
- logdet_h+=log(fabs(d));
- }
-
- CalcPab (n_cvt, p->e_mode, Hi_eval, p->Uab, p->ab, Pab);
- gsl_vector_set_all (v_temp, 1.0);
- CalcPab (n_cvt, p->e_mode, v_temp, p->Uab, p->ab, Iab);
-
- // Calculate |WHiW|-|WW|.
- logdet_hiw=0.0;
- for (size_t i=0; i<nc_total; ++i) {
- index_ww=GetabIndex (i+1, i+1, n_cvt);
- d=gsl_matrix_get (Pab, i, index_ww);
- logdet_hiw+=log(d);
- d=gsl_matrix_get (Iab, i, index_ww);
- logdet_hiw-=log(d);
- }
- index_ww=GetabIndex (n_cvt+2, n_cvt+2, n_cvt);
- double P_yy=gsl_matrix_get (Pab, nc_total, index_ww);
-
- double c=0.5*df*(log(df)-log(2*M_PI)-1.0);
- f=c-0.5*logdet_h-0.5*logdet_hiw-0.5*df*log(P_yy);
-
- gsl_matrix_free (Pab);
- gsl_matrix_free (Iab);
- gsl_vector_free (Hi_eval);
- gsl_vector_free (v_temp);
- return f;
-}
+ gsl_vector_mul(&Uab_col.vector, u_a);
+ }
+ }
-double LogRL_dev1 (double l, void *params) {
- FUNC_PARAM *p=(FUNC_PARAM *) params;
- size_t n_cvt=p->n_cvt;
- size_t ni_test=p->ni_test;
- size_t n_index=(n_cvt+2+1)*(n_cvt+2)/2;
-
- double df;
- size_t nc_total;
- if (p->calc_null==true) {
- nc_total=n_cvt;
- df=(double)ni_test-(double)n_cvt;
- }
- else {
- nc_total=n_cvt+1;
- df=(double)ni_test-(double)n_cvt-1.0;
- }
-
- double dev1=0.0, trace_Hi=0.0;
- size_t index_ww;
-
- gsl_matrix *Pab=gsl_matrix_alloc (n_cvt+2, n_index);
- gsl_matrix *PPab=gsl_matrix_alloc (n_cvt+2, n_index);
- gsl_vector *Hi_eval=gsl_vector_alloc((p->eval)->size);
- gsl_vector *HiHi_eval=gsl_vector_alloc((p->eval)->size);
- gsl_vector *v_temp=gsl_vector_alloc((p->eval)->size);
-
- gsl_vector_memcpy (v_temp, p->eval);
- gsl_vector_scale (v_temp, l);
- if (p->e_mode==0) {
- gsl_vector_set_all (Hi_eval, 1.0);
- } else {
- gsl_vector_memcpy (Hi_eval, v_temp);
- }
- gsl_vector_add_constant (v_temp, 1.0);
- gsl_vector_div (Hi_eval, v_temp);
-
- gsl_vector_memcpy (HiHi_eval, Hi_eval);
- gsl_vector_mul (HiHi_eval, Hi_eval);
-
- gsl_vector_set_all (v_temp, 1.0);
- gsl_blas_ddot (Hi_eval, v_temp, &trace_Hi);
-
- if (p->e_mode!=0) {
- trace_Hi=(double)ni_test-trace_Hi;
- }
-
- CalcPab (n_cvt, p->e_mode, Hi_eval, p->Uab, p->ab, Pab);
- CalcPPab (n_cvt, p->e_mode, HiHi_eval, p->Uab, p->ab, Pab, PPab);
-
- // Calculate tracePK and trace PKPK.
- double trace_P=trace_Hi;
- double ps_ww, ps2_ww;
- for (size_t i=0; i<nc_total; ++i) {
- index_ww=GetabIndex (i+1, i+1, n_cvt);
- ps_ww=gsl_matrix_get (Pab, i, index_ww);
- ps2_ww=gsl_matrix_get (PPab, i, index_ww);
- trace_P-=ps2_ww/ps_ww;
- }
- double trace_PK=(df-trace_P)/l;
-
- // Calculate yPKPy, yPKPKPy.
- index_ww=GetabIndex (n_cvt+2, n_cvt+2, n_cvt);
- double P_yy=gsl_matrix_get (Pab, nc_total, index_ww);
- double PP_yy=gsl_matrix_get (PPab, nc_total, index_ww);
- double yPKPy=(P_yy-PP_yy)/l;
-
- dev1=-0.5*trace_PK+0.5*df*yPKPy/P_yy;
-
- gsl_matrix_free (Pab);
- gsl_matrix_free (PPab);
- gsl_vector_free (Hi_eval);
- gsl_vector_free (HiHi_eval);
- gsl_vector_free (v_temp);
-
- return dev1;
+ gsl_vector_free(u_a);
+ return;
}
-double LogRL_dev2 (double l, void *params) {
- FUNC_PARAM *p=(FUNC_PARAM *) params;
- size_t n_cvt=p->n_cvt;
- size_t ni_test=p->ni_test;
- size_t n_index=(n_cvt+2+1)*(n_cvt+2)/2;
-
- double df;
- size_t nc_total;
- if (p->calc_null==true) {
- nc_total=n_cvt;
- df=(double)ni_test-(double)n_cvt;
- }
- else {
- nc_total=n_cvt+1;
- df=(double)ni_test-(double)n_cvt-1.0;
- }
-
- double dev2=0.0, trace_Hi=0.0, trace_HiHi=0.0;
- size_t index_ww;
-
- gsl_matrix *Pab=gsl_matrix_alloc (n_cvt+2, n_index);
- gsl_matrix *PPab=gsl_matrix_alloc (n_cvt+2, n_index);
- gsl_matrix *PPPab=gsl_matrix_alloc (n_cvt+2, n_index);
- gsl_vector *Hi_eval=gsl_vector_alloc((p->eval)->size);
- gsl_vector *HiHi_eval=gsl_vector_alloc((p->eval)->size);
- gsl_vector *HiHiHi_eval=gsl_vector_alloc((p->eval)->size);
- gsl_vector *v_temp=gsl_vector_alloc((p->eval)->size);
-
- gsl_vector_memcpy (v_temp, p->eval);
- gsl_vector_scale (v_temp, l);
- if (p->e_mode==0) {
- gsl_vector_set_all (Hi_eval, 1.0);
- } else {
- gsl_vector_memcpy (Hi_eval, v_temp);
- }
- gsl_vector_add_constant (v_temp, 1.0);
- gsl_vector_div (Hi_eval, v_temp);
-
- gsl_vector_memcpy (HiHi_eval, Hi_eval);
- gsl_vector_mul (HiHi_eval, Hi_eval);
- gsl_vector_memcpy (HiHiHi_eval, HiHi_eval);
- gsl_vector_mul (HiHiHi_eval, Hi_eval);
-
- gsl_vector_set_all (v_temp, 1.0);
- gsl_blas_ddot (Hi_eval, v_temp, &trace_Hi);
- gsl_blas_ddot (HiHi_eval, v_temp, &trace_HiHi);
-
- if (p->e_mode!=0) {
- trace_Hi=(double)ni_test-trace_Hi;
- trace_HiHi=2*trace_Hi+trace_HiHi-(double)ni_test;
- }
-
- CalcPab (n_cvt, p->e_mode, Hi_eval, p->Uab, p->ab, Pab);
- CalcPPab (n_cvt, p->e_mode, HiHi_eval, p->Uab, p->ab, Pab, PPab);
- CalcPPPab (n_cvt, p->e_mode, HiHiHi_eval, p->Uab, p->ab, Pab,
- PPab, PPPab);
-
- // Calculate tracePK and trace PKPK.
- double trace_P=trace_Hi, trace_PP=trace_HiHi;
- double ps_ww, ps2_ww, ps3_ww;
- for (size_t i=0; i<nc_total; ++i) {
- index_ww=GetabIndex (i+1, i+1, n_cvt);
- ps_ww=gsl_matrix_get (Pab, i, index_ww);
- ps2_ww=gsl_matrix_get (PPab, i, index_ww);
- ps3_ww=gsl_matrix_get (PPPab, i, index_ww);
- trace_P-=ps2_ww/ps_ww;
- trace_PP+=ps2_ww*ps2_ww/(ps_ww*ps_ww)-2.0*ps3_ww/ps_ww;
- }
- double trace_PKPK=(df+trace_PP-2.0*trace_P)/(l*l);
-
- // Calculate yPKPy, yPKPKPy.
- index_ww=GetabIndex (n_cvt+2, n_cvt+2, n_cvt);
- double P_yy=gsl_matrix_get (Pab, nc_total, index_ww);
- double PP_yy=gsl_matrix_get (PPab, nc_total, index_ww);
- double PPP_yy=gsl_matrix_get (PPPab, nc_total, index_ww);
- double yPKPy=(P_yy-PP_yy)/l;
- double yPKPKPy=(P_yy+PPP_yy-2.0*PP_yy)/(l*l);
-
- dev2=0.5*trace_PKPK-0.5*df*(2.0*yPKPKPy*P_yy-yPKPy*yPKPy)/(P_yy*P_yy);
-
- gsl_matrix_free (Pab);
- gsl_matrix_free (PPab);
- gsl_matrix_free (PPPab);
- gsl_vector_free (Hi_eval);
- gsl_vector_free (HiHi_eval);
- gsl_vector_free (HiHiHi_eval);
- gsl_vector_free (v_temp);
-
- return dev2;
-}
+void CalcUab(const gsl_matrix *UtW, const gsl_vector *Uty,
+ const gsl_vector *Utx, gsl_matrix *Uab) {
+ size_t index_ab;
+ size_t n_cvt = UtW->size2;
+
+ for (size_t b = 1; b <= n_cvt + 2; ++b) {
+ index_ab = GetabIndex(n_cvt + 1, b, n_cvt);
+ gsl_vector_view Uab_col = gsl_matrix_column(Uab, index_ab);
+
+ if (b == n_cvt + 2) {
+ gsl_vector_memcpy(&Uab_col.vector, Uty);
+ } else if (b == n_cvt + 1) {
+ gsl_vector_memcpy(&Uab_col.vector, Utx);
+ } else {
+ gsl_vector_const_view UtW_col = gsl_matrix_const_column(UtW, b - 1);
+ gsl_vector_memcpy(&Uab_col.vector, &UtW_col.vector);
+ }
-void LogRL_dev12 (double l, void *params, double *dev1, double *dev2) {
- FUNC_PARAM *p=(FUNC_PARAM *) params;
- size_t n_cvt=p->n_cvt;
- size_t ni_test=p->ni_test;
- size_t n_index=(n_cvt+2+1)*(n_cvt+2)/2;
-
- double df;
- size_t nc_total;
- if (p->calc_null==true) {
- nc_total=n_cvt;
- df=(double)ni_test-(double)n_cvt;
- }
- else {
- nc_total=n_cvt+1;
- df=(double)ni_test-(double)n_cvt-1.0;
- }
-
- double trace_Hi=0.0, trace_HiHi=0.0;
- size_t index_ww;
-
- gsl_matrix *Pab=gsl_matrix_alloc (n_cvt+2, n_index);
- gsl_matrix *PPab=gsl_matrix_alloc (n_cvt+2, n_index);
- gsl_matrix *PPPab=gsl_matrix_alloc (n_cvt+2, n_index);
- gsl_vector *Hi_eval=gsl_vector_alloc((p->eval)->size);
- gsl_vector *HiHi_eval=gsl_vector_alloc((p->eval)->size);
- gsl_vector *HiHiHi_eval=gsl_vector_alloc((p->eval)->size);
- gsl_vector *v_temp=gsl_vector_alloc((p->eval)->size);
-
- gsl_vector_memcpy (v_temp, p->eval);
- gsl_vector_scale (v_temp, l);
- if (p->e_mode==0) {
- gsl_vector_set_all (Hi_eval, 1.0);
- } else {
- gsl_vector_memcpy (Hi_eval, v_temp);
- }
- gsl_vector_add_constant (v_temp, 1.0);
- gsl_vector_div (Hi_eval, v_temp);
-
- gsl_vector_memcpy (HiHi_eval, Hi_eval);
- gsl_vector_mul (HiHi_eval, Hi_eval);
- gsl_vector_memcpy (HiHiHi_eval, HiHi_eval);
- gsl_vector_mul (HiHiHi_eval, Hi_eval);
-
- gsl_vector_set_all (v_temp, 1.0);
- gsl_blas_ddot (Hi_eval, v_temp, &trace_Hi);
- gsl_blas_ddot (HiHi_eval, v_temp, &trace_HiHi);
-
- if (p->e_mode!=0) {
- trace_Hi=(double)ni_test-trace_Hi;
- trace_HiHi=2*trace_Hi+trace_HiHi-(double)ni_test;
- }
-
- CalcPab (n_cvt, p->e_mode, Hi_eval, p->Uab, p->ab, Pab);
- CalcPPab (n_cvt, p->e_mode, HiHi_eval, p->Uab, p->ab, Pab, PPab);
- CalcPPPab (n_cvt, p->e_mode, HiHiHi_eval, p->Uab, p->ab, Pab,
- PPab, PPPab);
-
- // Calculate tracePK and trace PKPK.
- double trace_P=trace_Hi, trace_PP=trace_HiHi;
- double ps_ww, ps2_ww, ps3_ww;
- for (size_t i=0; i<nc_total; ++i) {
- index_ww=GetabIndex (i+1, i+1, n_cvt);
- ps_ww=gsl_matrix_get (Pab, i, index_ww);
- ps2_ww=gsl_matrix_get (PPab, i, index_ww);
- ps3_ww=gsl_matrix_get (PPPab, i, index_ww);
- trace_P-=ps2_ww/ps_ww;
- trace_PP+=ps2_ww*ps2_ww/(ps_ww*ps_ww)-2.0*ps3_ww/ps_ww;
- }
- double trace_PK=(df-trace_P)/l;
- double trace_PKPK=(df+trace_PP-2.0*trace_P)/(l*l);
-
- // Calculate yPKPy, yPKPKPy.
- index_ww=GetabIndex (n_cvt+2, n_cvt+2, n_cvt);
- double P_yy=gsl_matrix_get (Pab, nc_total, index_ww);
- double PP_yy=gsl_matrix_get (PPab, nc_total, index_ww);
- double PPP_yy=gsl_matrix_get (PPPab, nc_total, index_ww);
- double yPKPy=(P_yy-PP_yy)/l;
- double yPKPKPy=(P_yy+PPP_yy-2.0*PP_yy)/(l*l);
-
- *dev1=-0.5*trace_PK+0.5*df*yPKPy/P_yy;
- *dev2=0.5*trace_PKPK-0.5*df*(2.0*yPKPKPy*P_yy-yPKPy*yPKPy)/
- (P_yy*P_yy);
-
- gsl_matrix_free (Pab);
- gsl_matrix_free (PPab);
- gsl_matrix_free (PPPab);
- gsl_vector_free (Hi_eval);
- gsl_vector_free (HiHi_eval);
- gsl_vector_free (HiHiHi_eval);
- gsl_vector_free (v_temp);
-
- return;
-}
+ gsl_vector_mul(&Uab_col.vector, Utx);
+ }
-void LMM::CalcRLWald (const double &l, const FUNC_PARAM &params,
- double &beta, double &se, double &p_wald) {
- size_t n_cvt=params.n_cvt;
- size_t n_index=(n_cvt+2+1)*(n_cvt+2)/2;
-
- int df=(int)ni_test-(int)n_cvt-1;
-
- gsl_matrix *Pab=gsl_matrix_alloc (n_cvt+2, n_index);
- gsl_vector *Hi_eval=gsl_vector_alloc(params.eval->size);
- gsl_vector *v_temp=gsl_vector_alloc(params.eval->size);
-
- gsl_vector_memcpy (v_temp, params.eval);
- gsl_vector_scale (v_temp, l);
- if (params.e_mode==0) {
- gsl_vector_set_all (Hi_eval, 1.0);
- } else {
- gsl_vector_memcpy (Hi_eval, v_temp);
- }
- gsl_vector_add_constant (v_temp, 1.0);
- gsl_vector_div (Hi_eval, v_temp);
-
- CalcPab (n_cvt, params.e_mode, Hi_eval, params.Uab, params.ab, Pab);
-
- size_t index_yy=GetabIndex (n_cvt+2, n_cvt+2, n_cvt);
- size_t index_xx=GetabIndex (n_cvt+1, n_cvt+1, n_cvt);
- size_t index_xy=GetabIndex (n_cvt+2, n_cvt+1, n_cvt);
- double P_yy=gsl_matrix_get (Pab, n_cvt, index_yy);
- double P_xx=gsl_matrix_get (Pab, n_cvt, index_xx);
- double P_xy=gsl_matrix_get (Pab, n_cvt, index_xy);
- double Px_yy=gsl_matrix_get (Pab, n_cvt+1, index_yy);
-
- beta=P_xy/P_xx;
- double tau=(double)df/Px_yy;
- se=sqrt(1.0/(tau*P_xx));
- p_wald=gsl_cdf_fdist_Q ((P_yy-Px_yy)*tau, 1.0, df);
-
- gsl_matrix_free (Pab);
- gsl_vector_free (Hi_eval);
- gsl_vector_free (v_temp);
- return;
+ return;
}
-void LMM::CalcRLScore (const double &l, const FUNC_PARAM &params,
- double &beta, double &se, double &p_score) {
- size_t n_cvt=params.n_cvt;
- size_t n_index=(n_cvt+2+1)*(n_cvt+2)/2;
-
- int df=(int)ni_test-(int)n_cvt-1;
-
- gsl_matrix *Pab=gsl_matrix_alloc (n_cvt+2, n_index);
- gsl_vector *Hi_eval=gsl_vector_alloc(params.eval->size);
- gsl_vector *v_temp=gsl_vector_alloc(params.eval->size);
-
- gsl_vector_memcpy (v_temp, params.eval);
- gsl_vector_scale (v_temp, l);
- if (params.e_mode==0) {
- gsl_vector_set_all (Hi_eval, 1.0);
- } else {
- gsl_vector_memcpy (Hi_eval, v_temp);
- }
- gsl_vector_add_constant (v_temp, 1.0);
- gsl_vector_div (Hi_eval, v_temp);
-
- CalcPab (n_cvt, params.e_mode, Hi_eval, params.Uab, params.ab, Pab);
-
- size_t index_yy=GetabIndex (n_cvt+2, n_cvt+2, n_cvt);
- size_t index_xx=GetabIndex (n_cvt+1, n_cvt+1, n_cvt);
- size_t index_xy=GetabIndex (n_cvt+2, n_cvt+1, n_cvt);
- double P_yy=gsl_matrix_get (Pab, n_cvt, index_yy);
- double P_xx=gsl_matrix_get (Pab, n_cvt, index_xx);
- double P_xy=gsl_matrix_get (Pab, n_cvt, index_xy);
- double Px_yy=gsl_matrix_get (Pab, n_cvt+1, index_yy);
-
- beta=P_xy/P_xx;
- double tau=(double)df/Px_yy;
- se=sqrt(1.0/(tau*P_xx));
-
- p_score=gsl_cdf_fdist_Q ((double)ni_test*P_xy*P_xy/(P_yy*P_xx),
- 1.0, df);
-
- gsl_matrix_free (Pab);
- gsl_vector_free (Hi_eval);
- gsl_vector_free (v_temp);
- return;
-}
+void Calcab(const gsl_matrix *W, const gsl_vector *y, gsl_vector *ab) {
+ size_t index_ab;
+ size_t n_cvt = W->size2;
-void CalcUab (const gsl_matrix *UtW, const gsl_vector *Uty, gsl_matrix *Uab) {
- size_t index_ab;
- size_t n_cvt=UtW->size2;
-
- gsl_vector *u_a=gsl_vector_alloc (Uty->size);
-
- for (size_t a=1; a<=n_cvt+2; ++a) {
- if (a==n_cvt+1) {continue;}
-
- if (a==n_cvt+2) {gsl_vector_memcpy (u_a, Uty);}
- else {
- gsl_vector_const_view UtW_col=
- gsl_matrix_const_column (UtW, a-1);
- gsl_vector_memcpy (u_a, &UtW_col.vector);
- }
-
- for (size_t b=a; b>=1; --b) {
- if (b==n_cvt+1) {continue;}
-
- index_ab=GetabIndex (a, b, n_cvt);
- gsl_vector_view Uab_col=
- gsl_matrix_column (Uab, index_ab);
-
- if (b==n_cvt+2) {
- gsl_vector_memcpy (&Uab_col.vector, Uty);
- }
- else {
- gsl_vector_const_view UtW_col=
- gsl_matrix_const_column (UtW, b-1);
- gsl_vector_memcpy (&Uab_col.vector,
- &UtW_col.vector);
- }
-
- gsl_vector_mul(&Uab_col.vector, u_a);
- }
- }
-
- gsl_vector_free (u_a);
- return;
-}
+ double d;
+ gsl_vector *v_a = gsl_vector_alloc(y->size);
+ gsl_vector *v_b = gsl_vector_alloc(y->size);
-void CalcUab (const gsl_matrix *UtW, const gsl_vector *Uty,
- const gsl_vector *Utx, gsl_matrix *Uab) {
- size_t index_ab;
- size_t n_cvt=UtW->size2;
-
- for (size_t b=1; b<=n_cvt+2; ++b) {
- index_ab=GetabIndex (n_cvt+1, b, n_cvt);
- gsl_vector_view Uab_col=gsl_matrix_column (Uab, index_ab);
-
- if (b==n_cvt+2) {gsl_vector_memcpy (&Uab_col.vector, Uty);}
- else if (b==n_cvt+1) {
- gsl_vector_memcpy (&Uab_col.vector, Utx);
- }
- else {
- gsl_vector_const_view UtW_col=
- gsl_matrix_const_column (UtW, b-1);
- gsl_vector_memcpy (&Uab_col.vector, &UtW_col.vector);
- }
-
- gsl_vector_mul(&Uab_col.vector, Utx);
- }
-
- return;
-}
+ for (size_t a = 1; a <= n_cvt + 2; ++a) {
+ if (a == n_cvt + 1) {
+ continue;
+ }
-void Calcab (const gsl_matrix *W, const gsl_vector *y, gsl_vector *ab) {
- size_t index_ab;
- size_t n_cvt=W->size2;
-
- double d;
- gsl_vector *v_a=gsl_vector_alloc (y->size);
- gsl_vector *v_b=gsl_vector_alloc (y->size);
-
- for (size_t a=1; a<=n_cvt+2; ++a) {
- if (a==n_cvt+1) {continue;}
-
- if (a==n_cvt+2) {
- gsl_vector_memcpy (v_a, y);
- }
- else {
- gsl_vector_const_view W_col=gsl_matrix_const_column (W, a-1);
- gsl_vector_memcpy (v_a, &W_col.vector);
- }
-
- for (size_t b=a; b>=1; --b) {
- if (b==n_cvt+1) {continue;}
-
- index_ab=GetabIndex (a, b, n_cvt);
-
- if (b==n_cvt+2) {
- gsl_vector_memcpy (v_b, y);
- }
- else {
- gsl_vector_const_view W_col=
- gsl_matrix_const_column (W, b-1);
- gsl_vector_memcpy (v_b, &W_col.vector);
- }
-
- gsl_blas_ddot (v_a, v_b, &d);
- gsl_vector_set(ab, index_ab, d);
- }
- }
-
- gsl_vector_free (v_a);
- gsl_vector_free (v_b);
- return;
+ if (a == n_cvt + 2) {
+ gsl_vector_memcpy(v_a, y);
+ } else {
+ gsl_vector_const_view W_col = gsl_matrix_const_column(W, a - 1);
+ gsl_vector_memcpy(v_a, &W_col.vector);
+ }
+
+ for (size_t b = a; b >= 1; --b) {
+ if (b == n_cvt + 1) {
+ continue;
+ }
+
+ index_ab = GetabIndex(a, b, n_cvt);
+
+ if (b == n_cvt + 2) {
+ gsl_vector_memcpy(v_b, y);
+ } else {
+ gsl_vector_const_view W_col = gsl_matrix_const_column(W, b - 1);
+ gsl_vector_memcpy(v_b, &W_col.vector);
+ }
+
+ gsl_blas_ddot(v_a, v_b, &d);
+ gsl_vector_set(ab, index_ab, d);
+ }
+ }
+
+ gsl_vector_free(v_a);
+ gsl_vector_free(v_b);
+ return;
}
-void Calcab (const gsl_matrix *W, const gsl_vector *y, const gsl_vector *x,
- gsl_vector *ab) {
- size_t index_ab;
- size_t n_cvt=W->size2;
+void Calcab(const gsl_matrix *W, const gsl_vector *y, const gsl_vector *x,
+ gsl_vector *ab) {
+ size_t index_ab;
+ size_t n_cvt = W->size2;
- double d;
- gsl_vector *v_b=gsl_vector_alloc (y->size);
+ double d;
+ gsl_vector *v_b = gsl_vector_alloc(y->size);
- for (size_t b=1; b<=n_cvt+2; ++b) {
- index_ab=GetabIndex (n_cvt+1, b, n_cvt);
+ for (size_t b = 1; b <= n_cvt + 2; ++b) {
+ index_ab = GetabIndex(n_cvt + 1, b, n_cvt);
- if (b==n_cvt+2) {gsl_vector_memcpy (v_b, y);}
- else if (b==n_cvt+1) {gsl_vector_memcpy (v_b, x);}
- else {
- gsl_vector_const_view W_col=gsl_matrix_const_column (W, b-1);
- gsl_vector_memcpy (v_b, &W_col.vector);
- }
+ if (b == n_cvt + 2) {
+ gsl_vector_memcpy(v_b, y);
+ } else if (b == n_cvt + 1) {
+ gsl_vector_memcpy(v_b, x);
+ } else {
+ gsl_vector_const_view W_col = gsl_matrix_const_column(W, b - 1);
+ gsl_vector_memcpy(v_b, &W_col.vector);
+ }
- gsl_blas_ddot (x, v_b, &d);
- gsl_vector_set(ab, index_ab, d);
- }
+ gsl_blas_ddot(x, v_b, &d);
+ gsl_vector_set(ab, index_ab, d);
+ }
- gsl_vector_free (v_b);
- return;
+ gsl_vector_free(v_b);
+ return;
}
-void LMM::AnalyzeGene (const gsl_matrix *U, const gsl_vector *eval,
- const gsl_matrix *UtW, const gsl_vector *Utx,
- const gsl_matrix *W, const gsl_vector *x) {
- igzstream infile (file_gene.c_str(), igzstream::in);
- if (!infile) {
- cout<<"error reading gene expression file:"<<file_gene<<endl;
- return;
- }
-
- clock_t time_start=clock();
-
- string line;
- char *ch_ptr;
-
- double lambda_mle=0, lambda_remle=0, beta=0, se=0, p_wald=0;
- double p_lrt=0, p_score=0;
- double logl_H1=0.0, logl_H0=0.0, l_H0;
- int c_phen;
- string rs; // Gene id.
- double d;
-
- // Calculate basic quantities.
- size_t n_index=(n_cvt+2+1)*(n_cvt+2)/2;
-
- gsl_vector *y=gsl_vector_alloc (U->size1);
- gsl_vector *Uty=gsl_vector_alloc (U->size2);
- gsl_matrix *Uab=gsl_matrix_alloc (U->size2, n_index);
- gsl_vector *ab=gsl_vector_alloc (n_index);
-
- // Header.
- getline(infile, line);
-
- for (size_t t=0; t<ng_total; t++) {
- !safeGetline(infile, line).eof();
- if (t%d_pace==0 || t==ng_total-1) {
- ProgressBar ("Performing Analysis ", t, ng_total-1);
- }
- ch_ptr=strtok ((char *)line.c_str(), " , \t");
- rs=ch_ptr;
-
- c_phen=0;
- for (size_t i=0; i<indicator_idv.size(); ++i) {
- ch_ptr=strtok (NULL, " , \t");
- if (indicator_idv[i]==0) {continue;}
-
- d=atof(ch_ptr);
- gsl_vector_set(y, c_phen, d);
-
- c_phen++;
- }
-
- time_start=clock();
- gsl_blas_dgemv (CblasTrans, 1.0, U, y, 0.0, Uty);
- time_UtX+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
-
- // Calculate null.
- time_start=clock();
-
- gsl_matrix_set_zero (Uab);
-
- CalcUab (UtW, Uty, Uab);
- FUNC_PARAM param0={false, ni_test, n_cvt, eval, Uab, ab, 0};
-
- if (a_mode==2 || a_mode==3 || a_mode==4) {
- CalcLambda('L', param0, l_min, l_max, n_region,
- l_H0, logl_H0);
- }
-
- // Calculate alternative.
- CalcUab(UtW, Uty, Utx, Uab);
- FUNC_PARAM param1={false, ni_test, n_cvt, eval, Uab, ab, 0};
-
- //3 is before 1.
- if (a_mode==3 || a_mode==4) {
- CalcRLScore (l_H0, param1, beta, se, p_score);
- }
-
- if (a_mode==1 || a_mode==4) {
- CalcLambda ('R', param1, l_min, l_max, n_region,
- lambda_remle, logl_H1);
- CalcRLWald (lambda_remle, param1, beta, se, p_wald);
- }
-
- if (a_mode==2 || a_mode==4) {
- CalcLambda ('L', param1, l_min, l_max, n_region,
- lambda_mle, logl_H1);
- p_lrt=gsl_cdf_chisq_Q (2.0*(logl_H1-logl_H0), 1);
- }
-
- time_opt+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
-
- // Store summary data.
- SUMSTAT SNPs={beta, se, lambda_remle, lambda_mle,
- p_wald, p_lrt, p_score};
- sumStat.push_back(SNPs);
- }
- cout<<endl;
-
- gsl_vector_free (y);
- gsl_vector_free (Uty);
- gsl_matrix_free (Uab);
- gsl_vector_free (ab);
-
- infile.close();
- infile.clear();
+void LMM::AnalyzeGene(const gsl_matrix *U, const gsl_vector *eval,
+ const gsl_matrix *UtW, const gsl_vector *Utx,
+ const gsl_matrix *W, const gsl_vector *x) {
+ igzstream infile(file_gene.c_str(), igzstream::in);
+ if (!infile) {
+ cout << "error reading gene expression file:" << file_gene << endl;
+ return;
+ }
+
+ clock_t time_start = clock();
+
+ string line;
+ char *ch_ptr;
+
+ double lambda_mle = 0, lambda_remle = 0, beta = 0, se = 0, p_wald = 0;
+ double p_lrt = 0, p_score = 0;
+ double logl_H1 = 0.0, logl_H0 = 0.0, l_H0;
+ int c_phen;
+ string rs; // Gene id.
+ double d;
+
+ // Calculate basic quantities.
+ size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2;
+
+ gsl_vector *y = gsl_vector_alloc(U->size1);
+ gsl_vector *Uty = gsl_vector_alloc(U->size2);
+ gsl_matrix *Uab = gsl_matrix_alloc(U->size2, n_index);
+ gsl_vector *ab = gsl_vector_alloc(n_index);
+
+ // Header.
+ getline(infile, line);
+
+ for (size_t t = 0; t < ng_total; t++) {
+ !safeGetline(infile, line).eof();
+ if (t % d_pace == 0 || t == ng_total - 1) {
+ ProgressBar("Performing Analysis ", t, ng_total - 1);
+ }
+ ch_ptr = strtok((char *)line.c_str(), " , \t");
+ rs = ch_ptr;
+
+ c_phen = 0;
+ for (size_t i = 0; i < indicator_idv.size(); ++i) {
+ ch_ptr = strtok(NULL, " , \t");
+ if (indicator_idv[i] == 0) {
+ continue;
+ }
+
+ d = atof(ch_ptr);
+ gsl_vector_set(y, c_phen, d);
+
+ c_phen++;
+ }
+
+ time_start = clock();
+ gsl_blas_dgemv(CblasTrans, 1.0, U, y, 0.0, Uty);
+ time_UtX += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
+
+ // Calculate null.
+ time_start = clock();
+
+ gsl_matrix_set_zero(Uab);
+
+ CalcUab(UtW, Uty, Uab);
+ FUNC_PARAM param0 = {false, ni_test, n_cvt, eval, Uab, ab, 0};
+
+ if (a_mode == 2 || a_mode == 3 || a_mode == 4) {
+ CalcLambda('L', param0, l_min, l_max, n_region, l_H0, logl_H0);
+ }
+
+ // Calculate alternative.
+ CalcUab(UtW, Uty, Utx, Uab);
+ FUNC_PARAM param1 = {false, ni_test, n_cvt, eval, Uab, ab, 0};
+
+ // 3 is before 1.
+ if (a_mode == 3 || a_mode == 4) {
+ CalcRLScore(l_H0, param1, beta, se, p_score);
+ }
+
+ if (a_mode == 1 || a_mode == 4) {
+ CalcLambda('R', param1, l_min, l_max, n_region, lambda_remle, logl_H1);
+ CalcRLWald(lambda_remle, param1, beta, se, p_wald);
+ }
+
+ if (a_mode == 2 || a_mode == 4) {
+ CalcLambda('L', param1, l_min, l_max, n_region, lambda_mle, logl_H1);
+ p_lrt = gsl_cdf_chisq_Q(2.0 * (logl_H1 - logl_H0), 1);
+ }
+
+ time_opt += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
+
+ // Store summary data.
+ SUMSTAT SNPs = {beta, se, lambda_remle, lambda_mle, p_wald, p_lrt, p_score};
+ sumStat.push_back(SNPs);
+ }
+ cout << endl;
+
+ gsl_vector_free(y);
+ gsl_vector_free(Uty);
+ gsl_matrix_free(Uab);
+ gsl_vector_free(ab);
+
+ infile.close();
+ infile.clear();
- return;
+ return;
}
-void LMM::AnalyzeBimbam (const gsl_matrix *U, const gsl_vector *eval,
- const gsl_matrix *UtW, const gsl_vector *Uty,
- const gsl_matrix *W, const gsl_vector *y) {
- igzstream infile (file_geno.c_str(), igzstream::in);
- if (!infile) {
- cout<<"error reading genotype file:"<<file_geno<<endl;
- return;
- }
-
- clock_t time_start=clock();
-
- string line;
- char *ch_ptr;
-
- double lambda_mle=0, lambda_remle=0, beta=0, se=0, p_wald=0;
- double p_lrt=0, p_score=0;
- double logl_H1=0.0;
- int n_miss, c_phen;
- double geno, x_mean;
-
- // Calculate basic quantities.
- size_t n_index=(n_cvt+2+1)*(n_cvt+2)/2;
-
- gsl_vector *x=gsl_vector_alloc (U->size1);
- gsl_vector *x_miss=gsl_vector_alloc (U->size1);
- gsl_vector *Utx=gsl_vector_alloc (U->size2);
- gsl_matrix *Uab=gsl_matrix_alloc (U->size2, n_index);
- gsl_vector *ab=gsl_vector_alloc (n_index);
-
- // Create a large matrix.
- size_t msize=10000;
- gsl_matrix *Xlarge=gsl_matrix_alloc (U->size1, msize);
- gsl_matrix *UtXlarge=gsl_matrix_alloc (U->size1, msize);
- gsl_matrix_set_zero(Xlarge);
-
- gsl_matrix_set_zero (Uab);
- CalcUab (UtW, Uty, Uab);
-
- //start reading genotypes and analyze
- size_t c=0, t_last=0;
- for (size_t t=0; t<indicator_snp.size(); ++t) {
- if (indicator_snp[t]==0) {continue;}
- t_last++;
- }
- for (size_t t=0; t<indicator_snp.size(); ++t) {
- !safeGetline(infile, line).eof();
- if (t%d_pace==0 || t==(ns_total-1)) {
- ProgressBar ("Reading SNPs ", t, ns_total-1);
- }
- if (indicator_snp[t]==0) {continue;}
-
- ch_ptr=strtok ((char *)line.c_str(), " , \t");
- ch_ptr=strtok (NULL, " , \t");
- ch_ptr=strtok (NULL, " , \t");
-
- x_mean=0.0; c_phen=0; n_miss=0;
- gsl_vector_set_zero(x_miss);
- for (size_t i=0; i<ni_total; ++i) {
- ch_ptr=strtok (NULL, " , \t");
- if (indicator_idv[i]==0) {continue;}
-
- if (strcmp(ch_ptr, "NA")==0) {
- gsl_vector_set(x_miss, c_phen, 0.0); n_miss++;
- }
- else {
- geno=atof(ch_ptr);
-
- gsl_vector_set(x, c_phen, geno);
- gsl_vector_set(x_miss, c_phen, 1.0);
- x_mean+=geno;
- }
- c_phen++;
- }
-
- x_mean/=(double)(ni_test-n_miss);
-
- for (size_t i=0; i<ni_test; ++i) {
- if (gsl_vector_get (x_miss, i)==0) {
- gsl_vector_set(x, i, x_mean);
- }
- }
-
- gsl_vector_view Xlarge_col=gsl_matrix_column (Xlarge, c%msize);
- gsl_vector_memcpy (&Xlarge_col.vector, x);
- c++;
-
- if (c%msize==0 || c==t_last) {
- size_t l=0;
- if (c%msize==0) {l=msize;} else {l=c%msize;}
-
- gsl_matrix_view Xlarge_sub=
- gsl_matrix_submatrix(Xlarge, 0, 0, Xlarge->size1, l);
- gsl_matrix_view UtXlarge_sub=
- gsl_matrix_submatrix(UtXlarge, 0, 0, UtXlarge->size1, l);
-
- time_start=clock();
- eigenlib_dgemm ("T", "N", 1.0, U, &Xlarge_sub.matrix,
- 0.0, &UtXlarge_sub.matrix);
- time_UtX+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
-
- gsl_matrix_set_zero (Xlarge);
-
- for (size_t i=0; i<l; i++) {
- gsl_vector_view UtXlarge_col=
- gsl_matrix_column (UtXlarge, i);
- gsl_vector_memcpy (Utx, &UtXlarge_col.vector);
-
- CalcUab(UtW, Uty, Utx, Uab);
-
- time_start=clock();
- FUNC_PARAM param1=
- {false, ni_test, n_cvt, eval, Uab, ab, 0};
-
- // 3 is before 1.
- if (a_mode==3 || a_mode==4) {
- CalcRLScore (l_mle_null, param1, beta, se, p_score);
- }
-
- if (a_mode==1 || a_mode==4) {
- CalcLambda ('R', param1, l_min, l_max, n_region,
- lambda_remle, logl_H1);
- CalcRLWald (lambda_remle, param1, beta, se, p_wald);
- }
-
- if (a_mode==2 || a_mode==4) {
- CalcLambda ('L', param1, l_min, l_max, n_region,
- lambda_mle, logl_H1);
- p_lrt=gsl_cdf_chisq_Q (2.0*(logl_H1-logl_mle_H0), 1);
- }
-
- time_opt+=(clock()-time_start)/
- (double(CLOCKS_PER_SEC)*60.0);
-
- // Store summary data.
- SUMSTAT SNPs={beta, se, lambda_remle, lambda_mle,
- p_wald, p_lrt, p_score};
-
- sumStat.push_back(SNPs);
- }
- }
- }
- cout<<endl;
-
- gsl_vector_free (x);
- gsl_vector_free (x_miss);
- gsl_vector_free (Utx);
- gsl_matrix_free (Uab);
- gsl_vector_free (ab);
-
- gsl_matrix_free (Xlarge);
- gsl_matrix_free (UtXlarge);
-
- infile.close();
- infile.clear();
-
- return;
+void LMM::AnalyzeBimbam(const gsl_matrix *U, const gsl_vector *eval,
+ const gsl_matrix *UtW, const gsl_vector *Uty,
+ const gsl_matrix *W, const gsl_vector *y) {
+ igzstream infile(file_geno.c_str(), igzstream::in);
+ if (!infile) {
+ cout << "error reading genotype file:" << file_geno << endl;
+ return;
+ }
+
+ clock_t time_start = clock();
+
+ string line;
+ char *ch_ptr;
+
+ double lambda_mle = 0, lambda_remle = 0, beta = 0, se = 0, p_wald = 0;
+ double p_lrt = 0, p_score = 0;
+ double logl_H1 = 0.0;
+ int n_miss, c_phen;
+ double geno, x_mean;
+
+ // Calculate basic quantities.
+ size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2;
+
+ gsl_vector *x = gsl_vector_alloc(U->size1);
+ gsl_vector *x_miss = gsl_vector_alloc(U->size1);
+ gsl_vector *Utx = gsl_vector_alloc(U->size2);
+ gsl_matrix *Uab = gsl_matrix_alloc(U->size2, n_index);
+ gsl_vector *ab = gsl_vector_alloc(n_index);
+
+ // Create a large matrix.
+ size_t msize = 10000;
+ gsl_matrix *Xlarge = gsl_matrix_alloc(U->size1, msize);
+ gsl_matrix *UtXlarge = gsl_matrix_alloc(U->size1, msize);
+ gsl_matrix_set_zero(Xlarge);
+
+ gsl_matrix_set_zero(Uab);
+ CalcUab(UtW, Uty, Uab);
+
+ // start reading genotypes and analyze
+ size_t c = 0, t_last = 0;
+ for (size_t t = 0; t < indicator_snp.size(); ++t) {
+ if (indicator_snp[t] == 0) {
+ continue;
+ }
+ t_last++;
+ }
+ for (size_t t = 0; t < indicator_snp.size(); ++t) {
+ !safeGetline(infile, line).eof();
+ if (t % d_pace == 0 || t == (ns_total - 1)) {
+ ProgressBar("Reading SNPs ", t, ns_total - 1);
+ }
+ if (indicator_snp[t] == 0) {
+ continue;
+ }
+
+ ch_ptr = strtok((char *)line.c_str(), " , \t");
+ ch_ptr = strtok(NULL, " , \t");
+ ch_ptr = strtok(NULL, " , \t");
+
+ x_mean = 0.0;
+ c_phen = 0;
+ n_miss = 0;
+ gsl_vector_set_zero(x_miss);
+ for (size_t i = 0; i < ni_total; ++i) {
+ ch_ptr = strtok(NULL, " , \t");
+ if (indicator_idv[i] == 0) {
+ continue;
+ }
+
+ if (strcmp(ch_ptr, "NA") == 0) {
+ gsl_vector_set(x_miss, c_phen, 0.0);
+ n_miss++;
+ } else {
+ geno = atof(ch_ptr);
+
+ gsl_vector_set(x, c_phen, geno);
+ gsl_vector_set(x_miss, c_phen, 1.0);
+ x_mean += geno;
+ }
+ c_phen++;
+ }
+
+ x_mean /= (double)(ni_test - n_miss);
+
+ for (size_t i = 0; i < ni_test; ++i) {
+ if (gsl_vector_get(x_miss, i) == 0) {
+ gsl_vector_set(x, i, x_mean);
+ }
+ }
+
+ gsl_vector_view Xlarge_col = gsl_matrix_column(Xlarge, c % msize);
+ gsl_vector_memcpy(&Xlarge_col.vector, x);
+ c++;
+
+ if (c % msize == 0 || c == t_last) {
+ size_t l = 0;
+ if (c % msize == 0) {
+ l = msize;
+ } else {
+ l = c % msize;
+ }
+
+ gsl_matrix_view Xlarge_sub =
+ gsl_matrix_submatrix(Xlarge, 0, 0, Xlarge->size1, l);
+ gsl_matrix_view UtXlarge_sub =
+ gsl_matrix_submatrix(UtXlarge, 0, 0, UtXlarge->size1, l);
+
+ time_start = clock();
+ eigenlib_dgemm("T", "N", 1.0, U, &Xlarge_sub.matrix, 0.0,
+ &UtXlarge_sub.matrix);
+ time_UtX += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
+
+ gsl_matrix_set_zero(Xlarge);
+
+ for (size_t i = 0; i < l; i++) {
+ gsl_vector_view UtXlarge_col = gsl_matrix_column(UtXlarge, i);
+ gsl_vector_memcpy(Utx, &UtXlarge_col.vector);
+
+ CalcUab(UtW, Uty, Utx, Uab);
+
+ time_start = clock();
+ FUNC_PARAM param1 = {false, ni_test, n_cvt, eval, Uab, ab, 0};
+
+ // 3 is before 1.
+ if (a_mode == 3 || a_mode == 4) {
+ CalcRLScore(l_mle_null, param1, beta, se, p_score);
+ }
+
+ if (a_mode == 1 || a_mode == 4) {
+ CalcLambda('R', param1, l_min, l_max, n_region, lambda_remle,
+ logl_H1);
+ CalcRLWald(lambda_remle, param1, beta, se, p_wald);
+ }
+
+ if (a_mode == 2 || a_mode == 4) {
+ CalcLambda('L', param1, l_min, l_max, n_region, lambda_mle, logl_H1);
+ p_lrt = gsl_cdf_chisq_Q(2.0 * (logl_H1 - logl_mle_H0), 1);
+ }
+
+ time_opt += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
+
+ // Store summary data.
+ SUMSTAT SNPs = {beta, se, lambda_remle, lambda_mle,
+ p_wald, p_lrt, p_score};
+
+ sumStat.push_back(SNPs);
+ }
+ }
+ }
+ cout << endl;
+
+ gsl_vector_free(x);
+ gsl_vector_free(x_miss);
+ gsl_vector_free(Utx);
+ gsl_matrix_free(Uab);
+ gsl_vector_free(ab);
+
+ gsl_matrix_free(Xlarge);
+ gsl_matrix_free(UtXlarge);
+
+ infile.close();
+ infile.clear();
+
+ return;
}
-void LMM::AnalyzePlink (const gsl_matrix *U, const gsl_vector *eval,
- const gsl_matrix *UtW, const gsl_vector *Uty,
- const gsl_matrix *W, const gsl_vector *y) {
- string file_bed=file_bfile+".bed";
- ifstream infile (file_bed.c_str(), ios::binary);
- if (!infile) {cout<<"error reading bed file:"<<file_bed<<endl; return;}
-
- clock_t time_start=clock();
-
- char ch[1];
- bitset<8> b;
-
- double lambda_mle=0, lambda_remle=0, beta=0, se=0, p_wald=0;
- double p_lrt=0, p_score=0;
- double logl_H1=0.0;
- int n_bit, n_miss, ci_total, ci_test;
- double geno, x_mean;
-
- // Calculate basic quantities.
- size_t n_index=(n_cvt+2+1)*(n_cvt+2)/2;
-
- gsl_vector *x=gsl_vector_alloc (U->size1);
- gsl_vector *Utx=gsl_vector_alloc (U->size2);
- gsl_matrix *Uab=gsl_matrix_alloc (U->size2, n_index);
- gsl_vector *ab=gsl_vector_alloc (n_index);
-
- // Create a large matrix.
- size_t msize=10000;
- gsl_matrix *Xlarge=gsl_matrix_alloc (U->size1, msize);
- gsl_matrix *UtXlarge=gsl_matrix_alloc (U->size1, msize);
- gsl_matrix_set_zero(Xlarge);
-
- gsl_matrix_set_zero (Uab);
- CalcUab (UtW, Uty, Uab);
-
- // Calculate n_bit and c, the number of bit for each SNP.
- if (ni_total%4==0) {n_bit=ni_total/4;}
- else {n_bit=ni_total/4+1; }
-
- // Print the first three magic numbers.
- for (int i=0; i<3; ++i) {
- infile.read(ch,1);
- b=ch[0];
- }
-
- size_t c=0, t_last=0;
- for (size_t t=0; t<snpInfo.size(); ++t) {
- if (indicator_snp[t]==0) {continue;}
- t_last++;
- }
- for (vector<SNPINFO>::size_type t=0; t<snpInfo.size(); ++t) {
- if (t%d_pace==0 || t==snpInfo.size()-1) {
- ProgressBar ("Reading SNPs ", t, snpInfo.size()-1);
- }
- if (indicator_snp[t]==0) {continue;}
-
- // n_bit, and 3 is the number of magic numbers.
- infile.seekg(t*n_bit+3);
-
- // Read genotypes.
- x_mean=0.0; n_miss=0; ci_total=0; ci_test=0;
- for (int i=0; i<n_bit; ++i) {
- infile.read(ch,1);
- b=ch[0];
-
- // Minor allele homozygous: 2.0; major: 0.0.
- for (size_t j=0; j<4; ++j) {
- if ((i==(n_bit-1)) && ci_total==(int)ni_total) {
- break;
- }
- if (indicator_idv[ci_total]==0) {
- ci_total++;
- continue;
- }
-
- if (b[2*j]==0) {
- if (b[2*j+1]==0) {
- gsl_vector_set(x, ci_test, 2);
- x_mean+=2.0;
- }
- else {gsl_vector_set(x, ci_test, 1); x_mean+=1.0; }
- }
- else {
- if (b[2*j+1]==1) {gsl_vector_set(x, ci_test, 0); }
- else {gsl_vector_set(x, ci_test, -9); n_miss++; }
- }
-
- ci_total++;
- ci_test++;
- }
- }
-
- x_mean/=(double)(ni_test-n_miss);
-
- for (size_t i=0; i<ni_test; ++i) {
- geno=gsl_vector_get(x,i);
- if (geno==-9) {
- gsl_vector_set(x, i, x_mean);
- geno=x_mean;
- }
- }
-
- gsl_vector_view Xlarge_col=gsl_matrix_column (Xlarge, c%msize);
- gsl_vector_memcpy (&Xlarge_col.vector, x);
- c++;
-
- if (c%msize==0 || c==t_last) {
- size_t l=0;
- if (c%msize==0) {l=msize;} else {l=c%msize;}
-
- gsl_matrix_view Xlarge_sub=
- gsl_matrix_submatrix(Xlarge, 0, 0, Xlarge->size1, l);
- gsl_matrix_view UtXlarge_sub=
- gsl_matrix_submatrix(UtXlarge, 0, 0, UtXlarge->size1, l);
-
- time_start=clock();
- eigenlib_dgemm ("T", "N", 1.0, U, &Xlarge_sub.matrix,
- 0.0, &UtXlarge_sub.matrix);
- time_UtX+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
-
- gsl_matrix_set_zero (Xlarge);
-
- for (size_t i=0; i<l; i++) {
- gsl_vector_view UtXlarge_col=
- gsl_matrix_column (UtXlarge, i);
- gsl_vector_memcpy (Utx, &UtXlarge_col.vector);
-
- CalcUab(UtW, Uty, Utx, Uab);
-
- time_start=clock();
- FUNC_PARAM param1={false, ni_test, n_cvt, eval,
- Uab, ab, 0};
-
- // 3 is before 1, for beta.
- if (a_mode==3 || a_mode==4) {
- CalcRLScore (l_mle_null, param1, beta, se, p_score);
- }
-
- if (a_mode==1 || a_mode==4) {
- CalcLambda ('R', param1, l_min, l_max, n_region,
- lambda_remle, logl_H1);
- CalcRLWald (lambda_remle, param1, beta, se, p_wald);
- }
-
- if (a_mode==2 || a_mode==4) {
- CalcLambda ('L', param1, l_min, l_max, n_region,
- lambda_mle, logl_H1);
- p_lrt=gsl_cdf_chisq_Q (2.0*(logl_H1-logl_mle_H0), 1);
- }
-
- time_opt+=(clock()-time_start)/
- (double(CLOCKS_PER_SEC)*60.0);
-
- // Store summary data.
- SUMSTAT SNPs={beta, se, lambda_remle, lambda_mle,
- p_wald, p_lrt, p_score};
- sumStat.push_back(SNPs);
- }
- }
- }
- cout<<endl;
-
- gsl_vector_free (x);
- gsl_vector_free (Utx);
- gsl_matrix_free (Uab);
- gsl_vector_free (ab);
-
- gsl_matrix_free(Xlarge);
- gsl_matrix_free(UtXlarge);
-
- infile.close();
- infile.clear();
-
- return;
+void LMM::AnalyzePlink(const gsl_matrix *U, const gsl_vector *eval,
+ const gsl_matrix *UtW, const gsl_vector *Uty,
+ const gsl_matrix *W, const gsl_vector *y) {
+ string file_bed = file_bfile + ".bed";
+ ifstream infile(file_bed.c_str(), ios::binary);
+ if (!infile) {
+ cout << "error reading bed file:" << file_bed << endl;
+ return;
+ }
+
+ clock_t time_start = clock();
+
+ char ch[1];
+ bitset<8> b;
+
+ double lambda_mle = 0, lambda_remle = 0, beta = 0, se = 0, p_wald = 0;
+ double p_lrt = 0, p_score = 0;
+ double logl_H1 = 0.0;
+ int n_bit, n_miss, ci_total, ci_test;
+ double geno, x_mean;
+
+ // Calculate basic quantities.
+ size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2;
+
+ gsl_vector *x = gsl_vector_alloc(U->size1);
+ gsl_vector *Utx = gsl_vector_alloc(U->size2);
+ gsl_matrix *Uab = gsl_matrix_alloc(U->size2, n_index);
+ gsl_vector *ab = gsl_vector_alloc(n_index);
+
+ // Create a large matrix.
+ size_t msize = 10000;
+ gsl_matrix *Xlarge = gsl_matrix_alloc(U->size1, msize);
+ gsl_matrix *UtXlarge = gsl_matrix_alloc(U->size1, msize);
+ gsl_matrix_set_zero(Xlarge);
+
+ gsl_matrix_set_zero(Uab);
+ CalcUab(UtW, Uty, Uab);
+
+ // Calculate n_bit and c, the number of bit for each SNP.
+ if (ni_total % 4 == 0) {
+ n_bit = ni_total / 4;
+ } else {
+ n_bit = ni_total / 4 + 1;
+ }
+
+ // Print the first three magic numbers.
+ for (int i = 0; i < 3; ++i) {
+ infile.read(ch, 1);
+ b = ch[0];
+ }
+
+ size_t c = 0, t_last = 0;
+ for (size_t t = 0; t < snpInfo.size(); ++t) {
+ if (indicator_snp[t] == 0) {
+ continue;
+ }
+ t_last++;
+ }
+ for (vector<SNPINFO>::size_type t = 0; t < snpInfo.size(); ++t) {
+ if (t % d_pace == 0 || t == snpInfo.size() - 1) {
+ ProgressBar("Reading SNPs ", t, snpInfo.size() - 1);
+ }
+ if (indicator_snp[t] == 0) {
+ continue;
+ }
+
+ // n_bit, and 3 is the number of magic numbers.
+ infile.seekg(t * n_bit + 3);
+
+ // Read genotypes.
+ x_mean = 0.0;
+ n_miss = 0;
+ ci_total = 0;
+ ci_test = 0;
+ for (int i = 0; i < n_bit; ++i) {
+ infile.read(ch, 1);
+ b = ch[0];
+
+ // Minor allele homozygous: 2.0; major: 0.0.
+ for (size_t j = 0; j < 4; ++j) {
+ if ((i == (n_bit - 1)) && ci_total == (int)ni_total) {
+ break;
+ }
+ if (indicator_idv[ci_total] == 0) {
+ ci_total++;
+ continue;
+ }
+
+ if (b[2 * j] == 0) {
+ if (b[2 * j + 1] == 0) {
+ gsl_vector_set(x, ci_test, 2);
+ x_mean += 2.0;
+ } else {
+ gsl_vector_set(x, ci_test, 1);
+ x_mean += 1.0;
+ }
+ } else {
+ if (b[2 * j + 1] == 1) {
+ gsl_vector_set(x, ci_test, 0);
+ } else {
+ gsl_vector_set(x, ci_test, -9);
+ n_miss++;
+ }
+ }
+
+ ci_total++;
+ ci_test++;
+ }
+ }
+
+ x_mean /= (double)(ni_test - n_miss);
+
+ for (size_t i = 0; i < ni_test; ++i) {
+ geno = gsl_vector_get(x, i);
+ if (geno == -9) {
+ gsl_vector_set(x, i, x_mean);
+ geno = x_mean;
+ }
+ }
+
+ gsl_vector_view Xlarge_col = gsl_matrix_column(Xlarge, c % msize);
+ gsl_vector_memcpy(&Xlarge_col.vector, x);
+ c++;
+
+ if (c % msize == 0 || c == t_last) {
+ size_t l = 0;
+ if (c % msize == 0) {
+ l = msize;
+ } else {
+ l = c % msize;
+ }
+
+ gsl_matrix_view Xlarge_sub =
+ gsl_matrix_submatrix(Xlarge, 0, 0, Xlarge->size1, l);
+ gsl_matrix_view UtXlarge_sub =
+ gsl_matrix_submatrix(UtXlarge, 0, 0, UtXlarge->size1, l);
+
+ time_start = clock();
+ eigenlib_dgemm("T", "N", 1.0, U, &Xlarge_sub.matrix, 0.0,
+ &UtXlarge_sub.matrix);
+ time_UtX += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
+
+ gsl_matrix_set_zero(Xlarge);
+
+ for (size_t i = 0; i < l; i++) {
+ gsl_vector_view UtXlarge_col = gsl_matrix_column(UtXlarge, i);
+ gsl_vector_memcpy(Utx, &UtXlarge_col.vector);
+
+ CalcUab(UtW, Uty, Utx, Uab);
+
+ time_start = clock();
+ FUNC_PARAM param1 = {false, ni_test, n_cvt, eval, Uab, ab, 0};
+
+ // 3 is before 1, for beta.
+ if (a_mode == 3 || a_mode == 4) {
+ CalcRLScore(l_mle_null, param1, beta, se, p_score);
+ }
+
+ if (a_mode == 1 || a_mode == 4) {
+ CalcLambda('R', param1, l_min, l_max, n_region, lambda_remle,
+ logl_H1);
+ CalcRLWald(lambda_remle, param1, beta, se, p_wald);
+ }
+
+ if (a_mode == 2 || a_mode == 4) {
+ CalcLambda('L', param1, l_min, l_max, n_region, lambda_mle, logl_H1);
+ p_lrt = gsl_cdf_chisq_Q(2.0 * (logl_H1 - logl_mle_H0), 1);
+ }
+
+ time_opt += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
+
+ // Store summary data.
+ SUMSTAT SNPs = {beta, se, lambda_remle, lambda_mle,
+ p_wald, p_lrt, p_score};
+ sumStat.push_back(SNPs);
+ }
+ }
+ }
+ cout << endl;
+
+ gsl_vector_free(x);
+ gsl_vector_free(Utx);
+ gsl_matrix_free(Uab);
+ gsl_vector_free(ab);
+
+ gsl_matrix_free(Xlarge);
+ gsl_matrix_free(UtXlarge);
+
+ infile.close();
+ infile.clear();
+
+ return;
}
// WJA added.
-void LMM::Analyzebgen (const gsl_matrix *U, const gsl_vector *eval,
- const gsl_matrix *UtW, const gsl_vector *Uty,
- const gsl_matrix *W, const gsl_vector *y) {
- string file_bgen=file_oxford+".bgen";
- ifstream infile (file_bgen.c_str(), ios::binary);
- if (!infile) {
- cout<<"error reading bgen file:"<<file_bgen<<endl;
- return;
- }
-
- clock_t time_start=clock();
- double lambda_mle=0, lambda_remle=0, beta=0, se=0, p_wald=0;
- double p_lrt=0, p_score=0;
- double logl_H1=0.0;
- int n_miss, c_phen;
- double geno, x_mean;
-
- // Calculate basic quantities.
- size_t n_index=(n_cvt+2+1)*(n_cvt+2)/2;
-
- gsl_vector *x=gsl_vector_alloc (U->size1);
- gsl_vector *x_miss=gsl_vector_alloc (U->size1);
- gsl_vector *Utx=gsl_vector_alloc (U->size2);
- gsl_matrix *Uab=gsl_matrix_alloc (U->size2, n_index);
- gsl_vector *ab=gsl_vector_alloc (n_index);
-
- // Create a large matrix.
- size_t msize=10000;
- gsl_matrix *Xlarge=gsl_matrix_alloc (U->size1, msize);
- gsl_matrix *UtXlarge=gsl_matrix_alloc (U->size1, msize);
- gsl_matrix_set_zero(Xlarge);
-
- gsl_matrix_set_zero (Uab);
- CalcUab (UtW, Uty, Uab);
-
- // Read in header.
- uint32_t bgen_snp_block_offset;
- uint32_t bgen_header_length;
- uint32_t bgen_nsamples;
- uint32_t bgen_nsnps;
- uint32_t bgen_flags;
- infile.read(reinterpret_cast<char*>(&bgen_snp_block_offset),4);
- infile.read(reinterpret_cast<char*>(&bgen_header_length),4);
- bgen_snp_block_offset-=4;
- infile.read(reinterpret_cast<char*>(&bgen_nsnps),4);
- bgen_snp_block_offset-=4;
- infile.read(reinterpret_cast<char*>(&bgen_nsamples),4);
- bgen_snp_block_offset-=4;
- infile.ignore(4+bgen_header_length-20);
- bgen_snp_block_offset-=4+bgen_header_length-20;
- infile.read(reinterpret_cast<char*>(&bgen_flags),4);
- bgen_snp_block_offset-=4;
- bool CompressedSNPBlocks=bgen_flags&0x1;
-
- infile.ignore(bgen_snp_block_offset);
-
- double bgen_geno_prob_AA, bgen_geno_prob_AB, bgen_geno_prob_BB;
- double bgen_geno_prob_non_miss;
-
- uint32_t bgen_N;
- uint16_t bgen_LS;
- uint16_t bgen_LR;
- uint16_t bgen_LC;
- uint32_t bgen_SNP_pos;
- uint32_t bgen_LA;
- std::string bgen_A_allele;
- uint32_t bgen_LB;
- std::string bgen_B_allele;
- uint32_t bgen_P;
- size_t unzipped_data_size;
- string id;
- string rs;
- string chr;
- std::cout << "Warning: WJA hard coded SNP missingness " <<
- "threshold of 10%"<<std::endl;
-
- // Start reading genotypes and analyze.
- size_t c=0, t_last=0;
- for (size_t t=0; t<indicator_snp.size(); ++t) {
- if (indicator_snp[t]==0) {continue;}
- t_last++;
- }
- for (size_t t=0; t<indicator_snp.size(); ++t)
- {
- if (t%d_pace==0 || t==(ns_total-1)) {
- ProgressBar ("Reading SNPs ", t, ns_total-1);
- }
- if (indicator_snp[t]==0) {continue;}
-
- // Read SNP header.
- id.clear();
- rs.clear();
- chr.clear();
- bgen_A_allele.clear();
- bgen_B_allele.clear();
-
- infile.read(reinterpret_cast<char*>(&bgen_N),4);
- infile.read(reinterpret_cast<char*>(&bgen_LS),2);
-
- id.resize(bgen_LS);
- infile.read(&id[0], bgen_LS);
-
- infile.read(reinterpret_cast<char*>(&bgen_LR),2);
- rs.resize(bgen_LR);
- infile.read(&rs[0], bgen_LR);
-
- infile.read(reinterpret_cast<char*>(&bgen_LC),2);
- chr.resize(bgen_LC);
- infile.read(&chr[0], bgen_LC);
-
- infile.read(reinterpret_cast<char*>(&bgen_SNP_pos),4);
-
- infile.read(reinterpret_cast<char*>(&bgen_LA),4);
- bgen_A_allele.resize(bgen_LA);
- infile.read(&bgen_A_allele[0], bgen_LA);
-
-
- infile.read(reinterpret_cast<char*>(&bgen_LB),4);
- bgen_B_allele.resize(bgen_LB);
- infile.read(&bgen_B_allele[0], bgen_LB);
-
- uint16_t unzipped_data[3*bgen_N];
-
- if (indicator_snp[t]==0) {
- if(CompressedSNPBlocks)
- infile.read(reinterpret_cast<char*>(&bgen_P),4);
- else
- bgen_P=6*bgen_N;
-
- infile.ignore(static_cast<size_t>(bgen_P));
-
- continue;
- }
-
- if(CompressedSNPBlocks) {
- infile.read(reinterpret_cast<char*>(&bgen_P),4);
- uint8_t zipped_data[bgen_P];
-
- unzipped_data_size=6*bgen_N;
-
- infile.read(reinterpret_cast<char*>(zipped_data),
- bgen_P);
-
- int result=
- uncompress(reinterpret_cast<Bytef*>(unzipped_data),
- reinterpret_cast<uLongf*>(&unzipped_data_size),
- reinterpret_cast<Bytef*>(zipped_data),
- static_cast<uLong> (bgen_P));
- assert(result == Z_OK);
-
- }
- else
- {
-
- bgen_P=6*bgen_N;
- infile.read(reinterpret_cast<char*>(unzipped_data),bgen_P);
- }
-
- x_mean=0.0; c_phen=0; n_miss=0;
- gsl_vector_set_zero(x_miss);
- for (size_t i=0; i<bgen_N; ++i) {
- if (indicator_idv[i]==0) {continue;}
-
- bgen_geno_prob_AA=
- static_cast<double>(unzipped_data[i*3])/32768.0;
- bgen_geno_prob_AB=
- static_cast<double>(unzipped_data[i*3+1])/32768.0;
- bgen_geno_prob_BB=
- static_cast<double>(unzipped_data[i*3+2])/32768.0;
-
- // WJA.
- bgen_geno_prob_non_miss = bgen_geno_prob_AA +
- bgen_geno_prob_AB+bgen_geno_prob_BB;
- if (bgen_geno_prob_non_miss<0.9) {
- gsl_vector_set(x_miss, c_phen, 0.0);
- n_miss++;
- }
- else {
-
- bgen_geno_prob_AA/=bgen_geno_prob_non_miss;
- bgen_geno_prob_AB/=bgen_geno_prob_non_miss;
- bgen_geno_prob_BB/=bgen_geno_prob_non_miss;
-
- geno=2.0*bgen_geno_prob_BB+bgen_geno_prob_AB;
-
- gsl_vector_set(x, c_phen, geno);
- gsl_vector_set(x_miss, c_phen, 1.0);
- x_mean+=geno;
- }
- c_phen++;
- }
-
- x_mean/=static_cast<double>(ni_test-n_miss);
-
- for (size_t i=0; i<ni_test; ++i) {
- if (gsl_vector_get (x_miss, i)==0) {
- gsl_vector_set(x, i, x_mean);
- }
- geno=gsl_vector_get(x, i);
- }
-
- gsl_vector_view Xlarge_col=gsl_matrix_column (Xlarge, c%msize);
- gsl_vector_memcpy (&Xlarge_col.vector, x);
- c++;
-
- if (c%msize==0 || c==t_last ) {
- size_t l=0;
- if (c%msize==0) {l=msize;} else {l=c%msize;}
-
- gsl_matrix_view Xlarge_sub=
- gsl_matrix_submatrix(Xlarge, 0, 0, Xlarge->size1, l);
- gsl_matrix_view UtXlarge_sub=
- gsl_matrix_submatrix(UtXlarge, 0, 0, UtXlarge->size1, l);
-
- time_start=clock();
- eigenlib_dgemm ("T", "N", 1.0, U, &Xlarge_sub.matrix,
- 0.0, &UtXlarge_sub.matrix);
- time_UtX+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
-
- gsl_matrix_set_zero (Xlarge);
-
- for (size_t i=0; i<l; i++) {
- gsl_vector_view UtXlarge_col=
- gsl_matrix_column (UtXlarge, i);
- gsl_vector_memcpy (Utx, &UtXlarge_col.vector);
-
- CalcUab(UtW, Uty, Utx, Uab);
-
- time_start=clock();
- FUNC_PARAM param1={false,ni_test,n_cvt,eval,Uab,ab,0};
-
- // 3 is before 1.
- if (a_mode==3 || a_mode==4) {
- CalcRLScore (l_mle_null, param1, beta, se, p_score);
- }
-
- if (a_mode==1 || a_mode==4) {
- CalcLambda ('R', param1, l_min, l_max, n_region,
- lambda_remle, logl_H1);
- CalcRLWald (lambda_remle, param1, beta, se, p_wald);
- }
-
- if (a_mode==2 || a_mode==4) {
- CalcLambda ('L', param1, l_min, l_max, n_region,
- lambda_mle, logl_H1);
- p_lrt=gsl_cdf_chisq_Q (2.0*(logl_H1-logl_mle_H0), 1);
- }
-
- time_opt+=(clock()-time_start)/
- (double(CLOCKS_PER_SEC)*60.0);
-
- // Store summary data.
- SUMSTAT SNPs={beta, se, lambda_remle, lambda_mle,
- p_wald, p_lrt, p_score};
- sumStat.push_back(SNPs);
- }
- }
- }
- cout<<endl;
-
- gsl_vector_free (x);
- gsl_vector_free (x_miss);
- gsl_vector_free (Utx);
- gsl_matrix_free (Uab);
- gsl_vector_free (ab);
-
- gsl_matrix_free(Xlarge);
- gsl_matrix_free(UtXlarge);
-
- infile.close();
- infile.clear();
-
- return;
+void LMM::Analyzebgen(const gsl_matrix *U, const gsl_vector *eval,
+ const gsl_matrix *UtW, const gsl_vector *Uty,
+ const gsl_matrix *W, const gsl_vector *y) {
+ string file_bgen = file_oxford + ".bgen";
+ ifstream infile(file_bgen.c_str(), ios::binary);
+ if (!infile) {
+ cout << "error reading bgen file:" << file_bgen << endl;
+ return;
+ }
+
+ clock_t time_start = clock();
+ double lambda_mle = 0, lambda_remle = 0, beta = 0, se = 0, p_wald = 0;
+ double p_lrt = 0, p_score = 0;
+ double logl_H1 = 0.0;
+ int n_miss, c_phen;
+ double geno, x_mean;
+
+ // Calculate basic quantities.
+ size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2;
+
+ gsl_vector *x = gsl_vector_alloc(U->size1);
+ gsl_vector *x_miss = gsl_vector_alloc(U->size1);
+ gsl_vector *Utx = gsl_vector_alloc(U->size2);
+ gsl_matrix *Uab = gsl_matrix_alloc(U->size2, n_index);
+ gsl_vector *ab = gsl_vector_alloc(n_index);
+
+ // Create a large matrix.
+ size_t msize = 10000;
+ gsl_matrix *Xlarge = gsl_matrix_alloc(U->size1, msize);
+ gsl_matrix *UtXlarge = gsl_matrix_alloc(U->size1, msize);
+ gsl_matrix_set_zero(Xlarge);
+
+ gsl_matrix_set_zero(Uab);
+ CalcUab(UtW, Uty, Uab);
+
+ // Read in header.
+ uint32_t bgen_snp_block_offset;
+ uint32_t bgen_header_length;
+ uint32_t bgen_nsamples;
+ uint32_t bgen_nsnps;
+ uint32_t bgen_flags;
+ infile.read(reinterpret_cast<char *>(&bgen_snp_block_offset), 4);
+ infile.read(reinterpret_cast<char *>(&bgen_header_length), 4);
+ bgen_snp_block_offset -= 4;
+ infile.read(reinterpret_cast<char *>(&bgen_nsnps), 4);
+ bgen_snp_block_offset -= 4;
+ infile.read(reinterpret_cast<char *>(&bgen_nsamples), 4);
+ bgen_snp_block_offset -= 4;
+ infile.ignore(4 + bgen_header_length - 20);
+ bgen_snp_block_offset -= 4 + bgen_header_length - 20;
+ infile.read(reinterpret_cast<char *>(&bgen_flags), 4);
+ bgen_snp_block_offset -= 4;
+ bool CompressedSNPBlocks = bgen_flags & 0x1;
+
+ infile.ignore(bgen_snp_block_offset);
+
+ double bgen_geno_prob_AA, bgen_geno_prob_AB, bgen_geno_prob_BB;
+ double bgen_geno_prob_non_miss;
+
+ uint32_t bgen_N;
+ uint16_t bgen_LS;
+ uint16_t bgen_LR;
+ uint16_t bgen_LC;
+ uint32_t bgen_SNP_pos;
+ uint32_t bgen_LA;
+ std::string bgen_A_allele;
+ uint32_t bgen_LB;
+ std::string bgen_B_allele;
+ uint32_t bgen_P;
+ size_t unzipped_data_size;
+ string id;
+ string rs;
+ string chr;
+ std::cout << "Warning: WJA hard coded SNP missingness "
+ << "threshold of 10%" << std::endl;
+
+ // Start reading genotypes and analyze.
+ size_t c = 0, t_last = 0;
+ for (size_t t = 0; t < indicator_snp.size(); ++t) {
+ if (indicator_snp[t] == 0) {
+ continue;
+ }
+ t_last++;
+ }
+ for (size_t t = 0; t < indicator_snp.size(); ++t) {
+ if (t % d_pace == 0 || t == (ns_total - 1)) {
+ ProgressBar("Reading SNPs ", t, ns_total - 1);
+ }
+ if (indicator_snp[t] == 0) {
+ continue;
+ }
+
+ // Read SNP header.
+ id.clear();
+ rs.clear();
+ chr.clear();
+ bgen_A_allele.clear();
+ bgen_B_allele.clear();
+
+ infile.read(reinterpret_cast<char *>(&bgen_N), 4);
+ infile.read(reinterpret_cast<char *>(&bgen_LS), 2);
+
+ id.resize(bgen_LS);
+ infile.read(&id[0], bgen_LS);
+
+ infile.read(reinterpret_cast<char *>(&bgen_LR), 2);
+ rs.resize(bgen_LR);
+ infile.read(&rs[0], bgen_LR);
+
+ infile.read(reinterpret_cast<char *>(&bgen_LC), 2);
+ chr.resize(bgen_LC);
+ infile.read(&chr[0], bgen_LC);
+
+ infile.read(reinterpret_cast<char *>(&bgen_SNP_pos), 4);
+
+ infile.read(reinterpret_cast<char *>(&bgen_LA), 4);
+ bgen_A_allele.resize(bgen_LA);
+ infile.read(&bgen_A_allele[0], bgen_LA);
+
+ infile.read(reinterpret_cast<char *>(&bgen_LB), 4);
+ bgen_B_allele.resize(bgen_LB);
+ infile.read(&bgen_B_allele[0], bgen_LB);
+
+ uint16_t unzipped_data[3 * bgen_N];
+
+ if (indicator_snp[t] == 0) {
+ if (CompressedSNPBlocks)
+ infile.read(reinterpret_cast<char *>(&bgen_P), 4);
+ else
+ bgen_P = 6 * bgen_N;
+
+ infile.ignore(static_cast<size_t>(bgen_P));
+
+ continue;
+ }
+
+ if (CompressedSNPBlocks) {
+ infile.read(reinterpret_cast<char *>(&bgen_P), 4);
+ uint8_t zipped_data[bgen_P];
+
+ unzipped_data_size = 6 * bgen_N;
+
+ infile.read(reinterpret_cast<char *>(zipped_data), bgen_P);
+
+ int result = uncompress(reinterpret_cast<Bytef *>(unzipped_data),
+ reinterpret_cast<uLongf *>(&unzipped_data_size),
+ reinterpret_cast<Bytef *>(zipped_data),
+ static_cast<uLong>(bgen_P));
+ assert(result == Z_OK);
+
+ } else {
+
+ bgen_P = 6 * bgen_N;
+ infile.read(reinterpret_cast<char *>(unzipped_data), bgen_P);
+ }
+
+ x_mean = 0.0;
+ c_phen = 0;
+ n_miss = 0;
+ gsl_vector_set_zero(x_miss);
+ for (size_t i = 0; i < bgen_N; ++i) {
+ if (indicator_idv[i] == 0) {
+ continue;
+ }
+
+ bgen_geno_prob_AA = static_cast<double>(unzipped_data[i * 3]) / 32768.0;
+ bgen_geno_prob_AB =
+ static_cast<double>(unzipped_data[i * 3 + 1]) / 32768.0;
+ bgen_geno_prob_BB =
+ static_cast<double>(unzipped_data[i * 3 + 2]) / 32768.0;
+
+ // WJA.
+ bgen_geno_prob_non_miss =
+ bgen_geno_prob_AA + bgen_geno_prob_AB + bgen_geno_prob_BB;
+ if (bgen_geno_prob_non_miss < 0.9) {
+ gsl_vector_set(x_miss, c_phen, 0.0);
+ n_miss++;
+ } else {
+
+ bgen_geno_prob_AA /= bgen_geno_prob_non_miss;
+ bgen_geno_prob_AB /= bgen_geno_prob_non_miss;
+ bgen_geno_prob_BB /= bgen_geno_prob_non_miss;
+
+ geno = 2.0 * bgen_geno_prob_BB + bgen_geno_prob_AB;
+
+ gsl_vector_set(x, c_phen, geno);
+ gsl_vector_set(x_miss, c_phen, 1.0);
+ x_mean += geno;
+ }
+ c_phen++;
+ }
+
+ x_mean /= static_cast<double>(ni_test - n_miss);
+
+ for (size_t i = 0; i < ni_test; ++i) {
+ if (gsl_vector_get(x_miss, i) == 0) {
+ gsl_vector_set(x, i, x_mean);
+ }
+ geno = gsl_vector_get(x, i);
+ }
+
+ gsl_vector_view Xlarge_col = gsl_matrix_column(Xlarge, c % msize);
+ gsl_vector_memcpy(&Xlarge_col.vector, x);
+ c++;
+
+ if (c % msize == 0 || c == t_last) {
+ size_t l = 0;
+ if (c % msize == 0) {
+ l = msize;
+ } else {
+ l = c % msize;
+ }
+
+ gsl_matrix_view Xlarge_sub =
+ gsl_matrix_submatrix(Xlarge, 0, 0, Xlarge->size1, l);
+ gsl_matrix_view UtXlarge_sub =
+ gsl_matrix_submatrix(UtXlarge, 0, 0, UtXlarge->size1, l);
+
+ time_start = clock();
+ eigenlib_dgemm("T", "N", 1.0, U, &Xlarge_sub.matrix, 0.0,
+ &UtXlarge_sub.matrix);
+ time_UtX += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
+
+ gsl_matrix_set_zero(Xlarge);
+
+ for (size_t i = 0; i < l; i++) {
+ gsl_vector_view UtXlarge_col = gsl_matrix_column(UtXlarge, i);
+ gsl_vector_memcpy(Utx, &UtXlarge_col.vector);
+
+ CalcUab(UtW, Uty, Utx, Uab);
+
+ time_start = clock();
+ FUNC_PARAM param1 = {false, ni_test, n_cvt, eval, Uab, ab, 0};
+
+ // 3 is before 1.
+ if (a_mode == 3 || a_mode == 4) {
+ CalcRLScore(l_mle_null, param1, beta, se, p_score);
+ }
+
+ if (a_mode == 1 || a_mode == 4) {
+ CalcLambda('R', param1, l_min, l_max, n_region, lambda_remle,
+ logl_H1);
+ CalcRLWald(lambda_remle, param1, beta, se, p_wald);
+ }
+
+ if (a_mode == 2 || a_mode == 4) {
+ CalcLambda('L', param1, l_min, l_max, n_region, lambda_mle, logl_H1);
+ p_lrt = gsl_cdf_chisq_Q(2.0 * (logl_H1 - logl_mle_H0), 1);
+ }
+
+ time_opt += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
+
+ // Store summary data.
+ SUMSTAT SNPs = {beta, se, lambda_remle, lambda_mle,
+ p_wald, p_lrt, p_score};
+ sumStat.push_back(SNPs);
+ }
+ }
+ }
+ cout << endl;
+
+ gsl_vector_free(x);
+ gsl_vector_free(x_miss);
+ gsl_vector_free(Utx);
+ gsl_matrix_free(Uab);
+ gsl_vector_free(ab);
+
+ gsl_matrix_free(Xlarge);
+ gsl_matrix_free(UtXlarge);
+
+ infile.close();
+ infile.clear();
+
+ return;
}
-void MatrixCalcLR (const gsl_matrix *U, const gsl_matrix *UtX,
- const gsl_vector *Uty, const gsl_vector *K_eval,
- const double l_min, const double l_max,
- const size_t n_region,
- vector<pair<size_t, double> > &pos_loglr) {
- double logl_H0, logl_H1, log_lr, lambda0, lambda1;
+void MatrixCalcLR(const gsl_matrix *U, const gsl_matrix *UtX,
+ const gsl_vector *Uty, const gsl_vector *K_eval,
+ const double l_min, const double l_max, const size_t n_region,
+ vector<pair<size_t, double>> &pos_loglr) {
+ double logl_H0, logl_H1, log_lr, lambda0, lambda1;
- gsl_vector *w=gsl_vector_alloc (Uty->size);
- gsl_matrix *Utw=gsl_matrix_alloc (Uty->size, 1);
- gsl_matrix *Uab=gsl_matrix_alloc (Uty->size, 6);
- gsl_vector *ab=gsl_vector_alloc (6);
+ gsl_vector *w = gsl_vector_alloc(Uty->size);
+ gsl_matrix *Utw = gsl_matrix_alloc(Uty->size, 1);
+ gsl_matrix *Uab = gsl_matrix_alloc(Uty->size, 6);
+ gsl_vector *ab = gsl_vector_alloc(6);
- gsl_vector_set_zero(ab);
- gsl_vector_set_all (w, 1.0);
- gsl_vector_view Utw_col=gsl_matrix_column (Utw, 0);
- gsl_blas_dgemv (CblasTrans, 1.0, U, w, 0.0, &Utw_col.vector);
+ gsl_vector_set_zero(ab);
+ gsl_vector_set_all(w, 1.0);
+ gsl_vector_view Utw_col = gsl_matrix_column(Utw, 0);
+ gsl_blas_dgemv(CblasTrans, 1.0, U, w, 0.0, &Utw_col.vector);
- CalcUab (Utw, Uty, Uab);
- FUNC_PARAM param0={true, Uty->size, 1, K_eval, Uab, ab, 0};
+ CalcUab(Utw, Uty, Uab);
+ FUNC_PARAM param0 = {true, Uty->size, 1, K_eval, Uab, ab, 0};
- CalcLambda('L', param0, l_min, l_max, n_region, lambda0, logl_H0);
+ CalcLambda('L', param0, l_min, l_max, n_region, lambda0, logl_H0);
- for (size_t i=0; i<UtX->size2; ++i) {
- gsl_vector_const_view UtX_col=gsl_matrix_const_column (UtX, i);
- CalcUab(Utw, Uty, &UtX_col.vector, Uab);
- FUNC_PARAM param1={false, UtX->size1, 1, K_eval, Uab, ab, 0};
+ for (size_t i = 0; i < UtX->size2; ++i) {
+ gsl_vector_const_view UtX_col = gsl_matrix_const_column(UtX, i);
+ CalcUab(Utw, Uty, &UtX_col.vector, Uab);
+ FUNC_PARAM param1 = {false, UtX->size1, 1, K_eval, Uab, ab, 0};
- CalcLambda ('L', param1, l_min, l_max, n_region, lambda1,
- logl_H1);
- log_lr=logl_H1-logl_H0;
+ CalcLambda('L', param1, l_min, l_max, n_region, lambda1, logl_H1);
+ log_lr = logl_H1 - logl_H0;
- pos_loglr.push_back(make_pair(i,log_lr) );
- }
+ pos_loglr.push_back(make_pair(i, log_lr));
+ }
- gsl_vector_free (w);
- gsl_matrix_free (Utw);
- gsl_matrix_free (Uab);
- gsl_vector_free (ab);
+ gsl_vector_free(w);
+ gsl_matrix_free(Utw);
+ gsl_matrix_free(Uab);
+ gsl_vector_free(ab);
- return;
+ return;
}
-void CalcLambda (const char func_name, FUNC_PARAM &params,
- const double l_min, const double l_max,
- const size_t n_region, double &lambda, double &logf) {
- if (func_name!='R' && func_name!='L' && func_name!='r' &&
- func_name!='l') {
- cout << "func_name only takes 'R' or 'L': 'R' for " <<
- "log-restricted likelihood, 'L' for log-likelihood." << endl;
- return;
- }
-
- vector<pair<double, double> > lambda_lh;
-
- // Evaluate first-order derivates in different intervals.
- double lambda_l, lambda_h, lambda_interval=
- log(l_max/l_min)/(double)n_region;
- double dev1_l, dev1_h, logf_l, logf_h;
-
- for (size_t i=0; i<n_region; ++i) {
- lambda_l=l_min*exp(lambda_interval*i);
- lambda_h=l_min*exp(lambda_interval*(i+1.0));
-
- if (func_name=='R' || func_name=='r') {
- dev1_l=LogRL_dev1 (lambda_l, &params);
- dev1_h=LogRL_dev1 (lambda_h, &params);
- }
- else {
- dev1_l=LogL_dev1 (lambda_l, &params);
- dev1_h=LogL_dev1 (lambda_h, &params);
- }
-
- if (dev1_l*dev1_h<=0) {
- lambda_lh.push_back(make_pair(lambda_l, lambda_h));
- }
- }
-
- // If derivates do not change signs in any interval.
- if (lambda_lh.empty()) {
- if (func_name=='R' || func_name=='r') {
- logf_l=LogRL_f (l_min, &params);
- logf_h=LogRL_f (l_max, &params);
- }
- else {
- logf_l=LogL_f (l_min, &params);
- logf_h=LogL_f (l_max, &params);
- }
-
- if (logf_l>=logf_h) {
- lambda=l_min;
- logf=logf_l;
- } else {
- lambda=l_max;
- logf=logf_h;
- }
- }
- else {
-
- // If derivates change signs.
- int status;
- int iter=0, max_iter=100;
- double l, l_temp;
-
- gsl_function F;
- gsl_function_fdf FDF;
-
- F.params=&params;
- FDF.params=&params;
-
- if (func_name=='R' || func_name=='r') {
- F.function=&LogRL_dev1;
- FDF.f=&LogRL_dev1;
- FDF.df=&LogRL_dev2;
- FDF.fdf=&LogRL_dev12;
- }
- else {
- F.function=&LogL_dev1;
- FDF.f=&LogL_dev1;
- FDF.df=&LogL_dev2;
- FDF.fdf=&LogL_dev12;
- }
-
- const gsl_root_fsolver_type *T_f;
- gsl_root_fsolver *s_f;
- T_f=gsl_root_fsolver_brent;
- s_f=gsl_root_fsolver_alloc (T_f);
-
- const gsl_root_fdfsolver_type *T_fdf;
- gsl_root_fdfsolver *s_fdf;
- T_fdf=gsl_root_fdfsolver_newton;
- s_fdf=gsl_root_fdfsolver_alloc(T_fdf);
-
- for (vector<double>::size_type i=0; i<lambda_lh.size(); ++i) {
- lambda_l=lambda_lh[i].first; lambda_h=lambda_lh[i].second;
- gsl_root_fsolver_set (s_f, &F, lambda_l, lambda_h);
-
- do {
- iter++;
- status=gsl_root_fsolver_iterate (s_f);
- l=gsl_root_fsolver_root (s_f);
- lambda_l=gsl_root_fsolver_x_lower (s_f);
- lambda_h=gsl_root_fsolver_x_upper (s_f);
- status=gsl_root_test_interval(lambda_l,lambda_h,0,1e-1);
- }
- while (status==GSL_CONTINUE && iter<max_iter);
-
- iter=0;
-
- gsl_root_fdfsolver_set (s_fdf, &FDF, l);
-
- do {
- iter++;
- status=gsl_root_fdfsolver_iterate (s_fdf);
- l_temp=l;
- l=gsl_root_fdfsolver_root (s_fdf);
- status=gsl_root_test_delta (l, l_temp, 0, 1e-5);
- }
- while (status==GSL_CONTINUE &&
- iter<max_iter &&
- l>l_min && l<l_max);
-
- l=l_temp;
- if (l<l_min) {l=l_min;}
- if (l>l_max) {l=l_max;}
- if (func_name=='R' || func_name=='r') {
- logf_l=LogRL_f (l, &params);
- } else {
- logf_l=LogL_f (l, &params);
- }
-
- if (i==0) {logf=logf_l; lambda=l;}
- else if (logf<logf_l) {logf=logf_l; lambda=l;}
- else {}
- }
- gsl_root_fsolver_free (s_f);
- gsl_root_fdfsolver_free (s_fdf);
-
- if (func_name=='R' || func_name=='r') {
- logf_l=LogRL_f (l_min, &params);
- logf_h=LogRL_f (l_max, &params);
- }
- else {
- logf_l=LogL_f (l_min, &params);
- logf_h=LogL_f (l_max, &params);
- }
-
- if (logf_l>logf) {lambda=l_min; logf=logf_l;}
- if (logf_h>logf) {lambda=l_max; logf=logf_h;}
- }
-
- return;
+void CalcLambda(const char func_name, FUNC_PARAM &params, const double l_min,
+ const double l_max, const size_t n_region, double &lambda,
+ double &logf) {
+ if (func_name != 'R' && func_name != 'L' && func_name != 'r' &&
+ func_name != 'l') {
+ cout << "func_name only takes 'R' or 'L': 'R' for "
+ << "log-restricted likelihood, 'L' for log-likelihood." << endl;
+ return;
+ }
+
+ vector<pair<double, double>> lambda_lh;
+
+ // Evaluate first-order derivates in different intervals.
+ double lambda_l, lambda_h,
+ lambda_interval = log(l_max / l_min) / (double)n_region;
+ double dev1_l, dev1_h, logf_l, logf_h;
+
+ for (size_t i = 0; i < n_region; ++i) {
+ lambda_l = l_min * exp(lambda_interval * i);
+ lambda_h = l_min * exp(lambda_interval * (i + 1.0));
+
+ if (func_name == 'R' || func_name == 'r') {
+ dev1_l = LogRL_dev1(lambda_l, &params);
+ dev1_h = LogRL_dev1(lambda_h, &params);
+ } else {
+ dev1_l = LogL_dev1(lambda_l, &params);
+ dev1_h = LogL_dev1(lambda_h, &params);
+ }
+
+ if (dev1_l * dev1_h <= 0) {
+ lambda_lh.push_back(make_pair(lambda_l, lambda_h));
+ }
+ }
+
+ // If derivates do not change signs in any interval.
+ if (lambda_lh.empty()) {
+ if (func_name == 'R' || func_name == 'r') {
+ logf_l = LogRL_f(l_min, &params);
+ logf_h = LogRL_f(l_max, &params);
+ } else {
+ logf_l = LogL_f(l_min, &params);
+ logf_h = LogL_f(l_max, &params);
+ }
+
+ if (logf_l >= logf_h) {
+ lambda = l_min;
+ logf = logf_l;
+ } else {
+ lambda = l_max;
+ logf = logf_h;
+ }
+ } else {
+
+ // If derivates change signs.
+ int status;
+ int iter = 0, max_iter = 100;
+ double l, l_temp;
+
+ gsl_function F;
+ gsl_function_fdf FDF;
+
+ F.params = &params;
+ FDF.params = &params;
+
+ if (func_name == 'R' || func_name == 'r') {
+ F.function = &LogRL_dev1;
+ FDF.f = &LogRL_dev1;
+ FDF.df = &LogRL_dev2;
+ FDF.fdf = &LogRL_dev12;
+ } else {
+ F.function = &LogL_dev1;
+ FDF.f = &LogL_dev1;
+ FDF.df = &LogL_dev2;
+ FDF.fdf = &LogL_dev12;
+ }
+
+ const gsl_root_fsolver_type *T_f;
+ gsl_root_fsolver *s_f;
+ T_f = gsl_root_fsolver_brent;
+ s_f = gsl_root_fsolver_alloc(T_f);
+
+ const gsl_root_fdfsolver_type *T_fdf;
+ gsl_root_fdfsolver *s_fdf;
+ T_fdf = gsl_root_fdfsolver_newton;
+ s_fdf = gsl_root_fdfsolver_alloc(T_fdf);
+
+ for (vector<double>::size_type i = 0; i < lambda_lh.size(); ++i) {
+ lambda_l = lambda_lh[i].first;
+ lambda_h = lambda_lh[i].second;
+ gsl_root_fsolver_set(s_f, &F, lambda_l, lambda_h);
+
+ do {
+ iter++;
+ status = gsl_root_fsolver_iterate(s_f);
+ l = gsl_root_fsolver_root(s_f);
+ lambda_l = gsl_root_fsolver_x_lower(s_f);
+ lambda_h = gsl_root_fsolver_x_upper(s_f);
+ status = gsl_root_test_interval(lambda_l, lambda_h, 0, 1e-1);
+ } while (status == GSL_CONTINUE && iter < max_iter);
+
+ iter = 0;
+
+ gsl_root_fdfsolver_set(s_fdf, &FDF, l);
+
+ do {
+ iter++;
+ status = gsl_root_fdfsolver_iterate(s_fdf);
+ l_temp = l;
+ l = gsl_root_fdfsolver_root(s_fdf);
+ status = gsl_root_test_delta(l, l_temp, 0, 1e-5);
+ } while (status == GSL_CONTINUE && iter < max_iter && l > l_min &&
+ l < l_max);
+
+ l = l_temp;
+ if (l < l_min) {
+ l = l_min;
+ }
+ if (l > l_max) {
+ l = l_max;
+ }
+ if (func_name == 'R' || func_name == 'r') {
+ logf_l = LogRL_f(l, &params);
+ } else {
+ logf_l = LogL_f(l, &params);
+ }
+
+ if (i == 0) {
+ logf = logf_l;
+ lambda = l;
+ } else if (logf < logf_l) {
+ logf = logf_l;
+ lambda = l;
+ } else {
+ }
+ }
+ gsl_root_fsolver_free(s_f);
+ gsl_root_fdfsolver_free(s_fdf);
+
+ if (func_name == 'R' || func_name == 'r') {
+ logf_l = LogRL_f(l_min, &params);
+ logf_h = LogRL_f(l_max, &params);
+ } else {
+ logf_l = LogL_f(l_min, &params);
+ logf_h = LogL_f(l_max, &params);
+ }
+
+ if (logf_l > logf) {
+ lambda = l_min;
+ logf = logf_l;
+ }
+ if (logf_h > logf) {
+ lambda = l_max;
+ logf = logf_h;
+ }
+ }
+
+ return;
}
// Calculate lambda in the null model.
-void CalcLambda (const char func_name, const gsl_vector *eval,
- const gsl_matrix *UtW, const gsl_vector *Uty,
- const double l_min, const double l_max,
- const size_t n_region, double &lambda, double &logl_H0) {
- if (func_name!='R' && func_name!='L' && func_name!='r' &&
- func_name!='l') {
- cout<<"func_name only takes 'R' or 'L': 'R' for " <<
- "log-restricted likelihood, 'L' for log-likelihood." << endl;
- return;
- }
+void CalcLambda(const char func_name, const gsl_vector *eval,
+ const gsl_matrix *UtW, const gsl_vector *Uty,
+ const double l_min, const double l_max, const size_t n_region,
+ double &lambda, double &logl_H0) {
+ if (func_name != 'R' && func_name != 'L' && func_name != 'r' &&
+ func_name != 'l') {
+ cout << "func_name only takes 'R' or 'L': 'R' for "
+ << "log-restricted likelihood, 'L' for log-likelihood." << endl;
+ return;
+ }
- size_t n_cvt=UtW->size2, ni_test=UtW->size1;
- size_t n_index=(n_cvt+2+1)*(n_cvt+2)/2;
+ size_t n_cvt = UtW->size2, ni_test = UtW->size1;
+ size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2;
- gsl_matrix *Uab=gsl_matrix_alloc (ni_test, n_index);
- gsl_vector *ab=gsl_vector_alloc (n_index);
+ gsl_matrix *Uab = gsl_matrix_alloc(ni_test, n_index);
+ gsl_vector *ab = gsl_vector_alloc(n_index);
- gsl_matrix_set_zero (Uab);
- CalcUab (UtW, Uty, Uab);
+ gsl_matrix_set_zero(Uab);
+ CalcUab(UtW, Uty, Uab);
- FUNC_PARAM param0={true, ni_test, n_cvt, eval, Uab, ab, 0};
+ FUNC_PARAM param0 = {true, ni_test, n_cvt, eval, Uab, ab, 0};
- CalcLambda(func_name, param0, l_min, l_max, n_region, lambda, logl_H0);
+ CalcLambda(func_name, param0, l_min, l_max, n_region, lambda, logl_H0);
- gsl_matrix_free(Uab);
- gsl_vector_free(ab);
+ gsl_matrix_free(Uab);
+ gsl_vector_free(ab);
- return;
+ return;
}
// Obtain REMLE estimate for PVE using lambda_remle.
-void CalcPve (const gsl_vector *eval, const gsl_matrix *UtW,
- const gsl_vector *Uty, const double lambda,
- const double trace_G, double &pve, double &pve_se) {
- size_t n_cvt=UtW->size2, ni_test=UtW->size1;
- size_t n_index=(n_cvt+2+1)*(n_cvt+2)/2;
+void CalcPve(const gsl_vector *eval, const gsl_matrix *UtW,
+ const gsl_vector *Uty, const double lambda, const double trace_G,
+ double &pve, double &pve_se) {
+ size_t n_cvt = UtW->size2, ni_test = UtW->size1;
+ size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2;
- gsl_matrix *Uab=gsl_matrix_alloc (ni_test, n_index);
- gsl_vector *ab=gsl_vector_alloc (n_index);
+ gsl_matrix *Uab = gsl_matrix_alloc(ni_test, n_index);
+ gsl_vector *ab = gsl_vector_alloc(n_index);
- gsl_matrix_set_zero (Uab);
- CalcUab (UtW, Uty, Uab);
+ gsl_matrix_set_zero(Uab);
+ CalcUab(UtW, Uty, Uab);
- FUNC_PARAM param0={true, ni_test, n_cvt, eval, Uab, ab, 0};
+ FUNC_PARAM param0 = {true, ni_test, n_cvt, eval, Uab, ab, 0};
- double se=sqrt(-1.0/LogRL_dev2 (lambda, &param0));
+ double se = sqrt(-1.0 / LogRL_dev2(lambda, &param0));
- pve=trace_G*lambda/(trace_G*lambda+1.0);
- pve_se=trace_G/((trace_G*lambda+1.0)*(trace_G*lambda+1.0))*se;
+ pve = trace_G * lambda / (trace_G * lambda + 1.0);
+ pve_se = trace_G / ((trace_G * lambda + 1.0) * (trace_G * lambda + 1.0)) * se;
- gsl_matrix_free (Uab);
- gsl_vector_free (ab);
- return;
+ gsl_matrix_free(Uab);
+ gsl_vector_free(ab);
+ return;
}
// Obtain REML estimate for Vg and Ve using lambda_remle.
// Obtain beta and se(beta) for coefficients.
// ab is not used when e_mode==0.
-void CalcLmmVgVeBeta (const gsl_vector *eval, const gsl_matrix *UtW,
- const gsl_vector *Uty, const double lambda,
- double &vg, double &ve, gsl_vector *beta,
- gsl_vector *se_beta) {
- size_t n_cvt=UtW->size2, ni_test=UtW->size1;
- size_t n_index=(n_cvt+2+1)*(n_cvt+2)/2;
-
- gsl_matrix *Uab=gsl_matrix_alloc (ni_test, n_index);
- gsl_vector *ab=gsl_vector_alloc (n_index);
- gsl_matrix *Pab=gsl_matrix_alloc (n_cvt+2, n_index);
- gsl_vector *Hi_eval=gsl_vector_alloc(eval->size);
- gsl_vector *v_temp=gsl_vector_alloc(eval->size);
- gsl_matrix *HiW=gsl_matrix_alloc(eval->size, UtW->size2);
- gsl_matrix *WHiW=gsl_matrix_alloc(UtW->size2, UtW->size2);
- gsl_vector *WHiy=gsl_vector_alloc(UtW->size2);
- gsl_matrix *Vbeta=gsl_matrix_alloc(UtW->size2, UtW->size2);
-
- gsl_matrix_set_zero (Uab);
- CalcUab (UtW, Uty, Uab);
-
- gsl_vector_memcpy (v_temp, eval);
- gsl_vector_scale (v_temp, lambda);
- gsl_vector_set_all (Hi_eval, 1.0);
- gsl_vector_add_constant (v_temp, 1.0);
- gsl_vector_div (Hi_eval, v_temp);
-
- // Calculate beta.
- gsl_matrix_memcpy (HiW, UtW);
- for (size_t i=0; i<UtW->size2; i++) {
- gsl_vector_view HiW_col=gsl_matrix_column(HiW, i);
- gsl_vector_mul(&HiW_col.vector, Hi_eval);
- }
- gsl_blas_dgemm (CblasTrans, CblasNoTrans, 1.0, HiW, UtW, 0.0, WHiW);
- gsl_blas_dgemv (CblasTrans, 1.0, HiW, Uty, 0.0, WHiy);
-
- int sig;
- gsl_permutation * pmt=gsl_permutation_alloc (UtW->size2);
- LUDecomp (WHiW, pmt, &sig);
- LUSolve (WHiW, pmt, WHiy, beta);
- LUInvert (WHiW, pmt, Vbeta);
-
- // Calculate vg and ve.
- CalcPab (n_cvt, 0, Hi_eval, Uab, ab, Pab);
-
- size_t index_yy=GetabIndex (n_cvt+2, n_cvt+2, n_cvt);
- double P_yy=gsl_matrix_get (Pab, n_cvt, index_yy);
-
- ve=P_yy/(double)(ni_test-n_cvt);
- vg=ve*lambda;
-
- // With ve, calculate se(beta).
- gsl_matrix_scale(Vbeta, ve);
-
- // Obtain se_beta.
- for (size_t i=0; i<Vbeta->size1; i++) {
- gsl_vector_set (se_beta, i, sqrt(gsl_matrix_get(Vbeta,i,i)));
- }
-
- gsl_matrix_free(Uab);
- gsl_matrix_free(Pab);
- gsl_vector_free(ab);
- gsl_vector_free(Hi_eval);
- gsl_vector_free(v_temp);
- gsl_matrix_free(HiW);
- gsl_matrix_free(WHiW);
- gsl_vector_free(WHiy);
- gsl_matrix_free(Vbeta);
-
- gsl_permutation_free(pmt);
- return;
+void CalcLmmVgVeBeta(const gsl_vector *eval, const gsl_matrix *UtW,
+ const gsl_vector *Uty, const double lambda, double &vg,
+ double &ve, gsl_vector *beta, gsl_vector *se_beta) {
+ size_t n_cvt = UtW->size2, ni_test = UtW->size1;
+ size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2;
+
+ gsl_matrix *Uab = gsl_matrix_alloc(ni_test, n_index);
+ gsl_vector *ab = gsl_vector_alloc(n_index);
+ gsl_matrix *Pab = gsl_matrix_alloc(n_cvt + 2, n_index);
+ gsl_vector *Hi_eval = gsl_vector_alloc(eval->size);
+ gsl_vector *v_temp = gsl_vector_alloc(eval->size);
+ gsl_matrix *HiW = gsl_matrix_alloc(eval->size, UtW->size2);
+ gsl_matrix *WHiW = gsl_matrix_alloc(UtW->size2, UtW->size2);
+ gsl_vector *WHiy = gsl_vector_alloc(UtW->size2);
+ gsl_matrix *Vbeta = gsl_matrix_alloc(UtW->size2, UtW->size2);
+
+ gsl_matrix_set_zero(Uab);
+ CalcUab(UtW, Uty, Uab);
+
+ gsl_vector_memcpy(v_temp, eval);
+ gsl_vector_scale(v_temp, lambda);
+ gsl_vector_set_all(Hi_eval, 1.0);
+ gsl_vector_add_constant(v_temp, 1.0);
+ gsl_vector_div(Hi_eval, v_temp);
+
+ // Calculate beta.
+ gsl_matrix_memcpy(HiW, UtW);
+ for (size_t i = 0; i < UtW->size2; i++) {
+ gsl_vector_view HiW_col = gsl_matrix_column(HiW, i);
+ gsl_vector_mul(&HiW_col.vector, Hi_eval);
+ }
+ gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, HiW, UtW, 0.0, WHiW);
+ gsl_blas_dgemv(CblasTrans, 1.0, HiW, Uty, 0.0, WHiy);
+
+ int sig;
+ gsl_permutation *pmt = gsl_permutation_alloc(UtW->size2);
+ LUDecomp(WHiW, pmt, &sig);
+ LUSolve(WHiW, pmt, WHiy, beta);
+ LUInvert(WHiW, pmt, Vbeta);
+
+ // Calculate vg and ve.
+ CalcPab(n_cvt, 0, Hi_eval, Uab, ab, Pab);
+
+ size_t index_yy = GetabIndex(n_cvt + 2, n_cvt + 2, n_cvt);
+ double P_yy = gsl_matrix_get(Pab, n_cvt, index_yy);
+
+ ve = P_yy / (double)(ni_test - n_cvt);
+ vg = ve * lambda;
+
+ // With ve, calculate se(beta).
+ gsl_matrix_scale(Vbeta, ve);
+
+ // Obtain se_beta.
+ for (size_t i = 0; i < Vbeta->size1; i++) {
+ gsl_vector_set(se_beta, i, sqrt(gsl_matrix_get(Vbeta, i, i)));
+ }
+
+ gsl_matrix_free(Uab);
+ gsl_matrix_free(Pab);
+ gsl_vector_free(ab);
+ gsl_vector_free(Hi_eval);
+ gsl_vector_free(v_temp);
+ gsl_matrix_free(HiW);
+ gsl_matrix_free(WHiW);
+ gsl_vector_free(WHiy);
+ gsl_matrix_free(Vbeta);
+
+ gsl_permutation_free(pmt);
+ return;
}
-void LMM::AnalyzeBimbamGXE (const gsl_matrix *U, const gsl_vector *eval,
- const gsl_matrix *UtW, const gsl_vector *Uty,
- const gsl_matrix *W, const gsl_vector *y,
- const gsl_vector *env) {
- igzstream infile (file_geno.c_str(), igzstream::in);
- if (!infile) {
- cout<<"error reading genotype file:"<<file_geno<<endl;
- return;
- }
-
- clock_t time_start=clock();
-
- string line;
- char *ch_ptr;
-
- double lambda_mle=0, lambda_remle=0, beta=0, se=0, p_wald=0;
- double p_lrt=0, p_score=0;
- double logl_H1=0.0, logl_H0=0.0;
- int n_miss, c_phen;
- double geno, x_mean;
-
- // Calculate basic quantities.
- size_t n_index=(n_cvt+2+2+1)*(n_cvt+2+2)/2;
-
- gsl_vector *x=gsl_vector_alloc (U->size1);
- gsl_vector *x_miss=gsl_vector_alloc (U->size1);
- gsl_vector *Utx=gsl_vector_alloc (U->size2);
- gsl_matrix *Uab=gsl_matrix_alloc (U->size2, n_index);
- gsl_vector *ab=gsl_vector_alloc (n_index);
-
- gsl_matrix *UtW_expand=gsl_matrix_alloc (U->size1, UtW->size2+2);
- gsl_matrix_view UtW_expand_mat=
- gsl_matrix_submatrix(UtW_expand, 0, 0, U->size1, UtW->size2);
- gsl_matrix_memcpy (&UtW_expand_mat.matrix, UtW);
- gsl_vector_view UtW_expand_env=
- gsl_matrix_column(UtW_expand, UtW->size2);
- gsl_blas_dgemv (CblasTrans, 1.0, U, env, 0.0, &UtW_expand_env.vector);
- gsl_vector_view UtW_expand_x=
- gsl_matrix_column(UtW_expand, UtW->size2+1);
-
- // Start reading genotypes and analyze.
- for (size_t t=0; t<indicator_snp.size(); ++t) {
- !safeGetline(infile, line).eof();
- if (t%d_pace==0 || t==(ns_total-1)) {
- ProgressBar ("Reading SNPs ", t, ns_total-1);
- }
- if (indicator_snp[t]==0) {continue;}
-
- ch_ptr=strtok ((char *)line.c_str(), " , \t");
- ch_ptr=strtok (NULL, " , \t");
- ch_ptr=strtok (NULL, " , \t");
-
- x_mean=0.0; c_phen=0; n_miss=0;
- gsl_vector_set_zero(x_miss);
- for (size_t i=0; i<ni_total; ++i) {
- ch_ptr=strtok (NULL, " , \t");
- if (indicator_idv[i]==0) {continue;}
-
- if (strcmp(ch_ptr, "NA")==0) {
- gsl_vector_set(x_miss, c_phen, 0.0);
- n_miss++;
- }
- else {
- geno=atof(ch_ptr);
-
- gsl_vector_set(x, c_phen, geno);
- gsl_vector_set(x_miss, c_phen, 1.0);
- x_mean+=geno;
- }
- c_phen++;
- }
-
- x_mean/=(double)(ni_test-n_miss);
-
- for (size_t i=0; i<ni_test; ++i) {
- if (gsl_vector_get (x_miss, i)==0) {
- gsl_vector_set(x, i, x_mean);
- }
- geno=gsl_vector_get(x, i);
- if (x_mean>1) {
- gsl_vector_set(x, i, 2-geno);
- }
- }
-
- // Calculate statistics.
- time_start=clock();
- gsl_blas_dgemv (CblasTrans, 1.0, U, x, 0.0,
- &UtW_expand_x.vector);
- gsl_vector_mul (x, env);
- gsl_blas_dgemv (CblasTrans, 1.0, U, x, 0.0, Utx);
- time_UtX+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
-
- gsl_matrix_set_zero (Uab);
- CalcUab (UtW_expand, Uty, Uab);
-
- if (a_mode==2 || a_mode==4) {
- FUNC_PARAM param0={true, ni_test, n_cvt+2, eval, Uab, ab, 0};
- CalcLambda ('L', param0, l_min, l_max, n_region,
- lambda_mle, logl_H0);
- }
-
- CalcUab(UtW_expand, Uty, Utx, Uab);
-
- time_start=clock();
- FUNC_PARAM param1={false, ni_test, n_cvt+2, eval, Uab, ab, 0};
-
- // 3 is before 1.
- if (a_mode==3 || a_mode==4) {
- CalcRLScore (l_mle_null, param1, beta, se, p_score);
- }
-
- if (a_mode==1 || a_mode==4) {
- CalcLambda ('R', param1, l_min, l_max, n_region,
- lambda_remle, logl_H1);
- CalcRLWald (lambda_remle, param1, beta, se, p_wald);
- }
-
- if (a_mode==2 || a_mode==4) {
- CalcLambda ('L', param1, l_min, l_max, n_region,
- lambda_mle, logl_H1);
- p_lrt=gsl_cdf_chisq_Q (2.0*(logl_H1-logl_H0), 1);
- }
-
- if (x_mean>1) {beta*=-1;}
-
- time_opt+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
-
- // Store summary data.
- SUMSTAT SNPs={beta, se, lambda_remle, lambda_mle,
- p_wald, p_lrt, p_score};
- sumStat.push_back(SNPs);
- }
- cout<<endl;
-
- gsl_vector_free (x);
- gsl_vector_free (x_miss);
- gsl_vector_free (Utx);
- gsl_matrix_free (Uab);
- gsl_vector_free (ab);
-
- gsl_matrix_free (UtW_expand);
-
- infile.close();
- infile.clear();
-
- return;
+void LMM::AnalyzeBimbamGXE(const gsl_matrix *U, const gsl_vector *eval,
+ const gsl_matrix *UtW, const gsl_vector *Uty,
+ const gsl_matrix *W, const gsl_vector *y,
+ const gsl_vector *env) {
+ igzstream infile(file_geno.c_str(), igzstream::in);
+ if (!infile) {
+ cout << "error reading genotype file:" << file_geno << endl;
+ return;
+ }
+
+ clock_t time_start = clock();
+
+ string line;
+ char *ch_ptr;
+
+ double lambda_mle = 0, lambda_remle = 0, beta = 0, se = 0, p_wald = 0;
+ double p_lrt = 0, p_score = 0;
+ double logl_H1 = 0.0, logl_H0 = 0.0;
+ int n_miss, c_phen;
+ double geno, x_mean;
+
+ // Calculate basic quantities.
+ size_t n_index = (n_cvt + 2 + 2 + 1) * (n_cvt + 2 + 2) / 2;
+
+ gsl_vector *x = gsl_vector_alloc(U->size1);
+ gsl_vector *x_miss = gsl_vector_alloc(U->size1);
+ gsl_vector *Utx = gsl_vector_alloc(U->size2);
+ gsl_matrix *Uab = gsl_matrix_alloc(U->size2, n_index);
+ gsl_vector *ab = gsl_vector_alloc(n_index);
+
+ gsl_matrix *UtW_expand = gsl_matrix_alloc(U->size1, UtW->size2 + 2);
+ gsl_matrix_view UtW_expand_mat =
+ gsl_matrix_submatrix(UtW_expand, 0, 0, U->size1, UtW->size2);
+ gsl_matrix_memcpy(&UtW_expand_mat.matrix, UtW);
+ gsl_vector_view UtW_expand_env = gsl_matrix_column(UtW_expand, UtW->size2);
+ gsl_blas_dgemv(CblasTrans, 1.0, U, env, 0.0, &UtW_expand_env.vector);
+ gsl_vector_view UtW_expand_x = gsl_matrix_column(UtW_expand, UtW->size2 + 1);
+
+ // Start reading genotypes and analyze.
+ for (size_t t = 0; t < indicator_snp.size(); ++t) {
+ !safeGetline(infile, line).eof();
+ if (t % d_pace == 0 || t == (ns_total - 1)) {
+ ProgressBar("Reading SNPs ", t, ns_total - 1);
+ }
+ if (indicator_snp[t] == 0) {
+ continue;
+ }
+
+ ch_ptr = strtok((char *)line.c_str(), " , \t");
+ ch_ptr = strtok(NULL, " , \t");
+ ch_ptr = strtok(NULL, " , \t");
+
+ x_mean = 0.0;
+ c_phen = 0;
+ n_miss = 0;
+ gsl_vector_set_zero(x_miss);
+ for (size_t i = 0; i < ni_total; ++i) {
+ ch_ptr = strtok(NULL, " , \t");
+ if (indicator_idv[i] == 0) {
+ continue;
+ }
+
+ if (strcmp(ch_ptr, "NA") == 0) {
+ gsl_vector_set(x_miss, c_phen, 0.0);
+ n_miss++;
+ } else {
+ geno = atof(ch_ptr);
+
+ gsl_vector_set(x, c_phen, geno);
+ gsl_vector_set(x_miss, c_phen, 1.0);
+ x_mean += geno;
+ }
+ c_phen++;
+ }
+
+ x_mean /= (double)(ni_test - n_miss);
+
+ for (size_t i = 0; i < ni_test; ++i) {
+ if (gsl_vector_get(x_miss, i) == 0) {
+ gsl_vector_set(x, i, x_mean);
+ }
+ geno = gsl_vector_get(x, i);
+ if (x_mean > 1) {
+ gsl_vector_set(x, i, 2 - geno);
+ }
+ }
+
+ // Calculate statistics.
+ time_start = clock();
+ gsl_blas_dgemv(CblasTrans, 1.0, U, x, 0.0, &UtW_expand_x.vector);
+ gsl_vector_mul(x, env);
+ gsl_blas_dgemv(CblasTrans, 1.0, U, x, 0.0, Utx);
+ time_UtX += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
+
+ gsl_matrix_set_zero(Uab);
+ CalcUab(UtW_expand, Uty, Uab);
+
+ if (a_mode == 2 || a_mode == 4) {
+ FUNC_PARAM param0 = {true, ni_test, n_cvt + 2, eval, Uab, ab, 0};
+ CalcLambda('L', param0, l_min, l_max, n_region, lambda_mle, logl_H0);
+ }
+
+ CalcUab(UtW_expand, Uty, Utx, Uab);
+
+ time_start = clock();
+ FUNC_PARAM param1 = {false, ni_test, n_cvt + 2, eval, Uab, ab, 0};
+
+ // 3 is before 1.
+ if (a_mode == 3 || a_mode == 4) {
+ CalcRLScore(l_mle_null, param1, beta, se, p_score);
+ }
+
+ if (a_mode == 1 || a_mode == 4) {
+ CalcLambda('R', param1, l_min, l_max, n_region, lambda_remle, logl_H1);
+ CalcRLWald(lambda_remle, param1, beta, se, p_wald);
+ }
+
+ if (a_mode == 2 || a_mode == 4) {
+ CalcLambda('L', param1, l_min, l_max, n_region, lambda_mle, logl_H1);
+ p_lrt = gsl_cdf_chisq_Q(2.0 * (logl_H1 - logl_H0), 1);
+ }
+
+ if (x_mean > 1) {
+ beta *= -1;
+ }
+
+ time_opt += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
+
+ // Store summary data.
+ SUMSTAT SNPs = {beta, se, lambda_remle, lambda_mle, p_wald, p_lrt, p_score};
+ sumStat.push_back(SNPs);
+ }
+ cout << endl;
+
+ gsl_vector_free(x);
+ gsl_vector_free(x_miss);
+ gsl_vector_free(Utx);
+ gsl_matrix_free(Uab);
+ gsl_vector_free(ab);
+
+ gsl_matrix_free(UtW_expand);
+
+ infile.close();
+ infile.clear();
+
+ return;
}
-void LMM::AnalyzePlinkGXE (const gsl_matrix *U, const gsl_vector *eval,
- const gsl_matrix *UtW, const gsl_vector *Uty,
- const gsl_matrix *W, const gsl_vector *y,
- const gsl_vector *env) {
- string file_bed=file_bfile+".bed";
- ifstream infile (file_bed.c_str(), ios::binary);
- if (!infile) {cout<<"error reading bed file:"<<file_bed<<endl; return;}
-
- clock_t time_start=clock();
-
- char ch[1];
- bitset<8> b;
-
- double lambda_mle=0, lambda_remle=0, beta=0, se=0, p_wald=0;
- double p_lrt=0, p_score=0;
- double logl_H1=0.0, logl_H0=0.0;
- int n_bit, n_miss, ci_total, ci_test;
- double geno, x_mean;
-
- // Calculate basic quantities.
- size_t n_index=(n_cvt+2+2+1)*(n_cvt+2+2)/2;
-
- gsl_vector *x=gsl_vector_alloc (U->size1);
- gsl_vector *Utx=gsl_vector_alloc (U->size2);
- gsl_matrix *Uab=gsl_matrix_alloc (U->size2, n_index);
- gsl_vector *ab=gsl_vector_alloc (n_index);
-
- gsl_matrix *UtW_expand=gsl_matrix_alloc (U->size1, UtW->size2+2);
- gsl_matrix_view UtW_expand_mat=
- gsl_matrix_submatrix(UtW_expand, 0, 0, U->size1, UtW->size2);
- gsl_matrix_memcpy (&UtW_expand_mat.matrix, UtW);
- gsl_vector_view UtW_expand_env=
- gsl_matrix_column(UtW_expand, UtW->size2);
- gsl_blas_dgemv (CblasTrans, 1.0, U, env, 0.0, &UtW_expand_env.vector);
- gsl_vector_view UtW_expand_x=
- gsl_matrix_column(UtW_expand, UtW->size2+1);
-
- // Calculate n_bit and c, the number of bit for each SNP.
- if (ni_total%4==0) {n_bit=ni_total/4;}
- else {n_bit=ni_total/4+1; }
-
- // Print the first three magic numbers.
- for (int i=0; i<3; ++i) {
- infile.read(ch,1);
- b=ch[0];
- }
-
- for (vector<SNPINFO>::size_type t=0; t<snpInfo.size(); ++t) {
- if (t%d_pace==0 || t==snpInfo.size()-1) {
- ProgressBar ("Reading SNPs ", t, snpInfo.size()-1);
- }
- if (indicator_snp[t]==0) {continue;}
-
- // n_bit, and 3 is the number of magic numbers
- infile.seekg(t*n_bit+3);
-
- // Read genotypes.
- x_mean=0.0; n_miss=0; ci_total=0; ci_test=0;
- for (int i=0; i<n_bit; ++i) {
- infile.read(ch,1);
- b=ch[0];
-
- // Minor allele homozygous: 2.0; major: 0.0.
- for (size_t j=0; j<4; ++j) {
- if ((i==(n_bit-1)) && ci_total==(int)ni_total) {
- break;
- }
- if (indicator_idv[ci_total]==0) {
- ci_total++;
- continue;
- }
-
- if (b[2*j]==0) {
- if (b[2*j+1]==0) {
- gsl_vector_set(x, ci_test, 2);
- x_mean+=2.0;
- }
- else {gsl_vector_set(x, ci_test, 1); x_mean+=1.0; }
- }
- else {
- if (b[2*j+1]==1) {gsl_vector_set(x, ci_test, 0); }
- else {gsl_vector_set(x, ci_test, -9); n_miss++; }
- }
-
- ci_total++;
- ci_test++;
- }
- }
-
- x_mean/=(double)(ni_test-n_miss);
-
- for (size_t i=0; i<ni_test; ++i) {
- geno=gsl_vector_get(x,i);
- if (geno==-9) {
- gsl_vector_set(x, i, x_mean);
- geno=x_mean;
- }
- if (x_mean>1) {
- gsl_vector_set(x, i, 2-geno);
- }
- }
-
- // Calculate statistics.
- time_start=clock();
- gsl_blas_dgemv (CblasTrans, 1.0, U, x, 0.0,
- &UtW_expand_x.vector);
- gsl_vector_mul (x, env);
- gsl_blas_dgemv (CblasTrans, 1.0, U, x, 0.0, Utx);
- time_UtX+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
-
- gsl_matrix_set_zero (Uab);
- CalcUab (UtW_expand, Uty, Uab);
-
- if (a_mode==2 || a_mode==4) {
- FUNC_PARAM param0={true, ni_test, n_cvt+2, eval, Uab, ab, 0};
- CalcLambda ('L', param0, l_min, l_max, n_region,
- lambda_mle, logl_H0);
- }
-
- CalcUab(UtW_expand, Uty, Utx, Uab);
-
- time_start=clock();
- FUNC_PARAM param1={false, ni_test, n_cvt+2, eval, Uab, ab, 0};
-
- // 3 is before 1, for beta.
- if (a_mode==3 || a_mode==4) {
- CalcRLScore (l_mle_null, param1, beta, se, p_score);
- }
-
- if (a_mode==1 || a_mode==4) {
- CalcLambda ('R', param1, l_min, l_max, n_region,
- lambda_remle, logl_H1);
- CalcRLWald (lambda_remle, param1, beta, se, p_wald);
- }
-
- if (a_mode==2 || a_mode==4) {
- CalcLambda ('L', param1, l_min, l_max, n_region,
- lambda_mle, logl_H1);
- p_lrt=gsl_cdf_chisq_Q (2.0*(logl_H1-logl_H0), 1);
- }
-
- if (x_mean>1) {beta*=-1;}
-
- time_opt+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
-
- // Store summary data.
- SUMSTAT SNPs={beta, se, lambda_remle, lambda_mle, p_wald,
- p_lrt, p_score};
- sumStat.push_back(SNPs);
- }
- cout<<endl;
-
- gsl_vector_free (x);
- gsl_vector_free (Utx);
- gsl_matrix_free (Uab);
- gsl_vector_free (ab);
-
- gsl_matrix_free (UtW_expand);
-
- infile.close();
- infile.clear();
-
- return;
+void LMM::AnalyzePlinkGXE(const gsl_matrix *U, const gsl_vector *eval,
+ const gsl_matrix *UtW, const gsl_vector *Uty,
+ const gsl_matrix *W, const gsl_vector *y,
+ const gsl_vector *env) {
+ string file_bed = file_bfile + ".bed";
+ ifstream infile(file_bed.c_str(), ios::binary);
+ if (!infile) {
+ cout << "error reading bed file:" << file_bed << endl;
+ return;
+ }
+
+ clock_t time_start = clock();
+
+ char ch[1];
+ bitset<8> b;
+
+ double lambda_mle = 0, lambda_remle = 0, beta = 0, se = 0, p_wald = 0;
+ double p_lrt = 0, p_score = 0;
+ double logl_H1 = 0.0, logl_H0 = 0.0;
+ int n_bit, n_miss, ci_total, ci_test;
+ double geno, x_mean;
+
+ // Calculate basic quantities.
+ size_t n_index = (n_cvt + 2 + 2 + 1) * (n_cvt + 2 + 2) / 2;
+
+ gsl_vector *x = gsl_vector_alloc(U->size1);
+ gsl_vector *Utx = gsl_vector_alloc(U->size2);
+ gsl_matrix *Uab = gsl_matrix_alloc(U->size2, n_index);
+ gsl_vector *ab = gsl_vector_alloc(n_index);
+
+ gsl_matrix *UtW_expand = gsl_matrix_alloc(U->size1, UtW->size2 + 2);
+ gsl_matrix_view UtW_expand_mat =
+ gsl_matrix_submatrix(UtW_expand, 0, 0, U->size1, UtW->size2);
+ gsl_matrix_memcpy(&UtW_expand_mat.matrix, UtW);
+ gsl_vector_view UtW_expand_env = gsl_matrix_column(UtW_expand, UtW->size2);
+ gsl_blas_dgemv(CblasTrans, 1.0, U, env, 0.0, &UtW_expand_env.vector);
+ gsl_vector_view UtW_expand_x = gsl_matrix_column(UtW_expand, UtW->size2 + 1);
+
+ // Calculate n_bit and c, the number of bit for each SNP.
+ if (ni_total % 4 == 0) {
+ n_bit = ni_total / 4;
+ } else {
+ n_bit = ni_total / 4 + 1;
+ }
+
+ // Print the first three magic numbers.
+ for (int i = 0; i < 3; ++i) {
+ infile.read(ch, 1);
+ b = ch[0];
+ }
+
+ for (vector<SNPINFO>::size_type t = 0; t < snpInfo.size(); ++t) {
+ if (t % d_pace == 0 || t == snpInfo.size() - 1) {
+ ProgressBar("Reading SNPs ", t, snpInfo.size() - 1);
+ }
+ if (indicator_snp[t] == 0) {
+ continue;
+ }
+
+ // n_bit, and 3 is the number of magic numbers
+ infile.seekg(t * n_bit + 3);
+
+ // Read genotypes.
+ x_mean = 0.0;
+ n_miss = 0;
+ ci_total = 0;
+ ci_test = 0;
+ for (int i = 0; i < n_bit; ++i) {
+ infile.read(ch, 1);
+ b = ch[0];
+
+ // Minor allele homozygous: 2.0; major: 0.0.
+ for (size_t j = 0; j < 4; ++j) {
+ if ((i == (n_bit - 1)) && ci_total == (int)ni_total) {
+ break;
+ }
+ if (indicator_idv[ci_total] == 0) {
+ ci_total++;
+ continue;
+ }
+
+ if (b[2 * j] == 0) {
+ if (b[2 * j + 1] == 0) {
+ gsl_vector_set(x, ci_test, 2);
+ x_mean += 2.0;
+ } else {
+ gsl_vector_set(x, ci_test, 1);
+ x_mean += 1.0;
+ }
+ } else {
+ if (b[2 * j + 1] == 1) {
+ gsl_vector_set(x, ci_test, 0);
+ } else {
+ gsl_vector_set(x, ci_test, -9);
+ n_miss++;
+ }
+ }
+
+ ci_total++;
+ ci_test++;
+ }
+ }
+
+ x_mean /= (double)(ni_test - n_miss);
+
+ for (size_t i = 0; i < ni_test; ++i) {
+ geno = gsl_vector_get(x, i);
+ if (geno == -9) {
+ gsl_vector_set(x, i, x_mean);
+ geno = x_mean;
+ }
+ if (x_mean > 1) {
+ gsl_vector_set(x, i, 2 - geno);
+ }
+ }
+
+ // Calculate statistics.
+ time_start = clock();
+ gsl_blas_dgemv(CblasTrans, 1.0, U, x, 0.0, &UtW_expand_x.vector);
+ gsl_vector_mul(x, env);
+ gsl_blas_dgemv(CblasTrans, 1.0, U, x, 0.0, Utx);
+ time_UtX += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
+
+ gsl_matrix_set_zero(Uab);
+ CalcUab(UtW_expand, Uty, Uab);
+
+ if (a_mode == 2 || a_mode == 4) {
+ FUNC_PARAM param0 = {true, ni_test, n_cvt + 2, eval, Uab, ab, 0};
+ CalcLambda('L', param0, l_min, l_max, n_region, lambda_mle, logl_H0);
+ }
+
+ CalcUab(UtW_expand, Uty, Utx, Uab);
+
+ time_start = clock();
+ FUNC_PARAM param1 = {false, ni_test, n_cvt + 2, eval, Uab, ab, 0};
+
+ // 3 is before 1, for beta.
+ if (a_mode == 3 || a_mode == 4) {
+ CalcRLScore(l_mle_null, param1, beta, se, p_score);
+ }
+
+ if (a_mode == 1 || a_mode == 4) {
+ CalcLambda('R', param1, l_min, l_max, n_region, lambda_remle, logl_H1);
+ CalcRLWald(lambda_remle, param1, beta, se, p_wald);
+ }
+
+ if (a_mode == 2 || a_mode == 4) {
+ CalcLambda('L', param1, l_min, l_max, n_region, lambda_mle, logl_H1);
+ p_lrt = gsl_cdf_chisq_Q(2.0 * (logl_H1 - logl_H0), 1);
+ }
+
+ if (x_mean > 1) {
+ beta *= -1;
+ }
+
+ time_opt += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
+
+ // Store summary data.
+ SUMSTAT SNPs = {beta, se, lambda_remle, lambda_mle, p_wald, p_lrt, p_score};
+ sumStat.push_back(SNPs);
+ }
+ cout << endl;
+
+ gsl_vector_free(x);
+ gsl_vector_free(Utx);
+ gsl_matrix_free(Uab);
+ gsl_vector_free(ab);
+
+ gsl_matrix_free(UtW_expand);
+
+ infile.close();
+ infile.clear();
+
+ return;
}