aboutsummaryrefslogtreecommitdiff
path: root/src/gemma.cpp
diff options
context:
space:
mode:
authorPeter Carbonetto2017-08-07 13:23:24 -0500
committerGitHub2017-08-07 13:23:24 -0500
commit7360d14216400b8f12fbfda03ac2f4827b102711 (patch)
tree63a4031267b10f587b695adb487aca5213889b20 /src/gemma.cpp
parentd8db988550d4cd0303f0b82a75499c2c94d97d45 (diff)
parent449d882a3b33ef81ef4f0127c3932b01fa796dbb (diff)
downloadpangemma-7360d14216400b8f12fbfda03ac2f4827b102711.tar.gz
Merge pull request #63 from genenetwork/loco-formatted
LOCO is implemented in GEMMA for the BIMBAM format.
Diffstat (limited to 'src/gemma.cpp')
-rw-r--r--src/gemma.cpp49
1 files changed, 43 insertions, 6 deletions
diff --git a/src/gemma.cpp b/src/gemma.cpp
index c72475b..0fb8c54 100644
--- a/src/gemma.cpp
+++ b/src/gemma.cpp
@@ -151,6 +151,7 @@ void GEMMA::PrintHelp(size_t option) {
cout << " 11: obtain predicted values" << endl;
cout << " 12: calculate snp variance covariance" << endl;
cout << " 13: note" << endl;
+ cout << " 14: debug options" << endl;
cout << endl;
}
@@ -446,7 +447,16 @@ void GEMMA::PrintHelp(size_t option) {
}
if (option == 4) {
- cout << " RELATEDNESS MATRIX CALCULATION OPTIONS" << endl;
+ cout << " RELATEDNESS MATRIX (K) CALCULATION OPTIONS" << endl;
+ cout << " -ksnps [filename] "
+ << " specify input snps file name to compute K" << endl;
+ cout << " -loco [chr] "
+ << " leave one chromosome out (LOCO) by name (requires -a annotation "
+ "file)"
+ << endl;
+ cout << " -a [filename] "
+ << " specify input BIMBAM SNP annotation file name (LOCO only)"
+ << endl;
cout << " -gk [num] "
<< " specify which type of kinship/relatedness matrix to generate "
"(default 1)"
@@ -682,6 +692,14 @@ void GEMMA::PrintHelp(size_t option) {
cout << endl;
}
+ if (option == 14) {
+ cout << " DEBUG OPTIONS" << endl;
+ cout << " -silence silent terminal display" << endl;
+ cout << " -debug debug output" << endl;
+ cout << " -nind [num] read up to num individuals" << endl;
+ cout << endl;
+ }
+
return;
}
@@ -1008,7 +1026,7 @@ void GEMMA::Assign(int argc, char **argv, PARAM &cPar) {
str.clear();
str.assign(argv[i]);
cPar.k_mode = atoi(str.c_str());
- } else if (strcmp(argv[i], "-n") == 0) {
+ } else if (strcmp(argv[i], "-n") == 0) { // set pheno column (range)
(cPar.p_column).clear();
while (argv[i + 1] != NULL && argv[i + 1][0] != '-') {
++i;
@@ -1076,6 +1094,12 @@ void GEMMA::Assign(int argc, char **argv, PARAM &cPar) {
cPar.r2_level = atof(str.c_str());
} else if (strcmp(argv[i], "-notsnp") == 0) {
cPar.maf_level = -1;
+ } else if (strcmp(argv[i], "-loco") == 0) {
+ assert(argv[i + 1]);
+ ++i;
+ str.clear();
+ str.assign(argv[i]);
+ cPar.loco = str;
} else if (strcmp(argv[i], "-gk") == 0) {
if (cPar.a_mode != 0) {
cPar.error = true;
@@ -1315,6 +1339,14 @@ void GEMMA::Assign(int argc, char **argv, PARAM &cPar) {
str.clear();
str.assign(argv[i]);
cPar.nr_iter = atoi(str.c_str());
+ } else if (strcmp(argv[i], "-nind") == 0) {
+ if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
+ continue;
+ }
+ ++i;
+ str.clear();
+ str.assign(argv[i]);
+ cPar.ni_max = atoi(str.c_str()); // for testing purposes
} else if (strcmp(argv[i], "-emp") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
@@ -1533,6 +1565,8 @@ void GEMMA::Assign(int argc, char **argv, PARAM &cPar) {
str.clear();
str.assign(argv[i]);
cPar.window_ns = atoi(str.c_str());
+ } else if (strcmp(argv[i], "-debug") == 0) {
+ cPar.mode_debug = true;
} else {
cout << "error! unrecognized option: " << argv[i] << endl;
cPar.error = true;
@@ -1808,14 +1842,16 @@ void GEMMA::BatchRun(PARAM &cPar) {
gsl_matrix_free(H_full);
}
- // Generate Kinship matrix
+ // Generate Kinship matrix (optionally using LOCO)
if (cPar.a_mode == 21 || cPar.a_mode == 22) {
cout << "Calculating Relatedness Matrix ... " << endl;
gsl_matrix *G = gsl_matrix_alloc(cPar.ni_total, cPar.ni_total);
+ enforce_msg(G, "allocate G"); // just to be sure
time_start = clock();
cPar.CalcKin(G);
+
cPar.time_G = (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
if (cPar.error == true) {
cout << "error! fail to calculate relatedness matrix. " << endl;
@@ -2613,6 +2649,7 @@ return;}
cPar.a_mode == 4 || cPar.a_mode == 5 ||
cPar.a_mode == 31) { // Fit LMM or mvLMM or eigen
gsl_matrix *Y = gsl_matrix_alloc(cPar.ni_test, cPar.n_ph);
+ enforce_msg(Y, "allocate Y"); // just to be sure
gsl_matrix *W = gsl_matrix_alloc(Y->size1, cPar.n_cvt);
gsl_matrix *B = gsl_matrix_alloc(Y->size2, W->size2); // B is a d by c
// matrix
@@ -2749,7 +2786,7 @@ return;}
CalcUtX(U, Y, UtY);
// calculate REMLE/MLE estimate and pve for univariate model
- if (cPar.n_ph == 1) {
+ if (cPar.n_ph == 1) { // one phenotype
gsl_vector_view beta = gsl_matrix_row(B, 0);
gsl_vector_view se_beta = gsl_matrix_row(se_B, 0);
gsl_vector_view UtY_col = gsl_matrix_column(UtY, 0);
@@ -2819,7 +2856,7 @@ return;}
}
}
- // Fit LMM or mvLMM
+ // Fit LMM or mvLMM (w. LOCO)
if (cPar.a_mode == 1 || cPar.a_mode == 2 || cPar.a_mode == 3 ||
cPar.a_mode == 4) {
if (cPar.n_ph == 1) {
@@ -2844,7 +2881,7 @@ return;}
} else {
if (cPar.file_gxe.empty()) {
cLmm.AnalyzeBimbam(U, eval, UtW, &UtY_col.vector, W,
- &Y_col.vector);
+ &Y_col.vector, cPar.setGWASnps);
} else {
cLmm.AnalyzeBimbamGXE(U, eval, UtW, &UtY_col.vector, W,
&Y_col.vector, env);