about summary refs log tree commit diff
diff options
context:
space:
mode:
authorPeter Carbonetto2017-06-07 23:23:35 -0500
committerPeter Carbonetto2017-06-07 23:23:35 -0500
commit93a7a2adb03f61e80badf6a5004fa4850dbb7d48 (patch)
tree72eb62acf1bc21000cd969e62658261590eab36e
parent35e4ee4767c35c2436fea81788742641172ada37 (diff)
downloadpangemma-93a7a2adb03f61e80badf6a5004fa4850dbb7d48.tar.gz
Removed FORCE_FLOAT from a few more files.
-rw-r--r--src/bslmm.cpp839
-rw-r--r--src/bslmm.h158
-rw-r--r--src/bslmmdap.cpp260
-rw-r--r--src/bslmmdap.h62
-rw-r--r--src/gemma.h17
-rw-r--r--src/lmm.h113
-rw-r--r--src/logistic.cpp46
-rw-r--r--src/mvlmm.h81
8 files changed, 874 insertions, 702 deletions
diff --git a/src/bslmm.cpp b/src/bslmm.cpp
index d295fd8..92762e2 100644
--- a/src/bslmm.cpp
+++ b/src/bslmm.cpp
@@ -14,7 +14,7 @@
  
  You should have received a copy of the GNU General Public License
  along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
+*/
 
 #include <iostream>
 #include <fstream>
@@ -47,8 +47,7 @@
 
 using namespace std;
 
-void BSLMM::CopyFromParam (PARAM &cPar) 
-{
+void BSLMM::CopyFromParam (PARAM &cPar) {
 	a_mode=cPar.a_mode;
 	d_pace=cPar.d_pace;
 	
@@ -101,9 +100,7 @@ void BSLMM::CopyFromParam (PARAM &cPar)
 	return;
 }
 
-
-void BSLMM::CopyToParam (PARAM &cPar) 
-{
+void BSLMM::CopyToParam (PARAM &cPar) {
 	cPar.time_UtZ=time_UtZ;
 	cPar.time_Omega=time_Omega;
 	cPar.time_Proposal=time_Proposal;
@@ -115,16 +112,16 @@ void BSLMM::CopyToParam (PARAM &cPar)
 	return;
 }
 
-
-
-void BSLMM::WriteBV (const gsl_vector *bv) 
-{
+void BSLMM::WriteBV (const gsl_vector *bv) {
 	string file_str;
 	file_str=path_out+"/"+file_out;
 	file_str+=".bv.txt";
 
 	ofstream outfile (file_str.c_str(), ofstream::out);
-	if (!outfile) {cout<<"error writing file: "<<file_str.c_str()<<endl; return;}
+	if (!outfile) {
+	  cout<<"error writing file: "<<file_str.c_str()<<endl; 
+	  return;
+	}
 	
 	size_t t=0;
 	for (size_t i=0; i<ni_total; ++i) {
@@ -132,7 +129,8 @@ void BSLMM::WriteBV (const gsl_vector *bv)
 			outfile<<"NA"<<endl;
 		}		
 		else {
-			outfile<<scientific<<setprecision(6)<<gsl_vector_get(bv, t)<<endl;
+			outfile<<scientific<<setprecision(6)<<
+			  gsl_vector_get(bv, t)<<endl;
 			t++;
 		}
 	}		
@@ -142,17 +140,16 @@ void BSLMM::WriteBV (const gsl_vector *bv)
 	return;
 }
 
-
-
-
-void BSLMM::WriteParam (vector<pair<double, double> > &beta_g, const gsl_vector *alpha, const size_t w) 
-{
+void BSLMM::WriteParam (vector<pair<double, double> > &beta_g, 
+			const gsl_vector *alpha, const size_t w) {
 	string file_str;
 	file_str=path_out+"/"+file_out;
 	file_str+=".param.txt";
 
 	ofstream outfile (file_str.c_str(), ofstream::out);
-	if (!outfile) {cout<<"error writing file: "<<file_str.c_str()<<endl; return;}
+	if (!outfile) {
+	  cout<<"error writing file: "<<file_str.c_str()<<endl; 
+	  return;}
 	
 	outfile<<"chr"<<"\t"<<"rs"<<"\t"
 			<<"ps"<<"\t"<<"n_miss"<<"\t"<<"alpha"<<"\t"
@@ -163,11 +160,13 @@ void BSLMM::WriteParam (vector<pair<double, double> > &beta_g, const gsl_vector
 		if (indicator_snp[i]==0) {continue;}		
 		
 		outfile<<snpInfo[i].chr<<"\t"<<snpInfo[i].rs_number<<"\t"
-		<<snpInfo[i].base_position<<"\t"<<snpInfo[i].n_miss<<"\t";	
+		<<snpInfo[i].base_position<<"\t"<<snpInfo[i].n_miss<<"\t";
 				
-		outfile<<scientific<<setprecision(6)<<gsl_vector_get(alpha, t)<<"\t";
+		outfile<<scientific<<setprecision(6)<<
+		  gsl_vector_get(alpha, t)<<"\t";
 		if (beta_g[t].second!=0) {
-			outfile<<beta_g[t].first/beta_g[t].second<<"\t"<<beta_g[t].second/(double)w<<endl;
+			outfile<<beta_g[t].first/beta_g[t].second<<
+			  "\t"<<beta_g[t].second/(double)w<<endl;
 		}
 		else {
 			outfile<<0.0<<"\t"<<0.0<<endl;
@@ -180,15 +179,16 @@ void BSLMM::WriteParam (vector<pair<double, double> > &beta_g, const gsl_vector
 	return;
 }
 
-
-void BSLMM::WriteParam (const gsl_vector *alpha) 
-{
+void BSLMM::WriteParam (const gsl_vector *alpha) {
 	string file_str;
 	file_str=path_out+"/"+file_out;
 	file_str+=".param.txt";
 
 	ofstream outfile (file_str.c_str(), ofstream::out);
-	if (!outfile) {cout<<"error writing file: "<<file_str.c_str()<<endl; return;}
+	if (!outfile) {
+	  cout<<"error writing file: "<<file_str.c_str()<<endl; 
+	  return;
+	}
 	
 	outfile<<"chr"<<"\t"<<"rs"<<"\t"
 			<<"ps"<<"\t"<<"n_miss"<<"\t"<<"alpha"<<"\t"
@@ -198,9 +198,10 @@ void BSLMM::WriteParam (const gsl_vector *alpha)
 	for (size_t i=0; i<ns_total; ++i) {
 		if (indicator_snp[i]==0) {continue;}		
 
-		outfile<<snpInfo[i].chr<<"\t"<<snpInfo[i].rs_number<<"\t"
-				<<snpInfo[i].base_position<<"\t"<<snpInfo[i].n_miss<<"\t";				
-		outfile<<scientific<<setprecision(6)<<gsl_vector_get(alpha, t)<<"\t";
+		outfile<<snpInfo[i].chr<<"\t"<<snpInfo[i].rs_number<<"\t"<<
+	          snpInfo[i].base_position<<"\t"<<snpInfo[i].n_miss<<"\t";
+		outfile<<scientific<<setprecision(6)<<
+		  gsl_vector_get(alpha, t)<<"\t";
 		outfile<<0.0<<"\t"<<0.0<<endl;
 		t++;
 	}		
@@ -210,9 +211,8 @@ void BSLMM::WriteParam (const gsl_vector *alpha)
 	return;
 }
 
-
-void BSLMM::WriteResult (const int flag, const gsl_matrix *Result_hyp, const gsl_matrix *Result_gamma, const size_t w_col) 
-{
+void BSLMM::WriteResult (const int flag, const gsl_matrix *Result_hyp, 
+			 const gsl_matrix *Result_gamma, const size_t w_col) {
 	string file_gamma, file_hyp;
 	file_gamma=path_out+"/"+file_out;
 	file_gamma+=".gamma.txt";
@@ -224,8 +224,14 @@ void BSLMM::WriteResult (const int flag, const gsl_matrix *Result_hyp, const gsl
 	if (flag==0) {
 		outfile_gamma.open (file_gamma.c_str(), ofstream::out);
 		outfile_hyp.open (file_hyp.c_str(), ofstream::out);
-		if (!outfile_gamma) {cout<<"error writing file: "<<file_gamma<<endl; return;}
-		if (!outfile_hyp) {cout<<"error writing file: "<<file_hyp<<endl; return;}
+		if (!outfile_gamma) {
+		  cout<<"error writing file: "<<file_gamma<<endl; 
+		  return;
+		}
+		if (!outfile_hyp) {
+		  cout<<"error writing file: "<<file_hyp<<endl; 
+		  return;
+		}
 		
 		outfile_hyp<<"h \t pve \t rho \t pge \t pi \t n_gamma"<<endl;
 		
@@ -237,8 +243,14 @@ void BSLMM::WriteResult (const int flag, const gsl_matrix *Result_hyp, const gsl
 	else {
 		outfile_gamma.open (file_gamma.c_str(), ofstream::app);
 		outfile_hyp.open (file_hyp.c_str(), ofstream::app);
-		if (!outfile_gamma) {cout<<"error writing file: "<<file_gamma<<endl; return;}
-		if (!outfile_hyp) {cout<<"error writing file: "<<file_hyp<<endl; return;}
+		if (!outfile_gamma) {
+		  cout<<"error writing file: "<<file_gamma<<endl; 
+		  return;
+		}
+		if (!outfile_hyp) {
+		  cout<<"error writing file: "<<file_hyp<<endl; 
+		  return;
+		}
 		
 		size_t w;
 		if (w_col==0) {w=w_pace;}
@@ -247,16 +259,19 @@ void BSLMM::WriteResult (const int flag, const gsl_matrix *Result_hyp, const gsl
 		for (size_t i=0; i<w; ++i) {
 			outfile_hyp<<scientific;
 			for (size_t j=0; j<4; ++j) {
-				outfile_hyp<<setprecision(6)<<gsl_matrix_get (Result_hyp, i, j)<<"\t";
+				outfile_hyp<<setprecision(6)<<
+				  gsl_matrix_get (Result_hyp, i, j)<<"\t";
 			}
-			outfile_hyp<<setprecision(6)<<exp(gsl_matrix_get (Result_hyp, i, 4))<<"\t";
-			outfile_hyp<<(int)gsl_matrix_get (Result_hyp, i, 5)<<"\t";
+			outfile_hyp<<setprecision(6)<<
+			  exp(gsl_matrix_get (Result_hyp, i, 4))<<"\t";
+			outfile_hyp<<(int)gsl_matrix_get(Result_hyp,i,5)<<"\t";
 			outfile_hyp<<endl;
 		}
 		
 		for (size_t i=0; i<w; ++i) {
 			for (size_t j=0; j<s_max; ++j) {
-				outfile_gamma<<(int)gsl_matrix_get (Result_gamma, i, j)<<"\t";
+				outfile_gamma<<
+				  (int)gsl_matrix_get(Result_gamma,i,j)<<"\t";
 			}
 			outfile_gamma<<endl;
 		}
@@ -270,13 +285,11 @@ void BSLMM::WriteResult (const int flag, const gsl_matrix *Result_hyp, const gsl
 	return;
 }
 
-
-
-void BSLMM::CalcPgamma (double *p_gamma)
-{
+void BSLMM::CalcPgamma (double *p_gamma) {
 	double p, s=0.0;
 	for (size_t i=0; i<ns_test; ++i) {
-		p=0.7*gsl_ran_geometric_pdf (i+1, 1.0/geo_mean)+0.3/(double)ns_test;
+		p=0.7*gsl_ran_geometric_pdf (i+1, 1.0/geo_mean)+0.3/
+		  (double)ns_test;
 		p_gamma[i]=p;
 		s+=p;
 	}
@@ -287,10 +300,8 @@ void BSLMM::CalcPgamma (double *p_gamma)
 	return;
 }
 
-
-
-void BSLMM::SetXgamma (gsl_matrix *Xgamma, const gsl_matrix *X, vector<size_t> &rank)
-{
+void BSLMM::SetXgamma (gsl_matrix *Xgamma, const gsl_matrix *X, 
+		       vector<size_t> &rank) {
 	size_t pos;
 	for (size_t i=0; i<rank.size(); ++i) {
 		pos=mapRank2pos[rank[i]];
@@ -302,10 +313,8 @@ void BSLMM::SetXgamma (gsl_matrix *Xgamma, const gsl_matrix *X, vector<size_t> &
 	return;
 }
 
-
-
-double BSLMM::CalcPveLM (const gsl_matrix *UtXgamma, const gsl_vector *Uty, const double sigma_a2) 
-{
+double BSLMM::CalcPveLM (const gsl_matrix *UtXgamma, const gsl_vector *Uty, 
+			 const double sigma_a2) {
 	double pve, var_y;	
 	
 	gsl_matrix *Omega=gsl_matrix_alloc (UtXgamma->size2, UtXgamma->size2);
@@ -333,9 +342,9 @@ double BSLMM::CalcPveLM (const gsl_matrix *UtXgamma, const gsl_vector *Uty, cons
 	return pve;
 }
 
-
-void BSLMM::InitialMCMC (const gsl_matrix *UtX, const gsl_vector *Uty, vector<size_t> &rank, class HYPBSLMM &cHyp, vector<pair<size_t, double> > &pos_loglr)
-{
+void BSLMM::InitialMCMC (const gsl_matrix *UtX, const gsl_vector *Uty, 
+			 vector<size_t> &rank, class HYPBSLMM &cHyp, 
+			 vector<pair<size_t, double> > &pos_loglr) {
 	double q_genome=gsl_cdf_chisq_Qinv(0.05/(double)ns_test, 1);
 	
 	cHyp.n_gamma=0;
@@ -362,7 +371,8 @@ void BSLMM::InitialMCMC (const gsl_matrix *UtX, const gsl_vector *Uty, vector<si
 	SetXgamma (UtXgamma, UtX, rank);
 	double sigma_a2;
 	if (trace_G!=0) {
-	  sigma_a2=cHyp.h*1.0/(trace_G*(1-cHyp.h)*exp(cHyp.logp)*(double)ns_test);
+	  sigma_a2=cHyp.h*1.0/
+	    (trace_G*(1-cHyp.h)*exp(cHyp.logp)*(double)ns_test);
 	} else {
 	  sigma_a2=cHyp.h*1.0/( (1-cHyp.h)*exp(cHyp.logp)*(double)ns_test);
 	}
@@ -379,18 +389,6 @@ void BSLMM::InitialMCMC (const gsl_matrix *UtX, const gsl_vector *Uty, vector<si
 	if (cHyp.logp<logp_min) {cHyp.logp=logp_min;}
 	if (cHyp.logp>logp_max) {cHyp.logp=logp_max;}
 	
-	
-//	if (fix_sigma>=0) {
-//		fix_sigma=cHyp.h;
-//		rho_max=1-cHyp.h;
-//		cHyp.rho=rho_max/2.0;
-//	}
-	
-	//Initial for grid sampling:
-//	cHyp.h=0.225;
-//	cHyp.rho=1.0;
-//	cHyp.logp=-4.835429;
-	
 	cout<<"initial value of h = "<<cHyp.h<<endl;
 	cout<<"initial value of rho = "<<cHyp.rho<<endl;
 	cout<<"initial value of pi = "<<exp(cHyp.logp)<<endl;
@@ -399,10 +397,9 @@ void BSLMM::InitialMCMC (const gsl_matrix *UtX, const gsl_vector *Uty, vector<si
 	return;
 }
 
-
-
-double BSLMM::CalcPosterior (const gsl_vector *Uty, const gsl_vector *K_eval, gsl_vector *Utu, gsl_vector *alpha_prime, class HYPBSLMM &cHyp)
-{
+double BSLMM::CalcPosterior (const gsl_vector *Uty, const gsl_vector *K_eval, 
+			     gsl_vector *Utu, gsl_vector *alpha_prime, 
+			     class HYPBSLMM &cHyp) {
 	double sigma_b2=cHyp.h*(1.0-cHyp.rho)/(trace_G*(1-cHyp.h));
 	
 	gsl_vector *Utu_rand=gsl_vector_alloc (Uty->size);	
@@ -420,25 +417,28 @@ double BSLMM::CalcPosterior (const gsl_vector *Uty, const gsl_vector *K_eval, gs
 		uy=gsl_vector_get (Uty, i);
 		Hi_yy+=d*uy*uy;
 		
-		gsl_vector_set (Utu_rand, i, gsl_ran_gaussian(gsl_r, 1)*sqrt(ds));
+		gsl_vector_set (Utu_rand, i, 
+				gsl_ran_gaussian(gsl_r, 1)*sqrt(ds));
 	}
 	
-	//sample tau
+	// Sample tau.
 	double tau=1.0;
-	if (a_mode==11) {tau = gsl_ran_gamma (gsl_r, (double)ni_test/2.0,  2.0/Hi_yy); }
+	if (a_mode==11) {
+	  tau = gsl_ran_gamma (gsl_r, (double)ni_test/2.0,  2.0/Hi_yy); 
+	}
 	
-	//sample alpha
+	// Sample alpha.
 	gsl_vector_memcpy (alpha_prime, Uty);
 	gsl_vector_mul (alpha_prime, weight_Hi);
 	gsl_vector_scale (alpha_prime, sigma_b2);
 	
-	//sample u
+	// Sample u.
 	gsl_vector_memcpy (Utu, alpha_prime);
 	gsl_vector_mul (Utu, K_eval);
 	if (a_mode==11) {gsl_vector_scale (Utu_rand, sqrt(1.0/tau));}
 	gsl_vector_add (Utu, Utu_rand);	
 	
-	//for quantitative traits, calculate pve and ppe
+	// For quantitative traits, calculate pve and ppe.
 	if (a_mode==11) {
 		gsl_blas_ddot (Utu, Utu, &d);
 		cHyp.pve=d/(double)ni_test;	
@@ -446,12 +446,13 @@ double BSLMM::CalcPosterior (const gsl_vector *Uty, const gsl_vector *K_eval, gs
 		cHyp.pge=0.0;	
 	}
 
-	//calculate likelihood
+	// Calculate likelihood.
 	logpost=-0.5*logdet_H;
 	if (a_mode==11) {logpost-=0.5*(double)ni_test*log(Hi_yy);}
 	else {logpost-=0.5*Hi_yy;}
 	
-	logpost+=((double)cHyp.n_gamma-1.0)*cHyp.logp+((double)ns_test-(double)cHyp.n_gamma)*log(1-exp(cHyp.logp));
+	logpost+=((double)cHyp.n_gamma-1.0)*cHyp.logp+
+	  ((double)ns_test-(double)cHyp.n_gamma)*log(1-exp(cHyp.logp));
 	
 	gsl_vector_free (Utu_rand);
 	gsl_vector_free (weight_Hi);
@@ -459,18 +460,22 @@ double BSLMM::CalcPosterior (const gsl_vector *Uty, const gsl_vector *K_eval, gs
 	return logpost;
 }
 
-
-double BSLMM::CalcPosterior (const gsl_matrix *UtXgamma, const gsl_vector *Uty, const gsl_vector *K_eval, gsl_vector *UtXb, gsl_vector *Utu, gsl_vector *alpha_prime, gsl_vector *beta, class HYPBSLMM &cHyp)
-{
+double BSLMM::CalcPosterior (const gsl_matrix *UtXgamma, 
+			     const gsl_vector *Uty, const gsl_vector *K_eval, 
+			     gsl_vector *UtXb, gsl_vector *Utu, 
+			     gsl_vector *alpha_prime, gsl_vector *beta, 
+			     class HYPBSLMM &cHyp) {
 	clock_t time_start;	
 	
-	double sigma_a2=cHyp.h*cHyp.rho/(trace_G*(1-cHyp.h)*exp(cHyp.logp)*(double)ns_test);
+	double sigma_a2=cHyp.h*cHyp.rho/
+	  (trace_G*(1-cHyp.h)*exp(cHyp.logp)*(double)ns_test);
 	double sigma_b2=cHyp.h*(1.0-cHyp.rho)/(trace_G*(1-cHyp.h));
 	
 	double logpost=0.0;
 	double d, ds, uy, P_yy=0, logdet_O=0.0, logdet_H=0.0;
 	
-	gsl_matrix *UtXgamma_eval=gsl_matrix_alloc (UtXgamma->size1, UtXgamma->size2);	
+	gsl_matrix *UtXgamma_eval=gsl_matrix_alloc (UtXgamma->size1, 
+						    UtXgamma->size2);	
 	gsl_matrix *Omega=gsl_matrix_alloc (UtXgamma->size2, UtXgamma->size2);
 	gsl_vector *XtHiy=gsl_vector_alloc (UtXgamma->size2);
 	gsl_vector *beta_hat=gsl_vector_alloc (UtXgamma->size2);
@@ -481,7 +486,8 @@ double BSLMM::CalcPosterior (const gsl_matrix *UtXgamma, const gsl_vector *Uty,
 	
 	logdet_H=0.0; P_yy=0.0;
 	for (size_t i=0; i<ni_test; ++i) {
-		gsl_vector_view UtXgamma_row=gsl_matrix_row (UtXgamma_eval, i);
+		gsl_vector_view UtXgamma_row=
+		  gsl_matrix_row (UtXgamma_eval, i);
 		d=gsl_vector_get (K_eval, i)*sigma_b2;
 		ds=d/(d+1.0);
 		d=1.0/(d+1.0);
@@ -492,10 +498,10 @@ double BSLMM::CalcPosterior (const gsl_matrix *UtXgamma, const gsl_vector *Uty,
 		P_yy+=d*uy*uy;
 		gsl_vector_scale (&UtXgamma_row.vector, d);
 		
-		gsl_vector_set (Utu_rand, i, gsl_ran_gaussian(gsl_r, 1)*sqrt(ds));
+		gsl_vector_set(Utu_rand,i,gsl_ran_gaussian(gsl_r,1)*sqrt(ds));
 	}
 	
-	//calculate Omega
+	// Calculate Omega.
 	gsl_matrix_set_identity (Omega);
 	
 	time_start=clock();
@@ -504,8 +510,8 @@ double BSLMM::CalcPosterior (const gsl_matrix *UtXgamma, const gsl_vector *Uty,
 	time_Omega+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
 	
 	
-	//calculate beta_hat
-	gsl_blas_dgemv (CblasTrans, 1.0, UtXgamma_eval, Uty, 0.0, XtHiy);	
+	// Calculate beta_hat.
+	gsl_blas_dgemv (CblasTrans, 1.0, UtXgamma_eval, Uty, 0.0, XtHiy);
 
 	logdet_O=CholeskySolve(Omega, XtHiy, beta_hat);
 	
@@ -514,11 +520,13 @@ double BSLMM::CalcPosterior (const gsl_matrix *UtXgamma, const gsl_vector *Uty,
 	gsl_blas_ddot (XtHiy, beta_hat, &d);
 	P_yy-=d;
 	
-	//sample tau
+	// Sample tau.
 	double tau=1.0;
-	if (a_mode==11) {tau =gsl_ran_gamma (gsl_r, (double)ni_test/2.0,  2.0/P_yy); }
+	if (a_mode==11) {
+	  tau =gsl_ran_gamma (gsl_r, (double)ni_test/2.0,  2.0/P_yy); 
+	}
 
-	//sample beta
+	// Sample beta.
 	for (size_t i=0; i<beta->size; i++)
 	{
 		d=gsl_ran_gaussian(gsl_r, 1); 
@@ -526,27 +534,25 @@ double BSLMM::CalcPosterior (const gsl_matrix *UtXgamma, const gsl_vector *Uty,
 	}
 	gsl_blas_dtrsv(CblasUpper, CblasNoTrans, CblasNonUnit, Omega, beta); 
 	
-	
-	//it compuates inv(L^T(Omega)) %*% beta;  
+	// This computes inv(L^T(Omega)) %*% beta.
 	gsl_vector_scale(beta, sqrt(sigma_a2/tau));
 	gsl_vector_add(beta, beta_hat); 
 	gsl_blas_dgemv (CblasNoTrans, 1.0, UtXgamma, beta, 0.0, UtXb);
 	
-	//sample alpha
+	// Sample alpha.
 	gsl_vector_memcpy (alpha_prime, Uty);
 	gsl_vector_sub (alpha_prime, UtXb);
 	gsl_vector_mul (alpha_prime, weight_Hi);
 	gsl_vector_scale (alpha_prime, sigma_b2);
 	
-	//sample u
+	// Sample u.
 	gsl_vector_memcpy (Utu, alpha_prime);
 	gsl_vector_mul (Utu, K_eval);
 	
 	if (a_mode==11) {gsl_vector_scale (Utu_rand, sqrt(1.0/tau));}
 	gsl_vector_add (Utu, Utu_rand);	
 	
-	
-	//for quantitative traits, calculate pve and pge
+	// For quantitative traits, calculate pve and pge.
 	if (a_mode==11) {
 		gsl_blas_ddot (UtXb, UtXb, &d);
 		cHyp.pge=d/(double)ni_test;
@@ -558,7 +564,6 @@ double BSLMM::CalcPosterior (const gsl_matrix *UtXgamma, const gsl_vector *Uty,
 		else {cHyp.pge/=cHyp.pve;}
 		cHyp.pve/=cHyp.pve+1.0/tau;	
 	}	
-	
 
 	gsl_matrix_free (UtXgamma_eval);
 	gsl_matrix_free (Omega);
@@ -570,17 +575,15 @@ double BSLMM::CalcPosterior (const gsl_matrix *UtXgamma, const gsl_vector *Uty,
 	logpost=-0.5*logdet_H-0.5*logdet_O;
 	if (a_mode==11) {logpost-=0.5*(double)ni_test*log(P_yy);}
 	else {logpost-=0.5*P_yy;}
-//	else {logpost+=-0.5*P_yy*tau+0.5*(double)ni_test*log(tau);}
-	logpost+=((double)cHyp.n_gamma-1.0)*cHyp.logp+((double)ns_test-(double)cHyp.n_gamma)*log(1.0-exp(cHyp.logp));
+	logpost+=((double)cHyp.n_gamma-1.0)*cHyp.logp+
+	  ((double)ns_test-(double)cHyp.n_gamma)*log(1.0-exp(cHyp.logp));
 	
 	return logpost;
 }
 
-
-
-//calculate pve and pge, and calculate z_hat for case-control data	
-void BSLMM::CalcCC_PVEnZ (const gsl_matrix *U, const gsl_vector *Utu, gsl_vector *z_hat, class HYPBSLMM &cHyp) 
-{
+// Calculate pve and pge, and calculate z_hat for case-control data.
+void BSLMM::CalcCC_PVEnZ (const gsl_matrix *U, const gsl_vector *Utu, 
+			  gsl_vector *z_hat, class HYPBSLMM &cHyp) {
 	double d;
 	
 	gsl_blas_ddot (Utu, Utu, &d);
@@ -594,10 +597,10 @@ void BSLMM::CalcCC_PVEnZ (const gsl_matrix *U, const gsl_vector *Utu, gsl_vector
 	return;
 }
 
-
-//calculate pve and pge, and calculate z_hat for case-control data	
-void BSLMM::CalcCC_PVEnZ (const gsl_matrix *U, const gsl_vector *UtXb, const gsl_vector *Utu, gsl_vector *z_hat, class HYPBSLMM &cHyp) 
-{
+// Calculate pve and pge, and calculate z_hat for case-control data.
+void BSLMM::CalcCC_PVEnZ (const gsl_matrix *U, const gsl_vector *UtXb, 
+			  const gsl_vector *Utu, gsl_vector *z_hat, 
+			  class HYPBSLMM &cHyp) {
 	double d;
 	gsl_vector *UtXbU=gsl_vector_alloc (Utu->size);
 	
@@ -620,18 +623,17 @@ void BSLMM::CalcCC_PVEnZ (const gsl_matrix *U, const gsl_vector *UtXb, const gsl
 	return;
 }
 
-
-
-
-void BSLMM::SampleZ (const gsl_vector *y, const gsl_vector *z_hat, gsl_vector *z)
-{	
+void BSLMM::SampleZ (const gsl_vector *y, const gsl_vector *z_hat, 
+		     gsl_vector *z) {	
 	double d1, d2, z_rand=0.0;
 	for (size_t i=0; i<z->size; ++i) {
 		d1=gsl_vector_get (y, i);
 		d2=gsl_vector_get (z_hat, i);
-		//y is centerred for case control studies
+
+		// y is centered for case control studies.
 		if (d1<=0.0) {
-			//control, right truncated
+
+		        // Control, right truncated.
 			do {				
 				z_rand=d2+gsl_ran_gaussian(gsl_r, 1.0);
 			} while (z_rand>0.0);
@@ -648,12 +650,8 @@ void BSLMM::SampleZ (const gsl_vector *y, const gsl_vector *z_hat, gsl_vector *z
 	return;
 }
 
-
-
-
-
-double BSLMM::ProposeHnRho (const class HYPBSLMM &cHyp_old, class HYPBSLMM &cHyp_new, const size_t &repeat)
-{
+double BSLMM::ProposeHnRho (const class HYPBSLMM &cHyp_old, 
+			    class HYPBSLMM &cHyp_new, const size_t &repeat) {
 	
 	double h=cHyp_old.h, rho=cHyp_old.rho;
 	
@@ -668,30 +666,13 @@ double BSLMM::ProposeHnRho (const class HYPBSLMM &cHyp_old, class HYPBSLMM &cHyp
 		if (rho<rho_min) {rho=2*rho_min-rho;}
 		if (rho>rho_max) {rho=2*rho_max-rho;}
 	}
-	/*
-	//Grid Sampling
-	for (size_t i=0; i<repeat; ++i) {
-		if (gsl_rng_uniform(gsl_r)<0.66) {continue;}
-		h=h+(gsl_rng_uniform_int(gsl_r, 2)-0.5)*0.1;
-		if (h<h_min) {h=h_max;}
-		if (h>h_max) {h=h_min;}
-	}
-	
-	for (size_t i=0; i<repeat; ++i) {
-		if (gsl_rng_uniform(gsl_r)<0.66) {continue;}
-		rho=rho+(gsl_rng_uniform_int(gsl_r, 2)-0.5)*0.1;
-		if (rho<rho_min) {rho=rho_max;}
-		if (rho>rho_max) {rho=rho_min;}
-	}
-	*/
 	cHyp_new.h=h;
 	cHyp_new.rho=rho;
 	return 0.0;
 }
 
-
-double BSLMM::ProposePi (const class HYPBSLMM &cHyp_old, class HYPBSLMM &cHyp_new, const size_t &repeat)
-{
+double BSLMM::ProposePi (const class HYPBSLMM &cHyp_old, 
+			 class HYPBSLMM &cHyp_new, const size_t &repeat) {
 	double logp_old=cHyp_old.logp, logp_new=cHyp_old.logp;
 	double log_ratio=0.0;
 	
@@ -700,36 +681,25 @@ double BSLMM::ProposePi (const class HYPBSLMM &cHyp_old, class HYPBSLMM &cHyp_ne
 	for (size_t i=0; i<repeat; ++i) {
 		logp_new=logp_old+(gsl_rng_uniform(gsl_r)-0.5)*d_logp;
 		if (logp_new<logp_min) {logp_new=2*logp_min-logp_new;}
-		if (logp_new>logp_max) {logp_new=2*logp_max-logp_new;}		
-		
+		if (logp_new>logp_max) {logp_new=2*logp_max-logp_new;}
 		log_ratio+=logp_new-logp_old;
 		logp_old=logp_new;
 	}
-	/*
-	//Grid Sampling
-	for (size_t i=0; i<repeat; ++i) {
-		if (gsl_rng_uniform(gsl_r)<0.66) {continue;}
-		logp_new=logp_old+(gsl_rng_uniform_int(gsl_r, 2)-0.5)*0.5*log(10.0);
-		if (logp_new<logp_min) {logp_new=logp_max;}
-		if (logp_new>logp_max) {logp_new=logp_min;}	
-		
-		log_ratio+=logp_new-logp_old;
-		logp_old=logp_new;
-	}
-	*/
 	cHyp_new.logp=logp_new;
 	
 	return log_ratio;
 }
 
-bool comp_vec (size_t a, size_t b)
-{
+bool comp_vec (size_t a, size_t b) {
 	return (a < b); 
 }
 
-
-double BSLMM::ProposeGamma (const vector<size_t> &rank_old, vector<size_t> &rank_new, const double *p_gamma, const class HYPBSLMM &cHyp_old, class HYPBSLMM &cHyp_new, const size_t &repeat)
-{
+double BSLMM::ProposeGamma (const vector<size_t> &rank_old, 
+			    vector<size_t> &rank_new, 
+			    const double *p_gamma, 
+			    const class HYPBSLMM &cHyp_old, 
+			    class HYPBSLMM &cHyp_new, 
+			    const size_t &repeat) {
 	map<size_t, int> mapRank2in;
 	size_t r;
 	double unif, logp=0.0;
@@ -752,11 +722,19 @@ double BSLMM::ProposeGamma (const vector<size_t> &rank_old, vector<size_t> &rank
 		unif=gsl_rng_uniform(gsl_r); 
 	
 		if (unif < 0.40 && cHyp_new.n_gamma<s_max) {flag_gamma=1;}
-		else if (unif>=0.40 && unif < 0.80 && cHyp_new.n_gamma>s_min) {flag_gamma=2;}
-		else if (unif>=0.80 && cHyp_new.n_gamma>0 && cHyp_new.n_gamma<ns_test) {flag_gamma=3;}
+		else if (unif>=0.40 && unif < 0.80 && 
+			 cHyp_new.n_gamma>s_min) {
+		  flag_gamma=2;
+		}
+		else if (unif>=0.80 && cHyp_new.n_gamma>0 && 
+			 cHyp_new.n_gamma<ns_test) {
+		  flag_gamma=3;
+		}
 		else {flag_gamma=4;}
 	
-		if(flag_gamma==1)  {//add a snp; 
+		if(flag_gamma==1)  {
+
+		        // Add a SNP.
 			do {
 				r_add=gsl_ran_discrete (gsl_r, gsl_t);
 			} while (mapRank2in.count(r_add)!=0); 
@@ -770,10 +748,13 @@ double BSLMM::ProposeGamma (const vector<size_t> &rank_old, vector<size_t> &rank
 			mapRank2in[r_add]=1;
 			rank_new.push_back(r_add);
 			cHyp_new.n_gamma++;
-			logp+=-log(p_gamma[r_add]/prob_total)-log((double)cHyp_new.n_gamma);
+			logp+=-log(p_gamma[r_add]/prob_total)-
+			  log((double)cHyp_new.n_gamma);
 		}
-		else if (flag_gamma==2) {//delete a snp;
-			col_id=gsl_rng_uniform_int(gsl_r, cHyp_new.n_gamma);		
+		else if (flag_gamma==2) {
+
+		        // Delete a SNP.
+			col_id=gsl_rng_uniform_int(gsl_r, cHyp_new.n_gamma);
 			r_remove=rank_new[col_id];
 		
 			double prob_total=1.0;
@@ -785,13 +766,17 @@ double BSLMM::ProposeGamma (const vector<size_t> &rank_old, vector<size_t> &rank
 		
 			mapRank2in.erase(r_remove);
 			rank_new.erase(rank_new.begin()+col_id);
-			logp+=log(p_gamma[r_remove]/prob_total)+log((double)cHyp_new.n_gamma);
+			logp+=log(p_gamma[r_remove]/prob_total)+
+			  log((double)cHyp_new.n_gamma);
 			cHyp_new.n_gamma--;
 		}
-		else if (flag_gamma==3) {//switch a snp;
-			col_id=gsl_rng_uniform_int(gsl_r, cHyp_new.n_gamma);		
+		else if (flag_gamma==3) {
+
+		        // Switch a SNP.
+			col_id=gsl_rng_uniform_int(gsl_r, cHyp_new.n_gamma);
 			r_remove=rank_new[col_id];
-		//careful with the proposal
+
+		        // Be careful with the proposal.
 			do {
 				r_add=gsl_ran_discrete (gsl_r, gsl_t);
 			} while (mapRank2in.count(r_add)!=0); 
@@ -802,7 +787,8 @@ double BSLMM::ProposeGamma (const vector<size_t> &rank_old, vector<size_t> &rank
 				prob_total-=p_gamma[r];
 			}
 			
-			logp+=log(p_gamma[r_remove]/(prob_total+p_gamma[r_remove]-p_gamma[r_add]) );
+			logp+=log(p_gamma[r_remove]/
+			  (prob_total+p_gamma[r_remove]-p_gamma[r_add]));
 			logp-=log(p_gamma[r_add]/prob_total);
 			
 			mapRank2in.erase(r_remove);
@@ -810,7 +796,7 @@ double BSLMM::ProposeGamma (const vector<size_t> &rank_old, vector<size_t> &rank
 			rank_new.erase(rank_new.begin()+col_id);
 			rank_new.push_back(r_add);
 		}
-		else {logp+=0;}//do not change
+		else {logp+=0;} // Do not change.
 	}
 	
 	stable_sort (rank_new.begin(), rank_new.end(), comp_vec);
@@ -819,24 +805,14 @@ double BSLMM::ProposeGamma (const vector<size_t> &rank_old, vector<size_t> &rank
 	return logp;
 }
 
-
-
-
-
-
-bool comp_lr (pair<size_t, double> a, pair<size_t, double> b)
-{
+bool comp_lr (pair<size_t, double> a, pair<size_t, double> b) {
 	return (a.second > b.second); 
 }
 
-
-
-
-
-
-
-//if a_mode==13 then Uty==y
-void BSLMM::MCMC (const gsl_matrix *U, const gsl_matrix *UtX, const gsl_vector *Uty, const gsl_vector *K_eval, const gsl_vector *y) {
+// If a_mode==13 then Uty==y.
+void BSLMM::MCMC (const gsl_matrix *U, const gsl_matrix *UtX, 
+		  const gsl_vector *Uty, const gsl_vector *K_eval, 
+		  const gsl_vector *y) {
 	clock_t time_start;	
 
 	class HYPBSLMM cHyp_old, cHyp_new;
@@ -890,9 +866,10 @@ void BSLMM::MCMC (const gsl_matrix *U, const gsl_matrix *UtX, const gsl_vector *
 		mapRank2pos[i]=pos_loglr[i].first;
 	}
 	
-	//calculate proposal distribution for gamma (unnormalized), and set up gsl_r and gsl_t			
-	gsl_rng_env_setup();                
-	const gsl_rng_type * gslType;                                               
+	// Calculate proposal distribution for gamma (unnormalized),
+	// and set up gsl_r and gsl_t.
+	gsl_rng_env_setup();
+	const gsl_rng_type * gslType;
 	gslType = gsl_rng_default; 
 	if (randseed<0)
 	{
@@ -900,7 +877,8 @@ void BSLMM::MCMC (const gsl_matrix *U, const gsl_matrix *UtX, const gsl_vector *
 		time (&rawtime);
 		tm * ptm = gmtime (&rawtime);
 		
-		randseed = (unsigned) (ptm->tm_hour%24*3600+ptm->tm_min*60+ptm->tm_sec);
+		randseed = (unsigned) (ptm->tm_hour%24*3600+
+				       ptm->tm_min*60+ptm->tm_sec);
 	}
 	gsl_r = gsl_rng_alloc(gslType); 
 	gsl_rng_set(gsl_r, randseed);
@@ -910,17 +888,14 @@ void BSLMM::MCMC (const gsl_matrix *U, const gsl_matrix *UtX, const gsl_vector *
 	
 	gsl_t=gsl_ran_discrete_preproc (ns_test, p_gamma);
 	
-	//initial parameters
+	// Initial parameters.
 	InitialMCMC (UtX, Utz, rank_old, cHyp_old, pos_loglr);
-//	if (fix_sigma>=0) {
-//		rho_max=1-fix_sigma;
-//		cHyp_old.h=fix_sigma/(1-cHyp_old.rho);
-//	}
 	
 	cHyp_initial=cHyp_old;
 	
 	if (cHyp_old.n_gamma==0 || cHyp_old.rho==0) {
-		logPost_old=CalcPosterior(Utz, K_eval, Utu_old, alpha_old, cHyp_old);
+		logPost_old=CalcPosterior(Utz, K_eval, Utu_old, alpha_old, 
+					  cHyp_old);
 
 		beta_old.clear();
 		for (size_t i=0; i<cHyp_old.n_gamma; ++i) {
@@ -928,10 +903,12 @@ void BSLMM::MCMC (const gsl_matrix *U, const gsl_matrix *UtX, const gsl_vector *
 		}	
 	}
 	else {
-		gsl_matrix *UtXgamma=gsl_matrix_alloc (ni_test, cHyp_old.n_gamma);
+		gsl_matrix *UtXgamma=gsl_matrix_alloc (ni_test, 
+						       cHyp_old.n_gamma);
 		gsl_vector *beta=gsl_vector_alloc (cHyp_old.n_gamma);
 		SetXgamma (UtXgamma, UtX, rank_old);		
-		logPost_old=CalcPosterior(UtXgamma, Utz, K_eval, UtXb_old, Utu_old, alpha_old, beta, cHyp_old);
+		logPost_old=CalcPosterior(UtXgamma, Utz, K_eval, UtXb_old, 
+					  Utu_old, alpha_old, beta, cHyp_old);
 	
 		beta_old.clear();
 		for (size_t i=0; i<beta->size; ++i) {
@@ -941,7 +918,7 @@ void BSLMM::MCMC (const gsl_matrix *U, const gsl_matrix *UtX, const gsl_vector *
 		gsl_vector_free (beta);
 	}	
 	
-	//calculate centered z_hat, and pve
+	// Calculate centered z_hat, and pve.
 	if (a_mode==13) {
 		time_start=clock();
 		if (cHyp_old.n_gamma==0 || cHyp_old.rho==0) {
@@ -953,15 +930,17 @@ void BSLMM::MCMC (const gsl_matrix *U, const gsl_matrix *UtX, const gsl_vector *
 		time_UtZ+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
 	}
 	
-	//start MCMC
+	// Start MCMC.
 	int accept;
 	size_t total_step=w_step+s_step;
 	size_t w=0, w_col, pos;
 	size_t repeat=0;
 	
 	for (size_t t=0; t<total_step; ++t) {
-		if (t%d_pace==0 || t==total_step-1) {ProgressBar ("Running MCMC ", t, total_step-1, (double)n_accept/(double)(t*n_mh+1));}
-//		if (t>10) {break;}		
+		if (t%d_pace==0 || t==total_step-1) {
+		  ProgressBar ("Running MCMC ", t, total_step-1,
+			       (double)n_accept/(double)(t*n_mh+1));
+		}
 
 		if (a_mode==13) {			
 			SampleZ (y, z_hat, z);		
@@ -969,60 +948,75 @@ void BSLMM::MCMC (const gsl_matrix *U, const gsl_matrix *UtX, const gsl_vector *
 			
 			time_start=clock();
 			gsl_blas_dgemv (CblasTrans, 1.0, U, z, 0.0, Utz);
-			time_UtZ+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
+			time_UtZ+=(clock()-time_start)/
+			  (double(CLOCKS_PER_SEC)*60.0);
 		
-			//First proposal
-			if (cHyp_old.n_gamma==0 || cHyp_old.rho==0) {				
-				logPost_old=CalcPosterior(Utz, K_eval, Utu_old, alpha_old, cHyp_old);
+			// First proposal.
+			if (cHyp_old.n_gamma==0 || cHyp_old.rho==0) {
+				logPost_old=
+				  CalcPosterior(Utz, K_eval, Utu_old,
+						alpha_old, cHyp_old);
 				beta_old.clear();
 				for (size_t i=0; i<cHyp_old.n_gamma; ++i) {
 				  beta_old.push_back(0);
 				}	
 			}
 			else {
-				gsl_matrix *UtXgamma=gsl_matrix_alloc (ni_test, cHyp_old.n_gamma);
-				gsl_vector *beta=gsl_vector_alloc (cHyp_old.n_gamma);
+				gsl_matrix *UtXgamma=
+				  gsl_matrix_alloc (ni_test, cHyp_old.n_gamma);
+				gsl_vector *beta=
+				  gsl_vector_alloc (cHyp_old.n_gamma);
 				SetXgamma (UtXgamma, UtX, rank_old);
-				logPost_old=CalcPosterior(UtXgamma, Utz, K_eval, UtXb_old, Utu_old, alpha_old, beta, cHyp_old);
+				logPost_old=
+				  CalcPosterior(UtXgamma, Utz, K_eval,
+						UtXb_old, Utu_old, alpha_old,
+						beta, cHyp_old);
 				
 				beta_old.clear();
 				for (size_t i=0; i<beta->size; ++i) {
-					beta_old.push_back(gsl_vector_get(beta, i));
+				  beta_old.push_back(gsl_vector_get(beta, i));
 				}
 				gsl_matrix_free (UtXgamma);
 				gsl_vector_free (beta);
 			}
 		}
 		
-		//MH steps
+		// M-H steps.
 		for (size_t i=0; i<n_mh; ++i) {
-			if (gsl_rng_uniform(gsl_r)<0.33) {repeat = 1+gsl_rng_uniform_int(gsl_r, 20);}
-			else {repeat=1;}
+			if (gsl_rng_uniform(gsl_r)<0.33) {
+			  repeat = 1+gsl_rng_uniform_int(gsl_r, 20);
+			}
+			else {
+			  repeat=1;
+			}
 			
 			logMHratio=0.0;
-			logMHratio+=ProposeHnRho(cHyp_old, cHyp_new, repeat);		
-			logMHratio+=ProposeGamma (rank_old, rank_new, p_gamma, cHyp_old, cHyp_new, repeat);	
+			logMHratio+=ProposeHnRho(cHyp_old, cHyp_new, repeat);
+			logMHratio+=ProposeGamma (rank_old, rank_new, p_gamma,
+						  cHyp_old, cHyp_new, repeat);
 			logMHratio+=ProposePi(cHyp_old, cHyp_new, repeat);
 			
-//			if (fix_sigma>=0) {
-//				cHyp_new.h=fix_sigma/(1-cHyp_new.rho);
-//			}
-			
 			if (cHyp_new.n_gamma==0 || cHyp_new.rho==0) {
-				logPost_new=CalcPosterior(Utz, K_eval, Utu_new, alpha_new, cHyp_new);
+				logPost_new=CalcPosterior(Utz, K_eval, Utu_new,
+							  alpha_new, cHyp_new);
 				beta_new.clear();
 				for (size_t i=0; i<cHyp_new.n_gamma; ++i) {
 				  beta_new.push_back(0);
 				}	
 			}
 			else {
-				gsl_matrix *UtXgamma=gsl_matrix_alloc (ni_test, cHyp_new.n_gamma);
-				gsl_vector *beta=gsl_vector_alloc (cHyp_new.n_gamma);
+				gsl_matrix *UtXgamma=
+				  gsl_matrix_alloc (ni_test, cHyp_new.n_gamma);
+				gsl_vector *beta=
+				  gsl_vector_alloc (cHyp_new.n_gamma);
 				SetXgamma (UtXgamma, UtX, rank_new);
-				logPost_new=CalcPosterior(UtXgamma, Utz, K_eval, UtXb_new, Utu_new, alpha_new, beta, cHyp_new);
+				logPost_new=
+				  CalcPosterior(UtXgamma, Utz, K_eval,
+						UtXb_new, Utu_new, alpha_new,
+						beta, cHyp_new);
 				beta_new.clear();
 				for (size_t i=0; i<beta->size; ++i) {
-					beta_new.push_back(gsl_vector_get(beta, i));
+				  beta_new.push_back(gsl_vector_get(beta, i));
 				}
 				gsl_matrix_free (UtXgamma);
 				gsl_vector_free (beta);
@@ -1030,17 +1024,20 @@ void BSLMM::MCMC (const gsl_matrix *U, const gsl_matrix *UtX, const gsl_vector *
 			
 			logMHratio+=logPost_new-logPost_old;		
 		
-			if (logMHratio>0 || log(gsl_rng_uniform(gsl_r))<logMHratio) {accept=1; n_accept++;}
+			if (logMHratio>0 ||
+			    log(gsl_rng_uniform(gsl_r))<logMHratio) {
+			  accept=1; n_accept++;
+			}
 			else {accept=0;}
 
 			if (accept==1) {			
 				logPost_old=logPost_new;
 				rank_old.clear(); beta_old.clear();
 				if (rank_new.size()!=0) {
-					for (size_t i=0; i<rank_new.size(); ++i) {
-						rank_old.push_back(rank_new[i]);
-						beta_old.push_back(beta_new[i]);
-					}
+				  for (size_t i=0; i<rank_new.size(); ++i) {
+				    rank_old.push_back(rank_new[i]);
+				    beta_old.push_back(beta_new[i]);
+				  }
 				}
 				cHyp_old=cHyp_new;
 				gsl_vector_memcpy (alpha_old, alpha_new);
@@ -1050,51 +1047,58 @@ void BSLMM::MCMC (const gsl_matrix *U, const gsl_matrix *UtX, const gsl_vector *
 			else {cHyp_new=cHyp_old;}
 		}				
 		
-		//calculate z_hat, and pve
+		// Calculate z_hat, and pve.
 		if (a_mode==13) {
 			time_start=clock();
 			if (cHyp_old.n_gamma==0 || cHyp_old.rho==0) {
 				CalcCC_PVEnZ (U, Utu_old, z_hat, cHyp_old);
 			}
 			else {
-				CalcCC_PVEnZ (U, UtXb_old, Utu_old, z_hat, cHyp_old);
+				CalcCC_PVEnZ (U, UtXb_old, Utu_old,
+					      z_hat, cHyp_old);
 			}
 			
-			//sample mu and update z hat
+			// Sample mu and update z_hat.
 			gsl_vector_sub (z, z_hat);
 			mean_z+=CenterVector(z);
-			mean_z+=gsl_ran_gaussian(gsl_r, sqrt(1.0/(double) ni_test) );			
-			
+			mean_z+=
+			  gsl_ran_gaussian(gsl_r, sqrt(1.0/(double) ni_test));			
 			gsl_vector_add_constant (z_hat, mean_z);
 			
-			time_UtZ+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
+			time_UtZ+=(clock()-time_start)/
+			  (double(CLOCKS_PER_SEC)*60.0);
 		}
 		
-		//Save data
+		// Save data.
 		if (t<w_step) {continue;}
 		else {		
 			if (t%r_pace==0) {
 				w_col=w%w_pace;
 				if (w_col==0) {
-					if (w==0) {WriteResult (0, Result_hyp, Result_gamma, w_col);}					
+					if (w==0) {
+					  WriteResult (0, Result_hyp,
+						       Result_gamma, w_col);
+					}
 					else {
-						WriteResult (1, Result_hyp, Result_gamma, w_col);
-						gsl_matrix_set_zero (Result_hyp);
-						gsl_matrix_set_zero (Result_gamma);
+					  WriteResult (1, Result_hyp,
+						       Result_gamma, w_col);
+					  gsl_matrix_set_zero (Result_hyp);
+					  gsl_matrix_set_zero (Result_gamma);
 					}
 				}
 				
-				gsl_matrix_set (Result_hyp, w_col, 0, cHyp_old.h);
-				gsl_matrix_set (Result_hyp, w_col, 1, cHyp_old.pve);
-				gsl_matrix_set (Result_hyp, w_col, 2, cHyp_old.rho);
-				gsl_matrix_set (Result_hyp, w_col, 3, cHyp_old.pge);
-				gsl_matrix_set (Result_hyp, w_col, 4, cHyp_old.logp);
-				gsl_matrix_set (Result_hyp, w_col, 5, cHyp_old.n_gamma);
+				gsl_matrix_set(Result_hyp,w_col,0,cHyp_old.h);
+				gsl_matrix_set(Result_hyp,w_col,1,cHyp_old.pve);
+				gsl_matrix_set(Result_hyp,w_col,2,cHyp_old.rho);
+				gsl_matrix_set(Result_hyp,w_col,3,cHyp_old.pge);
+				gsl_matrix_set(Result_hyp,w_col,4,cHyp_old.logp);
+				gsl_matrix_set(Result_hyp,w_col,5,cHyp_old.n_gamma);
 				
 				for (size_t i=0; i<cHyp_old.n_gamma; ++i) {
 					pos=mapRank2pos[rank_old[i]]+1;
 
-					gsl_matrix_set (Result_gamma, w_col, i, pos);
+					gsl_matrix_set(Result_gamma,w_col,i,
+						       pos);
 					
 					beta_g[pos-1].first+=beta_old[i];
 					beta_g[pos-1].second+=1.0;	
@@ -1138,7 +1142,8 @@ void BSLMM::MCMC (const gsl_matrix *U, const gsl_matrix *UtX, const gsl_vector *
 	}
 	
 	gsl_vector *alpha=gsl_vector_alloc (ns_test);
-	gsl_blas_dgemv (CblasTrans, 1.0/(double)ns_test, UtX, alpha_prime, 0.0, alpha);	
+	gsl_blas_dgemv (CblasTrans, 1.0/(double)ns_test, UtX,
+			alpha_prime, 0.0, alpha);	
 	WriteParam (beta_g, alpha, w);
 	gsl_vector_free(alpha);
 	
@@ -1154,10 +1159,9 @@ void BSLMM::MCMC (const gsl_matrix *U, const gsl_matrix *UtX, const gsl_vector *
 	return;
 }
 
-
-
-void BSLMM::RidgeR(const gsl_matrix *U, const gsl_matrix *UtX, const gsl_vector *Uty, const gsl_vector *eval, const double lambda)
-{
+void BSLMM::RidgeR(const gsl_matrix *U, const gsl_matrix *UtX,
+		   const gsl_vector *Uty, const gsl_vector *eval,
+		   const double lambda) {
 	gsl_vector *beta=gsl_vector_alloc (UtX->size2);
 	gsl_vector *H_eval=gsl_vector_alloc (Uty->size);
 	gsl_vector *bv=gsl_vector_alloc (Uty->size);
@@ -1169,7 +1173,8 @@ void BSLMM::RidgeR(const gsl_matrix *U, const gsl_matrix *UtX, const gsl_vector
 	gsl_vector_memcpy (bv, Uty);
 	gsl_vector_div (bv, H_eval);	
 
-	gsl_blas_dgemv (CblasTrans, lambda/(double)UtX->size2, UtX, bv, 0.0, beta);
+	gsl_blas_dgemv (CblasTrans, lambda/(double)UtX->size2,
+			UtX, bv, 0.0, beta);
 	gsl_vector_add_constant (H_eval, -1.0);
 	gsl_vector_mul (H_eval, bv);
 	gsl_blas_dgemv (CblasNoTrans, 1.0, U, H_eval, 0.0, bv);
@@ -1183,28 +1188,13 @@ void BSLMM::RidgeR(const gsl_matrix *U, const gsl_matrix *UtX, const gsl_vector
 	
 	return;
 }
- 
-
-
-
-
-
-
-
 
-
-
-
-
-
-
-
-
-//below fits MCMC for rho=1
-void BSLMM::CalcXtX (const gsl_matrix *X, const gsl_vector *y, const size_t s_size, gsl_matrix *XtX, gsl_vector *Xty)
-{
+// Below fits MCMC for rho=1.
+void BSLMM::CalcXtX (const gsl_matrix *X, const gsl_vector *y,
+		     const size_t s_size, gsl_matrix *XtX, gsl_vector *Xty) {
   time_t time_start=clock();	
-  gsl_matrix_const_view X_sub=gsl_matrix_const_submatrix(X, 0, 0, X->size1, s_size);
+  gsl_matrix_const_view X_sub=gsl_matrix_const_submatrix(X, 0, 0, X->size1,
+							 s_size);
   gsl_matrix_view XtX_sub=gsl_matrix_submatrix(XtX, 0, 0, s_size, s_size);
   gsl_vector_view Xty_sub=gsl_vector_subvector(Xty, 0, s_size);
 
@@ -1217,29 +1207,34 @@ void BSLMM::CalcXtX (const gsl_matrix *X, const gsl_vector *y, const size_t s_si
   return;
 }
 
-
-void BSLMM::SetXgamma (const gsl_matrix *X, const gsl_matrix *X_old, const gsl_matrix *XtX_old, const gsl_vector *Xty_old, const gsl_vector *y, const vector<size_t> &rank_old, const vector<size_t> &rank_new, gsl_matrix *X_new, gsl_matrix *XtX_new, gsl_vector *Xty_new)
-{
+void BSLMM::SetXgamma (const gsl_matrix *X, const gsl_matrix *X_old,
+		       const gsl_matrix *XtX_old, const gsl_vector *Xty_old,
+		       const gsl_vector *y, const vector<size_t> &rank_old,
+		       const vector<size_t> &rank_new, gsl_matrix *X_new,
+		       gsl_matrix *XtX_new, gsl_vector *Xty_new) {
   double d;
 
-  //rank_old and rank_new are sorted already inside PorposeGamma
-  //calculate vectors rank_remove and rank_add
-  //  size_t v_size=max(rank_old.size(), rank_new.size());
-  //make sure that v_size is larger than repeat
+  // rank_old and rank_new are sorted already inside PorposeGamma
+  // calculate vectors rank_remove and rank_add.
+  // make sure that v_size is larger than repeat.
   size_t v_size=20;
-  vector<size_t> rank_remove(v_size), rank_add(v_size), rank_union(s_max+v_size);
+  vector<size_t> rank_remove(v_size), rank_add(v_size),
+    rank_union(s_max+v_size);
   vector<size_t>::iterator it;
 
-  it=set_difference (rank_old.begin(), rank_old.end(), rank_new.begin(), rank_new.end(), rank_remove.begin());
+  it=set_difference(rank_old.begin(), rank_old.end(), rank_new.begin(),
+		    rank_new.end(), rank_remove.begin());
   rank_remove.resize(it-rank_remove.begin());
 
-  it=set_difference (rank_new.begin(), rank_new.end(), rank_old.begin(), rank_old.end(), rank_add.begin());
+  it=set_difference (rank_new.begin(), rank_new.end(), rank_old.begin(),
+		     rank_old.end(), rank_add.begin());
   rank_add.resize(it-rank_add.begin());
 
-  it=set_union (rank_new.begin(), rank_new.end(), rank_old.begin(), rank_old.end(), rank_union.begin());
+  it=set_union (rank_new.begin(), rank_new.end(), rank_old.begin(),
+		rank_old.end(), rank_union.begin());
   rank_union.resize(it-rank_union.begin());
 
-  //map rank_remove and rank_add
+  // Map rank_remove and rank_add.
   map<size_t, int> mapRank2in_remove, mapRank2in_add;
   for (size_t i=0; i<rank_remove.size(); i++) {
     mapRank2in_remove[rank_remove[i]]=1;
@@ -1248,16 +1243,23 @@ void BSLMM::SetXgamma (const gsl_matrix *X, const gsl_matrix *X_old, const gsl_m
     mapRank2in_add[rank_add[i]]=1;
   }
 
-  //obtain the subset of matrix/vector
-  gsl_matrix_const_view Xold_sub=gsl_matrix_const_submatrix(X_old, 0, 0, X_old->size1, rank_old.size());
-  gsl_matrix_const_view XtXold_sub=gsl_matrix_const_submatrix(XtX_old, 0, 0, rank_old.size(), rank_old.size());
-  gsl_vector_const_view Xtyold_sub=gsl_vector_const_subvector(Xty_old, 0, rank_old.size());
-
-  gsl_matrix_view Xnew_sub=gsl_matrix_submatrix(X_new, 0, 0, X_new->size1, rank_new.size());
-  gsl_matrix_view XtXnew_sub=gsl_matrix_submatrix(XtX_new, 0, 0, rank_new.size(), rank_new.size());
-  gsl_vector_view Xtynew_sub=gsl_vector_subvector(Xty_new, 0, rank_new.size());
-
-  //get X_new and calculate XtX_new
+  // Obtain the subset of matrix/vector.
+  gsl_matrix_const_view Xold_sub=
+    gsl_matrix_const_submatrix(X_old, 0, 0, X_old->size1, rank_old.size());
+  gsl_matrix_const_view XtXold_sub=
+    gsl_matrix_const_submatrix(XtX_old, 0, 0, rank_old.size(),
+			       rank_old.size());
+  gsl_vector_const_view Xtyold_sub=
+    gsl_vector_const_subvector(Xty_old, 0, rank_old.size());
+
+  gsl_matrix_view Xnew_sub=
+    gsl_matrix_submatrix(X_new, 0, 0, X_new->size1, rank_new.size());
+  gsl_matrix_view XtXnew_sub=
+    gsl_matrix_submatrix(XtX_new, 0, 0, rank_new.size(), rank_new.size());
+  gsl_vector_view Xtynew_sub=
+    gsl_vector_subvector(Xty_new, 0, rank_new.size());
+
+  // Get X_new and calculate XtX_new.
   if (rank_remove.size()==0 && rank_add.size()==0) {
     gsl_matrix_memcpy(&Xnew_sub.matrix, &Xold_sub.matrix);
     gsl_matrix_memcpy(&XtXnew_sub.matrix, &XtXold_sub.matrix);
@@ -1295,13 +1297,13 @@ void BSLMM::SetXgamma (const gsl_matrix *X, const gsl_matrix *X_old, const gsl_m
       gsl_matrix *XtX_ao=gsl_matrix_alloc(X_add->size2, X_old->size2);
       gsl_vector *Xty_add=gsl_vector_alloc(X_add->size2);
 
-      //get X_add
+      // Get X_add.
       SetXgamma (X_add, X, rank_add);
 
-      //get t(X_add)X_add and t(X_add)X_temp	
+      // Get t(X_add)X_add and t(X_add)X_temp.
       clock_t time_start=clock();
       
-      //somehow the lapack_dgemm does not work here
+      // Somehow the lapack_dgemm does not work here.
       gsl_blas_dgemm (CblasTrans, CblasNoTrans, 1.0, X_add, X_add,
 		      0.0, XtX_aa);
       gsl_blas_dgemm (CblasTrans, CblasNoTrans, 1.0, X_add, X_old,
@@ -1310,18 +1312,26 @@ void BSLMM::SetXgamma (const gsl_matrix *X, const gsl_matrix *X_old, const gsl_m
 
       time_Omega+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
 
-      //save to X_new, XtX_new and Xty_new
+      // Save to X_new, XtX_new and Xty_new.
       i_old=0; i_new=0; i_add=0;
       for (size_t i=0; i<rank_union.size(); i++) {
-	if (mapRank2in_remove.count(rank_old[i_old])!=0) {i_old++; continue;}
-	if (mapRank2in_add.count(rank_new[i_new])!=0) {i_flag=1;} else {i_flag=0;}
+	if (mapRank2in_remove.count(rank_old[i_old])!=0) {
+	  i_old++;
+	  continue;
+	}
+	if (mapRank2in_add.count(rank_new[i_new])!=0) {
+	  i_flag=1;
+	} else {
+	  i_flag=0;
+	}
 
 	gsl_vector_view Xnew_col=gsl_matrix_column(X_new, i_new); 
 	if (i_flag==1) {
 	  gsl_vector_view Xcopy_col=gsl_matrix_column(X_add, i_add);
 	  gsl_vector_memcpy (&Xnew_col.vector, &Xcopy_col.vector);
 	} else {
-	  gsl_vector_const_view Xcopy_col=gsl_matrix_const_column(X_old, i_old);	  
+	  gsl_vector_const_view Xcopy_col=
+	    gsl_matrix_const_column(X_old, i_old);	  
 	  gsl_vector_memcpy (&Xnew_col.vector, &Xcopy_col.vector);
 	}	
 
@@ -1334,8 +1344,15 @@ void BSLMM::SetXgamma (const gsl_matrix *X, const gsl_matrix *X_old, const gsl_m
 
 	j_old=i_old; j_new=i_new; j_add=i_add;
 	for (size_t j=i; j<rank_union.size(); j++) {
-	  if (mapRank2in_remove.count(rank_old[j_old])!=0) {j_old++; continue;}
-	  if (mapRank2in_add.count(rank_new[j_new])!=0) {j_flag=1;} else {j_flag=0;}
+	  if (mapRank2in_remove.count(rank_old[j_old])!=0) {
+	    j_old++;
+	    continue;
+	  }
+	  if (mapRank2in_add.count(rank_new[j_new])!=0) {
+	    j_flag=1;
+	  } else {
+	    j_flag=0;
+	  }
 
 	  if (i_flag==1 && j_flag==1) {
             d=gsl_matrix_get(XtX_aa, i_add, j_add);
@@ -1372,37 +1389,40 @@ void BSLMM::SetXgamma (const gsl_matrix *X, const gsl_matrix *X_old, const gsl_m
   return;
 }
 
-
-double BSLMM::CalcPosterior (const double yty, class HYPBSLMM &cHyp)
-{	
+double BSLMM::CalcPosterior (const double yty, class HYPBSLMM &cHyp) {	
 	double logpost=0.0;
 	
-	//for quantitative traits, calculate pve and pge
-	//pve and pge for case/control data are calculted in CalcCC_PVEnZ
+	// For quantitative traits, calculate pve and pge.
+	// Pve and pge for case/control data are calculted in CalcCC_PVEnZ.
 	if (a_mode==11) {
 		cHyp.pve=0.0;
 		cHyp.pge=1.0;	
 	}
 
-	//calculate likelihood
+	// Calculate likelihood.
 	if (a_mode==11) {logpost-=0.5*(double)ni_test*log(yty);}
 	else {logpost-=0.5*yty;}
 	
-	logpost+=((double)cHyp.n_gamma-1.0)*cHyp.logp+((double)ns_test-(double)cHyp.n_gamma)*log(1-exp(cHyp.logp));
+	logpost+=((double)cHyp.n_gamma-1.0)*cHyp.logp+
+	  ((double)ns_test-(double)cHyp.n_gamma)*log(1-exp(cHyp.logp));
 		
 	return logpost;
 }
 
-
-double BSLMM::CalcPosterior (const gsl_matrix *Xgamma, const gsl_matrix *XtX, const gsl_vector *Xty, const double yty, const size_t s_size, gsl_vector *Xb, gsl_vector *beta, class HYPBSLMM &cHyp)
-{	
+double BSLMM::CalcPosterior (const gsl_matrix *Xgamma, const gsl_matrix *XtX,
+			     const gsl_vector *Xty, const double yty,
+			     const size_t s_size, gsl_vector *Xb,
+			     gsl_vector *beta, class HYPBSLMM &cHyp) {	
 	double sigma_a2=cHyp.h/( (1-cHyp.h)*exp(cHyp.logp)*(double)ns_test);
 	double logpost=0.0;
 	double d, P_yy=yty, logdet_O=0.0;
 
-	gsl_matrix_const_view Xgamma_sub=gsl_matrix_const_submatrix (Xgamma, 0, 0, Xgamma->size1, s_size);
-	gsl_matrix_const_view XtX_sub=gsl_matrix_const_submatrix (XtX, 0, 0, s_size, s_size);
-	gsl_vector_const_view Xty_sub=gsl_vector_const_subvector (Xty, 0, s_size);
+	gsl_matrix_const_view Xgamma_sub=
+	  gsl_matrix_const_submatrix (Xgamma, 0, 0, Xgamma->size1, s_size);
+	gsl_matrix_const_view XtX_sub=
+	  gsl_matrix_const_submatrix (XtX, 0, 0, s_size, s_size);
+	gsl_vector_const_view Xty_sub=
+	  gsl_vector_const_subvector (Xty, 0, s_size);
 	
 	gsl_matrix *Omega=gsl_matrix_alloc (s_size, s_size);
 	gsl_matrix *M_temp=gsl_matrix_alloc (s_size, s_size);
@@ -1411,38 +1431,42 @@ double BSLMM::CalcPosterior (const gsl_matrix *Xgamma, const gsl_matrix *XtX, co
 
 	gsl_vector_memcpy (Xty_temp, &Xty_sub.vector);
 
-	//calculate Omega
+	// Calculate Omega.
 	gsl_matrix_memcpy (Omega, &XtX_sub.matrix);
 	gsl_matrix_scale (Omega, sigma_a2);
 	gsl_matrix_set_identity (M_temp);
 	gsl_matrix_add (Omega, M_temp);
 	
-	//calculate beta_hat
+	// Calculate beta_hat.
 	logdet_O=CholeskySolve(Omega, Xty_temp, beta_hat);	
 	gsl_vector_scale (beta_hat, sigma_a2);
 
 	gsl_blas_ddot (Xty_temp, beta_hat, &d);
 	P_yy-=d;
 
-	//sample tau
+	// Sample tau.
 	double tau=1.0;
-	if (a_mode==11) {tau =gsl_ran_gamma (gsl_r, (double)ni_test/2.0,  2.0/P_yy); }
+	if (a_mode==11) {
+	  tau = gsl_ran_gamma (gsl_r, (double)ni_test/2.0,  2.0/P_yy);
+	}
 
-	//sample beta
+	// Sample beta.
 	for (size_t i=0; i<s_size; i++)
 	{
 		d=gsl_ran_gaussian(gsl_r, 1); 
 		gsl_vector_set(beta, i, d); 
 	}
 	gsl_vector_view beta_sub=gsl_vector_subvector(beta, 0, s_size);
-	gsl_blas_dtrsv(CblasUpper, CblasNoTrans, CblasNonUnit, Omega, &beta_sub.vector); 
+	gsl_blas_dtrsv(CblasUpper, CblasNoTrans, CblasNonUnit, Omega,
+		       &beta_sub.vector); 
 		
-	//it compuates inv(L^T(Omega)) %*% beta;  
+	// This computes inv(L^T(Omega)) %*% beta.
 	gsl_vector_scale(&beta_sub.vector, sqrt(sigma_a2/tau));
 	gsl_vector_add(&beta_sub.vector, beta_hat); 
-	gsl_blas_dgemv (CblasNoTrans, 1.0, &Xgamma_sub.matrix, &beta_sub.vector, 0.0, Xb);		
+	gsl_blas_dgemv (CblasNoTrans, 1.0, &Xgamma_sub.matrix,
+			&beta_sub.vector, 0.0, Xb);		
 	
-	//for quantitative traits, calculate pve and pge
+	// For quantitative traits, calculate pve and pge.
 	if (a_mode==11) {
 		gsl_blas_ddot (Xb, Xb, &d);
 		cHyp.pve=d/(double)ni_test;
@@ -1454,7 +1478,8 @@ double BSLMM::CalcPosterior (const gsl_matrix *Xgamma, const gsl_matrix *XtX, co
 	if (a_mode==11) {logpost-=0.5*(double)ni_test*log(P_yy);}
 	else {logpost-=0.5*P_yy;}
 
-	logpost+=((double)cHyp.n_gamma-1.0)*cHyp.logp+((double)ns_test-(double)cHyp.n_gamma)*log(1.0-exp(cHyp.logp));
+	logpost+=((double)cHyp.n_gamma-1.0)*cHyp.logp+
+	  ((double)ns_test-(double)cHyp.n_gamma)*log(1.0-exp(cHyp.logp));
 
 	gsl_matrix_free (Omega);
 	gsl_matrix_free (M_temp);
@@ -1464,9 +1489,7 @@ double BSLMM::CalcPosterior (const gsl_matrix *Xgamma, const gsl_matrix *XtX, co
 	return logpost;
 }
 
-
-
-//calculate pve and pge, and calculate z_hat for case-control data	
+// Calculate pve and pge, and calculate z_hat for case-control data.
 void BSLMM::CalcCC_PVEnZ (gsl_vector *z_hat, class HYPBSLMM &cHyp) 
 {
   gsl_vector_set_zero(z_hat);
@@ -1475,10 +1498,9 @@ void BSLMM::CalcCC_PVEnZ (gsl_vector *z_hat, class HYPBSLMM &cHyp)
   return;
 }
 
-
-//calculate pve and pge, and calculate z_hat for case-control data	
-void BSLMM::CalcCC_PVEnZ (const gsl_vector *Xb, gsl_vector *z_hat, class HYPBSLMM &cHyp) 
-{
+// Calculate pve and pge, and calculate z_hat for case-control data.
+void BSLMM::CalcCC_PVEnZ (const gsl_vector *Xb, gsl_vector *z_hat,
+			  class HYPBSLMM &cHyp) {
 	double d;
 	
 	gsl_blas_ddot (Xb, Xb, &d);
@@ -1491,9 +1513,7 @@ void BSLMM::CalcCC_PVEnZ (const gsl_vector *Xb, gsl_vector *z_hat, class HYPBSLM
 	return;
 }
 
-
-
-//if a_mode==13, then run probit model
+// If a_mode==13, then run probit model.
 void BSLMM::MCMC (const gsl_matrix *X, const gsl_vector *y) {
 	clock_t time_start;	
 	double time_set=0, time_post=0;
@@ -1520,7 +1540,9 @@ void BSLMM::MCMC (const gsl_matrix *X, const gsl_vector *y) {
 
 	double ztz=0.0;
 	gsl_vector_memcpy (z, y);
-	//for quantitative traits, y is centered already in gemma.cpp, but just in case
+	
+	// For quantitative traits, y is centered already in
+	// gemma.cpp, but just in case.
 	double mean_z=CenterVector (z);				
 	gsl_blas_ddot(z, z, &ztz);
 
@@ -1549,9 +1571,10 @@ void BSLMM::MCMC (const gsl_matrix *X, const gsl_vector *y) {
 		mapRank2pos[i]=pos_loglr[i].first;
 	}
 	
-	//calculate proposal distribution for gamma (unnormalized), and set up gsl_r and gsl_t		
+	// Calculate proposal distribution for gamma (unnormalized),
+	// and set up gsl_r and gsl_t.
 	gsl_rng_env_setup();                
-	const gsl_rng_type * gslType;                                               
+	const gsl_rng_type * gslType;
 	gslType = gsl_rng_default; 
 	if (randseed<0)
 	{
@@ -1559,7 +1582,8 @@ void BSLMM::MCMC (const gsl_matrix *X, const gsl_vector *y) {
 		time (&rawtime);
 		tm * ptm = gmtime (&rawtime);
 		
-		randseed = (unsigned) (ptm->tm_hour%24*3600+ptm->tm_min*60+ptm->tm_sec);
+		randseed = (unsigned) (ptm->tm_hour%24*3600+
+				       ptm->tm_min*60+ptm->tm_sec);
 	}
 	gsl_r = gsl_rng_alloc(gslType); 
 	gsl_rng_set(gsl_r, randseed);
@@ -1569,7 +1593,7 @@ void BSLMM::MCMC (const gsl_matrix *X, const gsl_vector *y) {
 	
 	gsl_t=gsl_ran_discrete_preproc (ns_test, p_gamma);
 	
-	//initial parameters
+	// Initial parameters.
 	InitialMCMC (X, z, rank_old, cHyp_old, pos_loglr);
 	
 	cHyp_initial=cHyp_old;
@@ -1580,10 +1604,12 @@ void BSLMM::MCMC (const gsl_matrix *X, const gsl_vector *y) {
 	else {	  
 	  SetXgamma (Xgamma_old, X, rank_old);	  
 	  CalcXtX (Xgamma_old, z, rank_old.size(), XtX_old, Xtz_old);
-	  logPost_old=CalcPosterior (Xgamma_old, XtX_old, Xtz_old, ztz, rank_old.size(), Xb_old, beta_old, cHyp_old);
+	  logPost_old=CalcPosterior (Xgamma_old, XtX_old, Xtz_old, ztz,
+				     rank_old.size(), Xb_old, beta_old,
+				     cHyp_old);
 	}	
 
-	//calculate centered z_hat, and pve
+	// Calculate centered z_hat, and pve.
 	if (a_mode==13) {
 		if (cHyp_old.n_gamma==0) {
 			CalcCC_PVEnZ (z_hat, cHyp_old);
@@ -1593,65 +1619,94 @@ void BSLMM::MCMC (const gsl_matrix *X, const gsl_vector *y) {
 		}
 	}
 	
-	//start MCMC
+	// Start MCMC.
 	int accept;
 	size_t total_step=w_step+s_step;
 	size_t w=0, w_col, pos;
 	size_t repeat=0;
 	
 	for (size_t t=0; t<total_step; ++t) {
-		if (t%d_pace==0 || t==total_step-1) {ProgressBar ("Running MCMC ", t, total_step-1, (double)n_accept/(double)(t*n_mh+1));}
-//		if (t>10) {break;}		
+		if (t%d_pace==0 || t==total_step-1) {
+		  ProgressBar ("Running MCMC ", t, total_step-1,
+			       (double)n_accept/(double)(t*n_mh+1));
+		}
+
 		if (a_mode==13) {			
 			SampleZ (y, z_hat, z);		
 			mean_z=CenterVector (z);
 			gsl_blas_ddot(z,z,&ztz);
 					
-			//First proposal		
+			// First proposal.
 			if (cHyp_old.n_gamma==0) {	  
 			  logPost_old=CalcPosterior (ztz, cHyp_old);
 			} else {	  
-			  gsl_matrix_view Xold_sub=gsl_matrix_submatrix(Xgamma_old, 0, 0, ni_test, rank_old.size());
-			  gsl_vector_view Xtz_sub=gsl_vector_subvector(Xtz_old, 0, rank_old.size());
-			  gsl_blas_dgemv (CblasTrans, 1.0, &Xold_sub.matrix, z, 0.0, &Xtz_sub.vector);
-			  logPost_old=CalcPosterior (Xgamma_old, XtX_old, Xtz_old, ztz, rank_old.size(), Xb_old, beta_old, cHyp_old);
+			  gsl_matrix_view Xold_sub=
+			    gsl_matrix_submatrix(Xgamma_old, 0, 0, ni_test,
+						 rank_old.size());
+			  gsl_vector_view Xtz_sub=
+			    gsl_vector_subvector(Xtz_old, 0, rank_old.size());
+			  gsl_blas_dgemv (CblasTrans, 1.0, &Xold_sub.matrix,
+					  z, 0.0, &Xtz_sub.vector);
+			  logPost_old=
+			    CalcPosterior (Xgamma_old, XtX_old, Xtz_old, ztz,
+					   rank_old.size(), Xb_old, beta_old,
+					   cHyp_old);
 			}	
 		}
 
-		//MH steps
+		// M-H steps.
 		for (size_t i=0; i<n_mh; ++i) {
-			if (gsl_rng_uniform(gsl_r)<0.33) {repeat = 1+gsl_rng_uniform_int(gsl_r, 20);}
+			if (gsl_rng_uniform(gsl_r)<0.33) {
+			  repeat = 1+gsl_rng_uniform_int(gsl_r, 20);
+			}
 			else {repeat=1;}
 
 			logMHratio=0.0;
-			logMHratio+=ProposeHnRho(cHyp_old, cHyp_new, repeat);	
-			logMHratio+=ProposeGamma (rank_old, rank_new, p_gamma, cHyp_old, cHyp_new, repeat);	
+			logMHratio+=
+			  ProposeHnRho(cHyp_old, cHyp_new, repeat);	
+			logMHratio+=
+			  ProposeGamma (rank_old, rank_new, p_gamma,
+					cHyp_old, cHyp_new, repeat);	
 			logMHratio+=ProposePi(cHyp_old, cHyp_new, repeat);
 			
 			if (cHyp_new.n_gamma==0) {
 				logPost_new=CalcPosterior (ztz, cHyp_new);
 			} else {
-			  //this if makes sure that rank_old.size()==rank_remove.size() does not happen
+			  
+			  // This makes sure that rank_old.size() ==
+			  // rank_remove.size() does not happen.
 			  if (cHyp_new.n_gamma<=20 || cHyp_old.n_gamma<=20) {
 			    time_start=clock();
 			    SetXgamma (Xgamma_new, X, rank_new);	  
-			    CalcXtX (Xgamma_new, z, rank_new.size(), XtX_new, Xtz_new);	
-			    time_set+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
+			    CalcXtX (Xgamma_new, z, rank_new.size(),
+				     XtX_new, Xtz_new);	
+			    time_set+=(clock()-time_start)/
+			      (double(CLOCKS_PER_SEC)*60.0);
 			  } else {
 			    time_start=clock();
-			    SetXgamma (X, Xgamma_old, XtX_old, Xtz_old, z, rank_old, rank_new, Xgamma_new, XtX_new, Xtz_new);
-			    time_set+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
+			    SetXgamma (X, Xgamma_old, XtX_old, Xtz_old, z,
+				       rank_old, rank_new, Xgamma_new,
+				       XtX_new, Xtz_new);
+			    time_set+=(clock()-time_start)/
+			      (double(CLOCKS_PER_SEC)*60.0);
 			  }
 			  time_start=clock();
-			  logPost_new=CalcPosterior (Xgamma_new, XtX_new, Xtz_new, ztz, rank_new.size(), Xb_new, beta_new, cHyp_new);
-			  time_post+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
+			  logPost_new=
+			    CalcPosterior (Xgamma_new, XtX_new, Xtz_new, ztz,
+					   rank_new.size(), Xb_new, beta_new,
+					   cHyp_new);
+			  time_post+=(clock()-time_start)/
+			    (double(CLOCKS_PER_SEC)*60.0);
 			}	
 			logMHratio+=logPost_new-logPost_old;	
 		
-			if (logMHratio>0 || log(gsl_rng_uniform(gsl_r))<logMHratio) {accept=1; n_accept++;}
+			if (logMHratio>0 ||
+			    log(gsl_rng_uniform(gsl_r))<logMHratio) {
+			  accept=1;
+			  n_accept++;
+			}
 			else {accept=0;}
 			
-			//cout<<rank_new.size()<<"\t"<<rank_old.size()<<"\t"<<logPost_new<<"\t"<<logPost_old<<endl;
 			if (accept==1) {			
 				logPost_old=logPost_new;
 				cHyp_old=cHyp_new;
@@ -1659,8 +1714,10 @@ void BSLMM::MCMC (const gsl_matrix *X, const gsl_vector *y) {
 
 				rank_old.clear();
 				if (rank_new.size()!=0) {
-					for (size_t i=0; i<rank_new.size(); ++i) {
-						rank_old.push_back(rank_new[i]);
+					for (size_t i=0;
+					     i<rank_new.size();
+					     ++i) {
+					  rank_old.push_back(rank_new[i]);
 					}
 								
 					gsl_matrix_view Xold_sub=gsl_matrix_submatrix(Xgamma_old, 0, 0, ni_test, rank_new.size());
@@ -1684,7 +1741,7 @@ void BSLMM::MCMC (const gsl_matrix *X, const gsl_vector *y) {
 			
 		}				
 
-		//calculate z_hat, and pve
+		// Calculate z_hat, and pve.
 		if (a_mode==13) {
 			if (cHyp_old.n_gamma==0) {
 				CalcCC_PVEnZ (z_hat, cHyp_old);
@@ -1693,41 +1750,47 @@ void BSLMM::MCMC (const gsl_matrix *X, const gsl_vector *y) {
 				CalcCC_PVEnZ (Xb_old, z_hat, cHyp_old);
 			}
 			
-			//sample mu and update z hat
+			// Sample mu and update z_hat.
 			gsl_vector_sub (z, z_hat);
 			mean_z+=CenterVector(z);
-			mean_z+=gsl_ran_gaussian(gsl_r, sqrt(1.0/(double) ni_test) );			
+			mean_z+=gsl_ran_gaussian(gsl_r,
+						 sqrt(1.0/(double) ni_test));
 			
 			gsl_vector_add_constant (z_hat, mean_z);
 		}
 		
-		//Save data
+		// Save data.
 		if (t<w_step) {continue;}
 		else {		
 			if (t%r_pace==0) {
 				w_col=w%w_pace;
 				if (w_col==0) {
-					if (w==0) {WriteResult (0, Result_hyp, Result_gamma, w_col);}					
+					if (w==0) {
+					  WriteResult(0,Result_hyp,
+						      Result_gamma,w_col);
+					}
 					else {
-						WriteResult (1, Result_hyp, Result_gamma, w_col);
-						gsl_matrix_set_zero (Result_hyp);
-						gsl_matrix_set_zero (Result_gamma);
+					  WriteResult(1,Result_hyp,
+						      Result_gamma,w_col);
+					  gsl_matrix_set_zero (Result_hyp);
+					  gsl_matrix_set_zero (Result_gamma);
 					}
 				}
 
-				gsl_matrix_set (Result_hyp, w_col, 0, cHyp_old.h);
-				gsl_matrix_set (Result_hyp, w_col, 1, cHyp_old.pve);
-				gsl_matrix_set (Result_hyp, w_col, 2, cHyp_old.rho);
-				gsl_matrix_set (Result_hyp, w_col, 3, cHyp_old.pge);
-				gsl_matrix_set (Result_hyp, w_col, 4, cHyp_old.logp);
-				gsl_matrix_set (Result_hyp, w_col, 5, cHyp_old.n_gamma);
+				gsl_matrix_set(Result_hyp,w_col,0,cHyp_old.h);
+				gsl_matrix_set(Result_hyp,w_col,1,cHyp_old.pve);
+				gsl_matrix_set(Result_hyp,w_col,2,cHyp_old.rho);
+				gsl_matrix_set(Result_hyp,w_col,3,cHyp_old.pge);
+				gsl_matrix_set(Result_hyp,w_col,4,cHyp_old.logp);
+				gsl_matrix_set(Result_hyp,w_col,5,cHyp_old.n_gamma);
 				
 				for (size_t i=0; i<cHyp_old.n_gamma; ++i) {
 					pos=mapRank2pos[rank_old[i]]+1;
-
-					gsl_matrix_set (Result_gamma, w_col, i, pos);
+					gsl_matrix_set(Result_gamma,w_col,
+						       i,pos);
 					
-					beta_g[pos-1].first+=gsl_vector_get(beta_old, i);
+					beta_g[pos-1].first+=
+					  gsl_vector_get(beta_old, i);
 					beta_g[pos-1].second+=1.0;	
 				}
 				
@@ -1736,9 +1799,7 @@ void BSLMM::MCMC (const gsl_matrix *X, const gsl_vector *y) {
 				}
 				
 				w++;
-				
 			}
-			
 		}
 	}
 	cout<<endl;
diff --git a/src/bslmm.h b/src/bslmm.h
index 07aac67..da185fa 100644
--- a/src/bslmm.h
+++ b/src/bslmm.h
@@ -40,96 +40,140 @@ public:
 	string file_out;
 	string path_out;
 	
-	// LMM related parameters
+	// LMM-related parameters.
 	double l_min;
 	double l_max;
 	size_t n_region;
 	double pve_null;
 	double pheno_mean;
 	
-	// BSLMM MCMC related parameters
-	double h_min, h_max, h_scale;			//priors for h
-	double rho_min, rho_max, rho_scale;		//priors for rho
-	double logp_min, logp_max, logp_scale;		//priors for log(pi)
-	size_t s_min, s_max;			//minimum and maximum number of gammas
-	size_t w_step;					//number of warm up/burn in iterations
-	size_t s_step;					//number of sampling iterations
-	size_t r_pace;					//record pace
-	size_t w_pace;					//write pace
-	size_t n_accept;				//number of acceptance
-	size_t n_mh;					//number of MH steps within each iteration
-	double geo_mean;				//mean of the geometric distribution
+	// BSLMM MCMC-related parameters
+	double h_min, h_max, h_scale;	       // Priors for h.
+	double rho_min, rho_max, rho_scale;    // Priors for rho.
+	double logp_min, logp_max, logp_scale; // Priors for log(pi).
+	size_t s_min, s_max;		       // Min. & max. number of gammas.
+	size_t w_step;			       // Number of warm up/burn in
+                                               // iterations.
+	size_t s_step;			       // Num. sampling iterations.
+	size_t r_pace;			       // Record pace.
+	size_t w_pace;			       // Write pace.
+	size_t n_accept;		       // Number of acceptances.
+	size_t n_mh;			       // Number of MH steps per iter.
+	double geo_mean;		       // Mean of geometric dist.
 	long int randseed;
 	double trace_G;	
 	
 	HYPBSLMM cHyp_initial;
 
-	// Summary statistics
-	size_t ni_total, ns_total;	//number of total individuals and snps
-	size_t ni_test, ns_test;	//number of individuals and snps used for analysis
-	size_t n_cvt;				//number of covariates
+	// Summary statistics.
+	size_t ni_total, ns_total; // Number of total individuals and SNPs
+	size_t ni_test, ns_test;   // Num. individuals & SNPs used in analysis.
+	size_t n_cvt;		   // Number of covariates.
 	double time_UtZ;
-	double time_Omega;		//time spent on optimization iterations
-	double time_Proposal;        //time spent on constructing the proposal distribution for gamma (i.e. lmm or lm analysis)
-	vector<int> indicator_idv;				//indicator for individuals (phenotypes), 0 missing, 1 available for analysis
-	vector<int> indicator_snp;				//sequence indicator for SNPs: 0 ignored because of (a) maf, (b) miss, (c) non-poly; 1 available for analysis
-	
-	vector<SNPINFO> snpInfo;		//record SNP information
+	double time_Omega;	   // Time spent on optimization iterations.
+
+        // Time spent on constructing the proposal distribution for
+        // gamma (i.e. lmm or lm analysis).
+	double time_Proposal;        
+
+        // Indicator for individuals (phenotypes): 0 missing, 1
+        // available for analysis.
+	vector<int> indicator_idv;				
+
+	// Sequence indicator for SNPs: 0 ignored because of (a) maf,
+	// (b) miss, (c) non-poly; 1 available for analysis.
+	vector<int> indicator_snp;	
+
+        // Record SNP information.
+	vector<SNPINFO> snpInfo;		
 	
-	// Not included in PARAM
+	// Not included in PARAM.
 	gsl_rng *gsl_r; 
 	gsl_ran_discrete_t *gsl_t;	
 	map<size_t, size_t> mapRank2pos;	
 	
-	// Main Functions
+	// Main functions.
 	void CopyFromParam (PARAM &cPar);
 	void CopyToParam (PARAM &cPar);
 	
-	void RidgeR(const gsl_matrix *U, const gsl_matrix *UtX, const gsl_vector *Uty, const gsl_vector *eval, const double lambda);
+	void RidgeR(const gsl_matrix *U, const gsl_matrix *UtX,
+		    const gsl_vector *Uty, const gsl_vector *eval,
+		    const double lambda);
 	
-	void MCMC (const gsl_matrix *U, const gsl_matrix *UtX, const gsl_vector *Uty, const gsl_vector *K_eval, const gsl_vector *y);
+	void MCMC (const gsl_matrix *U, const gsl_matrix *UtX,
+		   const gsl_vector *Uty, const gsl_vector *K_eval,
+		   const gsl_vector *y);
 	void WriteLog ();
 	void WriteLR ();
 	void WriteBV (const gsl_vector *bv);
-	void WriteParam (vector<pair<double, double> > &beta_g, const gsl_vector *alpha, const size_t w);
+	void WriteParam (vector<pair<double, double> > &beta_g,
+			 const gsl_vector *alpha, const size_t w);
 	void WriteParam (const gsl_vector *alpha);
-	void WriteResult (const int flag, const gsl_matrix *Result_hyp, const gsl_matrix *Result_gamma, const size_t w_col);
+	void WriteResult (const int flag, const gsl_matrix *Result_hyp,
+			  const gsl_matrix *Result_gamma, const size_t w_col);
 	
-	//Subfunctions inside MCMC
+	// Subfunctions inside MCMC.
 	void CalcPgamma (double *p_gammar);
 	
-	double CalcPveLM (const gsl_matrix *UtXgamma, const gsl_vector *Uty, const double sigma_a2);
-	void InitialMCMC (const gsl_matrix *UtX, const gsl_vector *Uty, vector<size_t> &rank_old, class HYPBSLMM &cHyp, vector<pair<size_t, double> > &pos_loglr);
-	double CalcPosterior (const gsl_vector *Uty, const gsl_vector *K_eval, gsl_vector *Utu, gsl_vector *alpha_prime, class HYPBSLMM &cHyp);
-	double CalcPosterior (const gsl_matrix *UtXgamma, const gsl_vector *Uty, const gsl_vector *K_eval, gsl_vector *UtXb, gsl_vector *Utu, gsl_vector *alpha_prime, gsl_vector *beta, class HYPBSLMM &cHyp);
-	void CalcCC_PVEnZ (const gsl_matrix *U, const gsl_vector *Utu, gsl_vector *z_hat, class HYPBSLMM &cHyp);
-	void CalcCC_PVEnZ (const gsl_matrix *U, const gsl_vector *UtXb, const gsl_vector *Utu, gsl_vector *z_hat, class HYPBSLMM &cHyp);
-	double CalcREMLE (const gsl_matrix *Utw, const gsl_vector *Uty, const gsl_vector *K_eval);
-	double CalcLR (const gsl_matrix *U, const gsl_matrix *UtX, const gsl_vector *Uty, const gsl_vector *K_eval, vector<pair<size_t, double> > &loglr_sort);		//calculate the maximum marginal likelihood ratio for each analyzed SNPs with gemma, use it to rank SNPs
-	void SampleZ (const gsl_vector *y, const gsl_vector *z_hat, gsl_vector *z);
-	double ProposeHnRho (const class HYPBSLMM &cHyp_old, class HYPBSLMM &cHyp_new, const size_t &repeat);
-	double ProposePi (const class HYPBSLMM &cHyp_old, class HYPBSLMM &cHyp_new, const size_t &repeat);
-	double ProposeGamma (const vector<size_t> &rank_old, vector<size_t> &rank_new, const double *p_gamma, const class HYPBSLMM &cHyp_old, class HYPBSLMM &cHyp_new, const size_t &repeat);
-	void SetXgamma (gsl_matrix *Xgamma, const gsl_matrix *X, vector<size_t> &rank);
-
-	void CalcXtX (const gsl_matrix *X_new, const gsl_vector *y, const size_t s_size, gsl_matrix *XtX_new, gsl_vector *Xty_new);
-	void SetXgamma (const gsl_matrix *X, const gsl_matrix *X_old, const gsl_matrix *XtX_old, const gsl_vector *Xty_old, const gsl_vector *y, const vector<size_t> &rank_old, const vector<size_t> &rank_new, gsl_matrix *X_new, gsl_matrix *XtX_new, gsl_vector *Xty_new);
+	double CalcPveLM (const gsl_matrix *UtXgamma, const gsl_vector *Uty,
+			  const double sigma_a2);
+	void InitialMCMC (const gsl_matrix *UtX, const gsl_vector *Uty,
+			  vector<size_t> &rank_old, class HYPBSLMM &cHyp,
+			  vector<pair<size_t, double> > &pos_loglr);
+	double CalcPosterior (const gsl_vector *Uty, const gsl_vector *K_eval,
+			      gsl_vector *Utu, gsl_vector *alpha_prime,
+			      class HYPBSLMM &cHyp);
+	double CalcPosterior (const gsl_matrix *UtXgamma,
+			      const gsl_vector *Uty, const gsl_vector *K_eval,
+			      gsl_vector *UtXb, gsl_vector *Utu,
+			      gsl_vector *alpha_prime, gsl_vector *beta,
+			      class HYPBSLMM &cHyp);
+	void CalcCC_PVEnZ (const gsl_matrix *U, const gsl_vector *Utu,
+			   gsl_vector *z_hat, class HYPBSLMM &cHyp);
+	void CalcCC_PVEnZ (const gsl_matrix *U, const gsl_vector *UtXb,
+			   const gsl_vector *Utu, gsl_vector *z_hat,
+			   class HYPBSLMM &cHyp);
+	double CalcREMLE (const gsl_matrix *Utw, const gsl_vector *Uty,
+			  const gsl_vector *K_eval);
+
+        // Calculate the maximum marginal likelihood ratio for each
+        // analyzed SNPs with gemma, use it to rank SNPs.
+	double CalcLR (const gsl_matrix *U, const gsl_matrix *UtX,
+		       const gsl_vector *Uty, const gsl_vector *K_eval,
+		       vector<pair<size_t, double> > &loglr_sort);
+	void SampleZ (const gsl_vector *y, const gsl_vector *z_hat,
+		      gsl_vector *z);
+	double ProposeHnRho (const class HYPBSLMM &cHyp_old,
+			     class HYPBSLMM &cHyp_new, const size_t &repeat);
+	double ProposePi (const class HYPBSLMM &cHyp_old,
+			  class HYPBSLMM &cHyp_new,
+			  const size_t &repeat);
+	double ProposeGamma (const vector<size_t> &rank_old,
+			     vector<size_t> &rank_new, const double *p_gamma,
+			     const class HYPBSLMM &cHyp_old,
+			     class HYPBSLMM &cHyp_new, const size_t &repeat);
+	void SetXgamma (gsl_matrix *Xgamma, const gsl_matrix *X,
+			vector<size_t> &rank);
+
+	void CalcXtX (const gsl_matrix *X_new, const gsl_vector *y,
+		      const size_t s_size, gsl_matrix *XtX_new,
+		      gsl_vector *Xty_new);
+	void SetXgamma (const gsl_matrix *X, const gsl_matrix *X_old,
+			const gsl_matrix *XtX_old, const gsl_vector *Xty_old,
+			const gsl_vector *y, const vector<size_t> &rank_old,
+			const vector<size_t> &rank_new, gsl_matrix *X_new,
+			gsl_matrix *XtX_new, gsl_vector *Xty_new);
 	double CalcPosterior (const double yty, class HYPBSLMM &cHyp);
-	double CalcPosterior (const gsl_matrix *Xgamma, const gsl_matrix *XtX, const gsl_vector *Xty, const double yty, const size_t s_size, gsl_vector *Xb, gsl_vector *beta, class HYPBSLMM &cHyp);
+	double CalcPosterior (const gsl_matrix *Xgamma, const gsl_matrix *XtX,
+			      const gsl_vector *Xty, const double yty,
+			      const size_t s_size, gsl_vector *Xb,
+			      gsl_vector *beta, class HYPBSLMM &cHyp);
 	void CalcCC_PVEnZ (gsl_vector *z_hat, class HYPBSLMM &cHyp);
-	void CalcCC_PVEnZ (const gsl_vector *Xb, gsl_vector *z_hat, class HYPBSLMM &cHyp);
+	void CalcCC_PVEnZ (const gsl_vector *Xb, gsl_vector *z_hat,
+			   class HYPBSLMM &cHyp);
 	void MCMC (const gsl_matrix *X, const gsl_vector *y);
-	
-	//utility functions
-//	double vec_sum (gsl_vector *v);
-//	void vec_center (gsl_vector *v);
-//	double calc_var (gsl_vector *v);
-//	void calc_sigma (MCMC &cMcmc);
-//	bool comp_lr (pair<size_t, double> a, pair<size_t, double> b);
 };
 
-
-
 #endif
 
 
diff --git a/src/bslmmdap.cpp b/src/bslmmdap.cpp
index e1b20d8..ebbff70 100644
--- a/src/bslmmdap.cpp
+++ b/src/bslmmdap.cpp
@@ -49,8 +49,7 @@
 
 using namespace std;
 
-void BSLMMDAP::CopyFromParam (PARAM &cPar)
-{
+void BSLMMDAP::CopyFromParam (PARAM &cPar) {
 	file_out=cPar.file_out;
 	path_out=cPar.path_out;
 
@@ -83,9 +82,7 @@ void BSLMMDAP::CopyFromParam (PARAM &cPar)
 	return;
 }
 
-
-void BSLMMDAP::CopyToParam (PARAM &cPar)
-{
+void BSLMMDAP::CopyToParam (PARAM &cPar) {
 	cPar.time_UtZ=time_UtZ;
 	cPar.time_Omega=time_Omega;
 
@@ -94,13 +91,16 @@ void BSLMMDAP::CopyToParam (PARAM &cPar)
 
 
 
-//read hyp file
-void ReadFile_hyb (const string &file_hyp, vector<double> &vec_sa2, vector<double> &vec_sb2, vector<double> &vec_wab)
-{
+// Read hyp file.
+void ReadFile_hyb (const string &file_hyp, vector<double> &vec_sa2, 
+		   vector<double> &vec_sb2, vector<double> &vec_wab) {
   vec_sa2.clear(); vec_sb2.clear(); vec_wab.clear();
 
   igzstream infile (file_hyp.c_str(), igzstream::in);
-  if (!infile) {cout<<"error! fail to open hyp file: "<<file_hyp<<endl; return;}
+  if (!infile) {
+    cout<<"error! fail to open hyp file: "<<file_hyp<<endl; 
+    return;
+  }
 
   string line;
   char *ch_ptr;
@@ -127,10 +127,9 @@ void ReadFile_hyb (const string &file_hyp, vector<double> &vec_sa2, vector<doubl
   return;
 }
 
-
-//read bf file
-void ReadFile_bf (const string &file_bf, vector<string> &vec_rs, vector<vector<vector<double> > > &BF)
-{
+// Read bf file.
+void ReadFile_bf (const string &file_bf, vector<string> &vec_rs, 
+		  vector<vector<vector<double> > > &BF) {
   BF.clear(); vec_rs.clear();
 
   igzstream infile (file_bf.c_str(), igzstream::in);
@@ -172,7 +171,9 @@ void ReadFile_bf (const string &file_bf, vector<string> &vec_rs, vector<vector<v
     if (t==0) {
       bf_size=vec_bf.size();
     } else {
-      if (bf_size!=vec_bf.size()) {cout<<"error! unequal row size in bf file."<<endl;}
+      if (bf_size!=vec_bf.size()) {
+	cout<<"error! unequal row size in bf file."<<endl;
+      }
     }
 
     if (flag_block==0) {
@@ -193,24 +194,28 @@ void ReadFile_bf (const string &file_bf, vector<string> &vec_rs, vector<vector<v
 }
 
 
-//read category files
-//read both continuous and discrete category file, record mapRS2catc
-void ReadFile_cat (const string &file_cat, const vector<string> &vec_rs, gsl_matrix *Ac, gsl_matrix_int *Ad, gsl_vector_int *dlevel, size_t &kc, size_t &kd)
-{
+// Read category files.
+// Read both continuous and discrete category file, record mapRS2catc.
+void ReadFile_cat (const string &file_cat, const vector<string> &vec_rs, 
+		   gsl_matrix *Ac, gsl_matrix_int *Ad, gsl_vector_int *dlevel,
+		   size_t &kc, size_t &kd) {
   igzstream infile (file_cat.c_str(), igzstream::in);
-  if (!infile) {cout<<"error! fail to open category file: "<<file_cat<<endl; return;}
+  if (!infile) {
+    cout<<"error! fail to open category file: "<<file_cat<<endl; 
+    return;
+  }
 
   string line;
   char *ch_ptr;
 
   string rs, chr, a1, a0, pos, cm;
 
-  //read header
+  // Read header.
   HEADER header;
   !safeGetline(infile, line).eof();
   ReadHeader_io (line, header);
 
-  //use the header to determine the number of categories
+  // Use the header to determine the number of categories.
   kc=header.catc_col.size(); kd=header.catd_col.size();
 
   //set up storage and mapper
@@ -219,7 +224,7 @@ void ReadFile_cat (const string &file_cat, const vector<string> &vec_rs, gsl_mat
   vector<double> catc;
   vector<int> catd;
 
-  //read the following lines to record mapRS2cat
+  // Read the following lines to record mapRS2cat.
   while (!safeGetline(infile, line).eof()) {
     ch_ptr=strtok ((char *)line.c_str(), " , \t");
 
@@ -255,7 +260,7 @@ void ReadFile_cat (const string &file_cat, const vector<string> &vec_rs, gsl_mat
     if (mapRS2catd.count(rs)==0 && kd>0) {mapRS2catd[rs]=catd;}
   }
 
-  //load into Ad and Ac
+  // Load into Ad and Ac.
   if (kc>0) {
     Ac=gsl_matrix_alloc(vec_rs.size(), kc);
     for (size_t i=0; i<vec_rs.size(); i++) {
@@ -305,15 +310,7 @@ void ReadFile_cat (const string &file_cat, const vector<string> &vec_rs, gsl_mat
   return;
 }
 
-
-
-
-
-
-
-
-void BSLMMDAP::WriteResult (const gsl_matrix *Hyper, const gsl_matrix *BF)
-{
+void BSLMMDAP::WriteResult (const gsl_matrix *Hyper, const gsl_matrix *BF) {
   string file_bf, file_hyp;
 	file_bf=path_out+"/"+file_out;
 	file_bf+=".bf.txt";
@@ -325,10 +322,17 @@ void BSLMMDAP::WriteResult (const gsl_matrix *Hyper, const gsl_matrix *BF)
 	outfile_bf.open (file_bf.c_str(), ofstream::out);
 	outfile_hyp.open (file_hyp.c_str(), ofstream::out);
 
-	if (!outfile_bf) {cout<<"error writing file: "<<file_bf<<endl; return;}
-	if (!outfile_hyp) {cout<<"error writing file: "<<file_hyp<<endl; return;}
+	if (!outfile_bf) {
+	  cout<<"error writing file: "<<file_bf<<endl; 
+	  return;
+	}
+	if (!outfile_hyp) {
+	  cout<<"error writing file: "<<file_hyp<<endl; 
+	  return;
+	}
 
-	outfile_hyp<<"h"<<"\t"<<"rho"<<"\t"<<"sa2"<<"\t"<<"sb2"<<"\t"<<"weight"<<endl;
+	outfile_hyp<<"h"<<"\t"<<"rho"<<"\t"<<"sa2"<<"\t"<<"sb2"<<"\t"<<
+	  "weight"<<endl;
 	outfile_hyp<<scientific;
 	for (size_t i=0; i<Hyper->size1; i++) {
 	  for (size_t j=0; j<Hyper->size2; j++) {
@@ -366,10 +370,9 @@ void BSLMMDAP::WriteResult (const gsl_matrix *Hyper, const gsl_matrix *BF)
 	return;
 }
 
-
-
-void BSLMMDAP::WriteResult (const vector<string> &vec_rs, const gsl_matrix *Hyper, const gsl_vector *pip, const gsl_vector *coef)
-{
+void BSLMMDAP::WriteResult (const vector<string> &vec_rs, 
+			    const gsl_matrix *Hyper, const gsl_vector *pip, 
+			    const gsl_vector *coef) {
   string file_gamma, file_hyp, file_coef;
 	file_gamma=path_out+"/"+file_out;
 	file_gamma+=".gamma.txt";
@@ -384,11 +387,21 @@ void BSLMMDAP::WriteResult (const vector<string> &vec_rs, const gsl_matrix *Hype
 	outfile_hyp.open (file_hyp.c_str(), ofstream::out);
 	outfile_coef.open (file_coef.c_str(), ofstream::out);
 
-	if (!outfile_gamma) {cout<<"error writing file: "<<file_gamma<<endl; return;}
-	if (!outfile_hyp) {cout<<"error writing file: "<<file_hyp<<endl; return;}
-	if (!outfile_coef) {cout<<"error writing file: "<<file_coef<<endl; return;}
+	if (!outfile_gamma) {
+	  cout<<"error writing file: "<<file_gamma<<endl; 
+	  return;
+	}
+	if (!outfile_hyp) {
+	  cout<<"error writing file: "<<file_hyp<<endl; 
+	  return;
+	}
+	if (!outfile_coef) {
+	  cout<<"error writing file: "<<file_coef<<endl; 
+	  return;
+	}
 
-	outfile_hyp<<"h"<<"\t"<<"rho"<<"\t"<<"sa2"<<"\t"<<"sb2"<<"\t"<<"weight"<<endl;
+	outfile_hyp<<"h"<<"\t"<<"rho"<<"\t"<<"sa2"<<"\t"<<"sb2"<<"\t"<<
+	  "weight"<<endl;
 	outfile_hyp<<scientific;
 	for (size_t i=0; i<Hyper->size1; i++) {
 	  for (size_t j=0; j<Hyper->size2; j++) {
@@ -397,10 +410,10 @@ void BSLMMDAP::WriteResult (const vector<string> &vec_rs, const gsl_matrix *Hype
 	  outfile_hyp<<endl;
 	}
 
-
 	outfile_gamma<<"rs"<<"\t"<<"gamma"<<endl;
 	for (size_t i=0; i<vec_rs.size(); ++i) {
-	  outfile_gamma<<vec_rs[i]<<"\t"<<scientific<<setprecision(6)<<gsl_vector_get(pip, i)<<endl;
+	  outfile_gamma<<vec_rs[i]<<"\t"<<scientific<<setprecision(6)<<
+	    gsl_vector_get(pip, i)<<endl;
 	}
 
 	outfile_coef<<"coef"<<endl;
@@ -419,25 +432,9 @@ void BSLMMDAP::WriteResult (const vector<string> &vec_rs, const gsl_matrix *Hype
 }
 
 
-
-
-/*
-void BSLMMDAP::SetXgamma (gsl_matrix *Xgamma, const gsl_matrix *X, vector<size_t> &rank)
-{
-	size_t pos;
-	for (size_t i=0; i<rank.size(); ++i) {
-		pos=mapRank2pos[rank[i]];
-		gsl_vector_view Xgamma_col=gsl_matrix_column (Xgamma, i);
-		gsl_vector_const_view X_col=gsl_matrix_const_column (X, pos);
-		gsl_vector_memcpy (&Xgamma_col.vector, &X_col.vector);
-	}
-
-	return;
-}
-*/
-
-double BSLMMDAP::CalcMarginal (const gsl_vector *Uty, const gsl_vector *K_eval, const double sigma_b2, const double tau)
-{
+double BSLMMDAP::CalcMarginal (const gsl_vector *Uty, 
+			       const gsl_vector *K_eval, 
+			       const double sigma_b2, const double tau) {
 	gsl_vector *weight_Hi=gsl_vector_alloc (Uty->size);
 
 	double logm=0.0;
@@ -452,7 +449,7 @@ double BSLMMDAP::CalcMarginal (const gsl_vector *Uty, const gsl_vector *K_eval,
 		Hi_yy+=d*uy*uy;
 	}
 
-	//calculate likelihood
+	// Calculate likelihood.
 	logm=-0.5*logdet_H-0.5*tau*Hi_yy+0.5*log(tau)*(double)ni_test;
 
 	gsl_vector_free (weight_Hi);
@@ -460,14 +457,17 @@ double BSLMMDAP::CalcMarginal (const gsl_vector *Uty, const gsl_vector *K_eval,
 	return logm;
 }
 
-
-double BSLMMDAP::CalcMarginal (const gsl_matrix *UtXgamma, const gsl_vector *Uty, const gsl_vector *K_eval, const double sigma_a2, const double sigma_b2, const double tau)
-{
+double BSLMMDAP::CalcMarginal (const gsl_matrix *UtXgamma, 
+			       const gsl_vector *Uty, 
+			       const gsl_vector *K_eval, 
+			       const double sigma_a2, 
+			       const double sigma_b2, const double tau) {
   clock_t  time_start;
 	double logm=0.0;
 	double d, uy, P_yy=0, logdet_O=0.0, logdet_H=0.0;
 
-	gsl_matrix *UtXgamma_eval=gsl_matrix_alloc (UtXgamma->size1, UtXgamma->size2);
+	gsl_matrix *UtXgamma_eval=gsl_matrix_alloc (UtXgamma->size1, 
+						    UtXgamma->size2);
 	gsl_matrix *Omega=gsl_matrix_alloc (UtXgamma->size2, UtXgamma->size2);
 	gsl_vector *XtHiy=gsl_vector_alloc (UtXgamma->size2);
 	gsl_vector *beta_hat=gsl_vector_alloc (UtXgamma->size2);
@@ -477,7 +477,7 @@ double BSLMMDAP::CalcMarginal (const gsl_matrix *UtXgamma, const gsl_vector *Uty
 
 	logdet_H=0.0; P_yy=0.0;
 	for (size_t i=0; i<ni_test; ++i) {
-		gsl_vector_view UtXgamma_row=gsl_matrix_row (UtXgamma_eval, i);
+		gsl_vector_view UtXgamma_row=gsl_matrix_row(UtXgamma_eval,i);
 		d=gsl_vector_get (K_eval, i)*sigma_b2;
 		d=1.0/(d+1.0);
 		gsl_vector_set (weight_Hi, i, d);
@@ -488,7 +488,7 @@ double BSLMMDAP::CalcMarginal (const gsl_matrix *UtXgamma, const gsl_vector *Uty
 		gsl_vector_scale (&UtXgamma_row.vector, d);
 	}
 
-	//calculate Omega
+	// Calculate Omega.
 	gsl_matrix_set_identity (Omega);
 
 	time_start=clock();
@@ -496,7 +496,7 @@ double BSLMMDAP::CalcMarginal (const gsl_matrix *UtXgamma, const gsl_vector *Uty
 		      UtXgamma, 1.0, Omega);
 	time_Omega+=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
 
-	//calculate beta_hat
+	// Calculate beta_hat.
 	gsl_blas_dgemv (CblasTrans, 1.0, UtXgamma_eval, Uty, 0.0, XtHiy);
 
 	logdet_O=CholeskySolve(Omega, XtHiy, beta_hat);
@@ -512,24 +512,26 @@ double BSLMMDAP::CalcMarginal (const gsl_matrix *UtXgamma, const gsl_vector *Uty
 	gsl_vector_free (beta_hat);
 	gsl_vector_free (weight_Hi);
 
-	logm=-0.5*logdet_H-0.5*logdet_O-0.5*tau*P_yy+0.5*log(tau)*(double)ni_test;
+	logm=-0.5*logdet_H-0.5*logdet_O-0.5*tau*P_yy+0.5*log(tau)*
+	  (double)ni_test;
 
 	return logm;
 }
 
-
 double BSLMMDAP::CalcPrior (class HYPBSLMM &cHyp) {
   double logprior=0;
-  logprior=((double)cHyp.n_gamma-1.0)*cHyp.logp+((double)ns_test-(double)cHyp.n_gamma)*log(1.0-exp(cHyp.logp));
+  logprior=((double)cHyp.n_gamma-1.0)*cHyp.logp+
+    ((double)ns_test-(double)cHyp.n_gamma)*log(1.0-exp(cHyp.logp));
   return logprior;
 }
 
-
-//where A is the ni_test by n_cat matrix of annotations
-void BSLMMDAP::DAP_CalcBF (const gsl_matrix *U, const gsl_matrix *UtX, const gsl_vector *Uty, const gsl_vector *K_eval, const gsl_vector *y) {
+// Where A is the ni_test by n_cat matrix of annotations.
+void BSLMMDAP::DAP_CalcBF (const gsl_matrix *U, const gsl_matrix *UtX, 
+			   const gsl_vector *Uty, const gsl_vector *K_eval, 
+			   const gsl_vector *y) {
 	clock_t time_start;
 
-	//set up BF
+	// Set up BF.
 	double tau, h, rho, sigma_a2, sigma_b2, d;
 	size_t ns_causal=10;
 	size_t n_grid=h_ngrid*rho_ngrid;
@@ -539,11 +541,13 @@ void BSLMMDAP::DAP_CalcBF (const gsl_matrix *U, const gsl_matrix *UtX, const gsl
 	gsl_matrix *Xgamma=gsl_matrix_alloc(ni_test, 1);
 	gsl_matrix *Hyper=gsl_matrix_alloc(n_grid, 5);
 
-	//compute tau by using yty
+	// Compute tau by using yty.
 	gsl_blas_ddot (Uty, Uty, &tau);
 	tau=(double)ni_test/tau;
 
-	//set up grid values for sigma_a2 and sigma_b2 based on an approximately even grid for h and rho, and a fixed number of causals
+	// Set up grid values for sigma_a2 and sigma_b2 based on an
+	// approximately even grid for h and rho, and a fixed number
+	// of causals.
 	size_t ij=0;
 	for (size_t i=0; i<h_ngrid; i++) {
 	  h=h_min+(h_max-h_min)*(double)i/((double)h_ngrid-1);
@@ -566,7 +570,7 @@ void BSLMMDAP::DAP_CalcBF (const gsl_matrix *U, const gsl_matrix *UtX, const gsl
 	  }
 	}
 
-	//compute BF factors
+	// Compute BF factors.
 	time_start=clock();
 	cout<<"Calculating BF..."<<endl;
 	for (size_t t=0; t<ns_test; t++) {
@@ -587,21 +591,20 @@ void BSLMMDAP::DAP_CalcBF (const gsl_matrix *U, const gsl_matrix *UtX, const gsl
 	}
 	time_Proposal=(clock()-time_start)/(double(CLOCKS_PER_SEC)*60.0);
 
-	//save results
+	// Save results.
 	WriteResult (Hyper, BF);
 
-	//free matrices and vectors
+	// Free matrices and vectors.
 	gsl_matrix_free(BF);
 	gsl_matrix_free(Xgamma);
 	gsl_matrix_free(Hyper);
 	return;
 }
 
-
-
-
-
-void single_ct_regression(const gsl_matrix_int *Xd, const gsl_vector_int *dlevel, const gsl_vector *pip_vec, gsl_vector *coef, gsl_vector *prior_vec) {
+void single_ct_regression(const gsl_matrix_int *Xd, 
+			  const gsl_vector_int *dlevel,
+			  const gsl_vector *pip_vec, 
+			  gsl_vector *coef, gsl_vector *prior_vec) {
 
   map<int,double> sum_pip;
   map<int,double> sum;
@@ -623,27 +626,26 @@ void single_ct_regression(const gsl_matrix_int *Xd, const gsl_vector_int *dlevel
     gsl_vector_set(prior_vec,i,sum_pip[cat]/sum[cat]);
   }
 
-  //double baseline=0;
   for(int i=0;i<levels;i++){
     double new_prior = sum_pip[i]/sum[i];
-    //gsl_vector_set(coef, i, log(new_prior/(1-new_prior))-baseline);
-    //if(i==0){
-    //baseline = log(new_prior/(1-new_prior));
-    //}
     gsl_vector_set(coef, i, log(new_prior/(1-new_prior)) );
   }
 
   return;
 }
 
-
-
-
-//where A is the ni_test by n_cat matrix of annotations
-void BSLMMDAP::DAP_EstimateHyper (const size_t kc, const size_t kd, const vector<string> &vec_rs, const vector<double> &vec_sa2, const vector<double> &vec_sb2, const vector<double> &wab, const vector<vector<vector<double> > > &BF, gsl_matrix *Ac, gsl_matrix_int *Ad, gsl_vector_int *dlevel) {
+// Where A is the ni_test by n_cat matrix of annotations.
+void BSLMMDAP::DAP_EstimateHyper (const size_t kc, const size_t kd, 
+				  const vector<string> &vec_rs, 
+				  const vector<double> &vec_sa2, 
+				  const vector<double> &vec_sb2, 
+				  const vector<double> &wab, 
+				  const vector<vector<vector<double> > > &BF, 
+				  gsl_matrix *Ac, gsl_matrix_int *Ad, 
+				  gsl_vector_int *dlevel) {
 	clock_t time_start;
 
-	//set up BF
+	// Set up BF.
 	double h, rho, sigma_a2, sigma_b2, d, s, logm, logm_save;
 	size_t t1, t2;
 	size_t n_grid=wab.size(), ns_test=vec_rs.size();
@@ -653,10 +655,10 @@ void BSLMMDAP::DAP_EstimateHyper (const size_t kc, const size_t kd, const vector
 	gsl_vector *pip=gsl_vector_alloc(ns_test);
 	gsl_vector *coef=gsl_vector_alloc(kc+kd+1);
 
-	//perform the EM algorithm
+	// Perform the EM algorithm.
 	vector<double> vec_wab, vec_wab_new;
 
-	//initial values
+	// Initial values.
 	for (size_t t=0; t<ns_test; t++) {
 	  gsl_vector_set (prior_vec, t, (double)BF.size()/(double)ns_test);
 	}
@@ -665,11 +667,12 @@ void BSLMMDAP::DAP_EstimateHyper (const size_t kc, const size_t kd, const vector
 	  vec_wab_new.push_back(wab[ij]);
 	}
 
-	//EM iteration
+	// EM iteration.
 	size_t it=0;
 	double dif=1;
 	while (it<100 && dif>1e-3) {
-	  //update E_gamma
+
+	  // Update E_gamma.
 	  t1=0, t2=0;
 	  for (size_t b=0; b<BF.size(); b++) {
 	    s=1;
@@ -678,7 +681,7 @@ void BSLMMDAP::DAP_EstimateHyper (const size_t kc, const size_t kd, const vector
 	      for (size_t ij=0; ij<n_grid; ij++) {
 		d+=vec_wab_new[ij]*BF[b][m][ij];
 	      }
-	      d*=gsl_vector_get(prior_vec, t1)/(1-gsl_vector_get(prior_vec, t1));
+	      d*=gsl_vector_get(prior_vec,t1)/(1-gsl_vector_get(prior_vec,t1));
 
 	      gsl_vector_set(pip, t1, d);
 	      s+=d;
@@ -692,7 +695,7 @@ void BSLMMDAP::DAP_EstimateHyper (const size_t kc, const size_t kd, const vector
 	    }
 	  }
 
-	  //update E_wab
+	  // Update E_wab.
 	  s=0;
 	  for (size_t ij=0; ij<n_grid; ij++) {
 	    vec_wab_new[ij]=0;
@@ -701,7 +704,8 @@ void BSLMMDAP::DAP_EstimateHyper (const size_t kc, const size_t kd, const vector
 	    for (size_t b=0; b<BF.size(); b++) {
 	      d=1;
 	      for (size_t m=0; m<BF[b].size(); m++) {
-		d+=gsl_vector_get(prior_vec, t1)/(1-gsl_vector_get(prior_vec, t1))*vec_wab[ij]*BF[b][m][ij];
+		d+=gsl_vector_get(prior_vec, t1)/
+		  (1-gsl_vector_get(prior_vec, t1))*vec_wab[ij]*BF[b][m][ij];
 		t1++;
 	      }
 	      vec_wab_new[ij]+=log(d);
@@ -718,11 +722,12 @@ void BSLMMDAP::DAP_EstimateHyper (const size_t kc, const size_t kd, const vector
 
 	  for (size_t ij=0; ij<n_grid; ij++) {
 	    vec_wab_new[ij]/=d;
-	    //	    vec_wab[ij]=vec_wab_new[ij];
 	  }
 
-	  //update coef, and pi
-	  if(kc==0 && kd==0){//no annotation
+	  // Update coef, and pi.
+	  if(kc==0 && kd==0){
+
+	    // No annotation.
 	    s=0;
 	    for (size_t t=0; t<pip->size; t++) {
 	      s+=gsl_vector_get(pip, t);
@@ -733,22 +738,28 @@ void BSLMMDAP::DAP_EstimateHyper (const size_t kc, const size_t kd, const vector
 	    }
 
 	    gsl_vector_set (coef, 0, log(s/(1-s)));
-	  } else if(kc==0 && kd!=0){//only discrete annotations
+	  } else if(kc==0 && kd!=0){
+
+	    // Only discrete annotations.
 	    if(kd == 1){
 	      single_ct_regression(Ad, dlevel, pip, coef, prior_vec);
 	    }else{
 	      logistic_cat_fit(coef, Ad, dlevel, pip, 0, 0);
 	      logistic_cat_pred(coef, Ad, dlevel, prior_vec);
 	    }
-	  } else if (kc!=0 && kd==0) {//only continuous annotations
+	  } else if (kc!=0 && kd==0) {
+
+	    // Only continuous annotations.
 	    logistic_cont_fit(coef, Ac, pip, 0, 0);
 	    logistic_cont_pred(coef, Ac, prior_vec);
-	  } else if (kc!=0 && kd!=0) {//both continuous and categorical annotations
+	  } else if (kc!=0 && kd!=0) {
+
+	    // Both continuous and categorical annotations.
 	    logistic_mixed_fit(coef, Ad, dlevel, Ac, pip, 0, 0);
 	    logistic_mixed_pred(coef, Ad, dlevel, Ac, prior_vec);
 	  }
 
-	  //compute marginal likelihood
+	  // Compute marginal likelihood.
 	  logm=0;
 
 	  t1=0;
@@ -757,7 +768,8 @@ void BSLMMDAP::DAP_EstimateHyper (const size_t kc, const size_t kd, const vector
 	    for (size_t m=0; m<BF[b].size(); m++) {
 	      s+=log(1-gsl_vector_get(prior_vec, t1));
 	      for (size_t ij=0; ij<n_grid; ij++) {
-		d+=gsl_vector_get(prior_vec, t1)/(1-gsl_vector_get(prior_vec, t1))*vec_wab[ij]*BF[b][m][ij];
+		d+=gsl_vector_get(prior_vec, t1)/
+		  (1-gsl_vector_get(prior_vec, t1))*vec_wab[ij]*BF[b][m][ij];
 	      }
 	    }
 	    logm+=log(d)+s;
@@ -773,14 +785,17 @@ void BSLMMDAP::DAP_EstimateHyper (const size_t kc, const size_t kd, const vector
 	  cout<<"iteration = "<<it<<"; marginal likelihood = "<<logm<<endl;
 	}
 
-	//update h and rho that correspond to w_ab
+	// Update h and rho that correspond to w_ab.
 	for (size_t ij=0; ij<n_grid; ij++) {
 	  sigma_a2=vec_sa2[ij];
 	  sigma_b2=vec_sb2[ij];
 
-	  d=exp(gsl_vector_get(coef, coef->size-1))/(1+exp(gsl_vector_get(coef, coef->size-1)));
-	  h=(d*(double)ns_test*sigma_a2+1*sigma_b2)/(1+d*(double)ns_test*sigma_a2+1*sigma_b2);
-	  rho=d*(double)ns_test*sigma_a2/(d*(double)ns_test*sigma_a2+1*sigma_b2);
+	  d=exp(gsl_vector_get(coef, coef->size-1))/
+	    (1+exp(gsl_vector_get(coef, coef->size-1)));
+	  h=(d*(double)ns_test*sigma_a2+1*sigma_b2)/
+	    (1+d*(double)ns_test*sigma_a2+1*sigma_b2);
+	  rho=d*(double)ns_test*sigma_a2/
+	    (d*(double)ns_test*sigma_a2+1*sigma_b2);
 
 	  gsl_matrix_set (Hyper, ij, 0, h);
 	  gsl_matrix_set (Hyper, ij, 1, rho);
@@ -789,13 +804,12 @@ void BSLMMDAP::DAP_EstimateHyper (const size_t kc, const size_t kd, const vector
 	  gsl_matrix_set (Hyper, ij, 4, vec_wab_new[ij]);
 	}
 
-	//obtain beta and alpha parameters
-
+	// Obtain beta and alpha parameters.
 
-	//save results
+	// Save results.
 	WriteResult (vec_rs, Hyper, pip, coef);
 
-	//free matrices and vectors
+	// Free matrices and vectors.
 	gsl_vector_free(prior_vec);
 	gsl_matrix_free(Hyper);
 	gsl_vector_free(pip);
diff --git a/src/bslmmdap.h b/src/bslmmdap.h
index 7d95db7..8445669 100644
--- a/src/bslmmdap.h
+++ b/src/bslmmdap.h
@@ -50,39 +50,65 @@ public:
 	HYPBSLMM cHyp_initial;
 
 	// Summary statistics
-	size_t ni_total, ns_total;	//number of total individuals and snps
-	size_t ni_test, ns_test;	//number of individuals and snps used for analysis
+	size_t ni_total, ns_total; // Number of total individuals and SNPs.
+	size_t ni_test, ns_test;   // Number of individuals and SNPs
+				   // used for analysis.
 
 	double h_min, h_max, rho_min, rho_max;
 	size_t h_ngrid, rho_ngrid;
 
 	double time_UtZ;
-	double time_Omega;		//time spent on optimization iterations
-	double time_Proposal;        //time spent on constructing the proposal distribution for gamma (i.e. lmm or lm analysis)
-	vector<int> indicator_idv;				//indicator for individuals (phenotypes), 0 missing, 1 available for analysis
-	vector<int> indicator_snp;				//sequence indicator for SNPs: 0 ignored because of (a) maf, (b) miss, (c) non-poly; 1 available for analysis
+	double time_Omega;	// Time spent on optimization iterations.
+	double time_Proposal;   // Time spent on constructing the
+				// proposal distribution for gamma
+				// (i.e., lmm or lm analysis).
 
-	vector<SNPINFO> snpInfo;		//record SNP information
+        // Indicator for individuals (phenotypes): 0 missing, 1
+        // available for analysis.
+	vector<int> indicator_idv;
 
-	// Main Functions
+ 	// Sequence indicator for SNPs: 0 ignored because of (a) maf,
+ 	// (b) miss, (c) non-poly; 1 available for analysis.
+	vector<int> indicator_snp;
+
+	vector<SNPINFO> snpInfo;  // Record SNP information.
+
+	// Main functions.
 	void CopyFromParam (PARAM &cPar);
 	void CopyToParam (PARAM &cPar);
 
 	void WriteResult (const gsl_matrix *Hyper, const gsl_matrix *BF);
-	void WriteResult (const vector<string> &vec_rs, const gsl_matrix *Hyper, const gsl_vector *pip, const gsl_vector *coef);
-	double CalcMarginal (const gsl_vector *Uty, const gsl_vector *K_eval, const double sigma_b2, const double tau);
-	double CalcMarginal (const gsl_matrix *UtXgamma, const gsl_vector *Uty, const gsl_vector *K_eval, const double sigma_a2, const double sigma_b2, const double tau);
+	void WriteResult (const vector<string> &vec_rs, 
+			  const gsl_matrix *Hyper, const gsl_vector *pip, 
+			  const gsl_vector *coef);
+	double CalcMarginal (const gsl_vector *Uty, const gsl_vector *K_eval, 
+			     const double sigma_b2, const double tau);
+	double CalcMarginal (const gsl_matrix *UtXgamma, 
+			     const gsl_vector *Uty, const gsl_vector *K_eval, 
+			     const double sigma_a2, const double sigma_b2, 
+			     const double tau);
 	double CalcPrior (class HYPBSLMM &cHyp);
 
-	void DAP_CalcBF (const gsl_matrix *U, const gsl_matrix *UtX, const gsl_vector *Uty, const gsl_vector *K_eval, const gsl_vector *y);
-	void DAP_EstimateHyper (const size_t kc, const size_t kd, const vector<string> &vec_rs, const vector<double> &vec_sa2, const vector<double> &vec_sb2, const vector<double> &wab, const vector<vector<vector<double> > > &BF, gsl_matrix *Ac, gsl_matrix_int *Ad, gsl_vector_int *dlevel);
-
+	void DAP_CalcBF (const gsl_matrix *U, const gsl_matrix *UtX, 
+			 const gsl_vector *Uty, const gsl_vector *K_eval, 
+			 const gsl_vector *y);
+	void DAP_EstimateHyper (const size_t kc, const size_t kd, 
+				const vector<string> &vec_rs, 
+				const vector<double> &vec_sa2, 
+				const vector<double> &vec_sb2, 
+				const vector<double> &wab, 
+				const vector<vector<vector<double> > > &BF, 
+				gsl_matrix *Ac, gsl_matrix_int *Ad, 
+				gsl_vector_int *dlevel);
 };
 
-void ReadFile_hyb (const string &file_hyp, vector<double> &vec_sa2, vector<double> &vec_sb2, vector<double> &vec_wab);
-void ReadFile_bf (const string &file_bf, vector<string> &vec_rs, vector<vector<vector<double> > > &BF);
-void ReadFile_cat (const string &file_cat, const vector<string> &vec_rs, gsl_matrix *Ac, gsl_matrix_int *Ad, gsl_vector_int *dlevel, size_t &kc, size_t &kd);
-
+void ReadFile_hyb (const string &file_hyp, vector<double> &vec_sa2, 
+		   vector<double> &vec_sb2, vector<double> &vec_wab);
+void ReadFile_bf (const string &file_bf, vector<string> &vec_rs, 
+		  vector<vector<vector<double> > > &BF);
+void ReadFile_cat (const string &file_cat, const vector<string> &vec_rs, 
+		   gsl_matrix *Ac, gsl_matrix_int *Ad, gsl_vector_int *dlevel,
+		   size_t &kc, size_t &kd);
 
 #endif
 
diff --git a/src/gemma.h b/src/gemma.h
index acb1309..8393470 100644
--- a/src/gemma.h
+++ b/src/gemma.h
@@ -1,6 +1,6 @@
 /*
-	Genome-wide Efficient Mixed Model Association (GEMMA)
-    Copyright (C) 2011  Xiang Zhou
+    Genome-wide Efficient Mixed Model Association (GEMMA)
+    Copyright (C) 2011-2017, Xiang Zhou
 
     This program is free software: you can redistribute it and/or modify
     it under the terms of the GNU General Public License as published by
@@ -13,32 +13,28 @@
     GNU General Public License for more details.
 
     You should have received a copy of the GNU General Public License
-    along with this program.  If not, see <http://www.gnu.org/licenses/>.
+    along with this program. If not, see <http://www.gnu.org/licenses/>.
 */
 
 #ifndef __GEMMA_H__                
 #define __GEMMA_H__
 
-#ifdef FORCE_FLOAT
-#include "param_float.h"
-#else
 #include "param.h"
-#endif
 
 using namespace std;
 
 class GEMMA {
 
 public:			
-	//parameters
+	// Parameters.
 	string version;
 	string date;
 	string year;
 	
-	//constructor
+	// Constructor.
 	GEMMA(void);
 	
-	//functions
+	// Functions.
 	void PrintHeader (void);
 	void PrintHelp (size_t option);
 	void PrintLicense (void);
@@ -47,6 +43,5 @@ public:
 	void WriteLog (int argc, char **argv, PARAM &cPar);
 };
 
-
 #endif
 
diff --git a/src/lmm.h b/src/lmm.h
index efbda4d..1e88cec 100644
--- a/src/lmm.h
+++ b/src/lmm.h
@@ -1,6 +1,6 @@
-/*
-	Genome-wide Efficient Mixed Model Association (GEMMA)
-    Copyright (C) 2011  Xiang Zhou
+/* 
+    Genome-wide Efficient Mixed Model Association (GEMMA)
+    Copyright (C) 2011-2017, Xiang Zhou
 
     This program is free software: you can redistribute it and/or modify
     it under the terms of the GNU General Public License as published by
@@ -13,7 +13,7 @@
     GNU General Public License for more details.
 
     You should have received a copy of the GNU General Public License
-    along with this program.  If not, see <http://www.gnu.org/licenses/>.
+    along with this program. If not, see <http://www.gnu.org/licenses/>.
 */
 
 #ifndef __LMM_H__
@@ -21,22 +21,12 @@
 
 #include "gsl/gsl_vector.h"
 #include "gsl/gsl_matrix.h"
-
-
-#ifdef FORCE_FLOAT
-#include "param_float.h"
-#include "io_float.h"
-#else
 #include "param.h"
 #include "io.h"
-#endif
 
 using namespace std;
 
-
-
-class FUNC_PARAM
-{
+class FUNC_PARAM {
 
 public:
 	bool calc_null;
@@ -48,15 +38,12 @@ public:
 	size_t e_mode;
 };
 
-
-
-
 class LMM {
 
 public:
-	// IO related parameters
-	int a_mode;				//analysis mode, 1/2/3/4 for Frequentist tests
-	size_t d_pace;		//display pace
+	// IO-related parameters
+	int a_mode;	// Analysis mode: 1/2/3/4 for Frequentist tests.
+	size_t d_pace;	// Display pace.
 
 	string file_bfile;
 	string file_geno;
@@ -75,42 +62,76 @@ public:
 	double logl_mle_H0;
 
 	// Summary statistics
-	size_t ni_total, ni_test;	//number of individuals
-	size_t ns_total, ns_test;	//number of snps
-	size_t ng_total, ng_test;	//number of genes
+	size_t ni_total, ni_test; // Number of individuals.
+	size_t ns_total, ns_test; // Number of SNPs.
+	size_t ng_total, ng_test; // Number of genes.
 	size_t n_cvt;
-	double time_UtX;		//time spent on optimization iterations
-	double time_opt;		//time spent on optimization iterations
+	double time_UtX;	  // Time spent on optimization iterations.
+	double time_opt;	  // Time spent on optimization iterations.
 
-	vector<int> indicator_idv;				//indicator for individuals (phenotypes), 0 missing, 1 available for analysis
-	vector<int> indicator_snp;				//sequence indicator for SNPs: 0 ignored because of (a) maf, (b) miss, (c) non-poly; 1 available for analysis
+        // Indicator for individuals (phenotypes): 0 missing, 1
+        // available for analysis.
+	vector<int> indicator_idv;				
 
-	vector<SNPINFO> snpInfo;		//record SNP information
+        // Sequence indicator for SNPs: 0 ignored because of (a) maf,
+        // (b) miss, (c) non-poly; 1 available for analysis.
+	vector<int> indicator_snp;
 
-	// Not included in PARAM
-	vector<SUMSTAT> sumStat;		//Output SNPSummary Data
+	vector<SNPINFO> snpInfo;  // Record SNP information.
 
-	// Main functions
+	// Not included in PARAM.
+	vector<SUMSTAT> sumStat;  // Output SNPSummary Data.
+
+	// Main functions.
 	void CopyFromParam (PARAM &cPar);
 	void CopyToParam (PARAM &cPar);
-	void AnalyzeGene (const gsl_matrix *U, const gsl_vector *eval, const gsl_matrix *UtW, const gsl_vector *Utx, const gsl_matrix *W, const gsl_vector *x);
-	void AnalyzePlink (const gsl_matrix *U, const gsl_vector *eval, const gsl_matrix *UtW, const gsl_vector *Uty, const gsl_matrix *W, const gsl_vector *y);
-	// WJA added
-	void Analyzebgen (const gsl_matrix *U, const gsl_vector *eval, const gsl_matrix *UtW, const gsl_vector *Uty, const gsl_matrix *W, const gsl_vector *y);
-	void AnalyzeBimbam (const gsl_matrix *U, const gsl_vector *eval, const gsl_matrix *UtW, const gsl_vector *Uty, const gsl_matrix *W, const gsl_vector *y);
-	void AnalyzePlinkGXE (const gsl_matrix *U, const gsl_vector *eval, const gsl_matrix *UtW, const gsl_vector *Uty, const gsl_matrix *W, const gsl_vector *y, const gsl_vector *env);
-	void AnalyzeBimbamGXE (const gsl_matrix *U, const gsl_vector *eval, const gsl_matrix *UtW, const gsl_vector *Uty, const gsl_matrix *W, const gsl_vector *y, const gsl_vector *env);
+	void AnalyzeGene (const gsl_matrix *U, const gsl_vector *eval,
+			  const gsl_matrix *UtW, const gsl_vector *Utx,
+			  const gsl_matrix *W, const gsl_vector *x);
+	void AnalyzePlink (const gsl_matrix *U, const gsl_vector *eval,
+			   const gsl_matrix *UtW, const gsl_vector *Uty,
+			   const gsl_matrix *W, const gsl_vector *y);
+	// WJA added.
+	void Analyzebgen (const gsl_matrix *U, const gsl_vector *eval,
+			  const gsl_matrix *UtW, const gsl_vector *Uty,
+			  const gsl_matrix *W, const gsl_vector *y);
+	void AnalyzeBimbam (const gsl_matrix *U, const gsl_vector *eval,
+			    const gsl_matrix *UtW, const gsl_vector *Uty,
+			    const gsl_matrix *W, const gsl_vector *y);
+	void AnalyzePlinkGXE (const gsl_matrix *U, const gsl_vector *eval,
+			      const gsl_matrix *UtW, const gsl_vector *Uty,
+			      const gsl_matrix *W, const gsl_vector *y,
+			      const gsl_vector *env);
+	void AnalyzeBimbamGXE (const gsl_matrix *U, const gsl_vector *eval,
+			       const gsl_matrix *UtW, const gsl_vector *Uty,
+			       const gsl_matrix *W, const gsl_vector *y,
+			       const gsl_vector *env);
 	void WriteFiles ();
 
-	void CalcRLWald (const double &lambda, const FUNC_PARAM &params, double &beta, double &se, double &p_wald);
-	void CalcRLScore (const double &l, const FUNC_PARAM &params, double &beta, double &se, double &p_score);
+	void CalcRLWald (const double &lambda, const FUNC_PARAM &params,
+			 double &beta, double &se, double &p_wald);
+	void CalcRLScore (const double &l, const FUNC_PARAM &params,
+			  double &beta, double &se, double &p_score);
 };
 
-void MatrixCalcLR (const gsl_matrix *U, const gsl_matrix *UtX, const gsl_vector *Uty, const gsl_vector *K_eval, const double l_min, const double l_max, const size_t n_region, vector<pair<size_t, double> > &pos_loglr);
-void CalcLambda (const char func_name, FUNC_PARAM &params, const double l_min, const double l_max, const size_t n_region, double &lambda, double &logf);
-void CalcLambda (const char func_name, const gsl_vector *eval, const gsl_matrix *UtW, const gsl_vector *Uty, const double l_min, const double l_max, const size_t n_region, double &lambda, double &logl_H0);
-void CalcPve (const gsl_vector *eval, const gsl_matrix *UtW, const gsl_vector *Uty, const double lambda, const double trace_G, double &pve, double &pve_se);
-void CalcLmmVgVeBeta (const gsl_vector *eval, const gsl_matrix *UtW, const gsl_vector *Uty, const double lambda, double &vg, double &ve, gsl_vector *beta, gsl_vector *se_beta);
+void MatrixCalcLR (const gsl_matrix *U, const gsl_matrix *UtX,
+		   const gsl_vector *Uty, const gsl_vector *K_eval,
+		   const double l_min, const double l_max,
+		   const size_t n_region,
+		   vector<pair<size_t, double> > &pos_loglr);
+void CalcLambda (const char func_name, FUNC_PARAM &params,
+		 const double l_min, const double l_max,
+		 const size_t n_region, double &lambda, double &logf);
+void CalcLambda (const char func_name, const gsl_vector *eval,
+		 const gsl_matrix *UtW, const gsl_vector *Uty,
+		 const double l_min, const double l_max,
+		 const size_t n_region, double &lambda, double &logl_H0);
+void CalcPve (const gsl_vector *eval, const gsl_matrix *UtW,
+	      const gsl_vector *Uty, const double lambda,
+	      const double trace_G, double &pve, double &pve_se);
+void CalcLmmVgVeBeta (const gsl_vector *eval, const gsl_matrix *UtW,
+		      const gsl_vector *Uty, const double lambda, double &vg,
+		      double &ve, gsl_vector *beta, gsl_vector *se_beta);
 
 #endif
 
diff --git a/src/logistic.cpp b/src/logistic.cpp
index 002ce98..3f9d6ff 100644
--- a/src/logistic.cpp
+++ b/src/logistic.cpp
@@ -13,7 +13,7 @@ typedef struct{
   gsl_matrix_int *X;

   gsl_vector_int *nlev;

   gsl_vector *y;

-  gsl_matrix *Xc;  // continuous covariates matrix Nobs x Kc (NULL if not used)

+  gsl_matrix *Xc; // Continuous covariates matrix Nobs x Kc (NULL if not used).

   double lambdaL1;

   double lambdaL2;

 } fix_parm_mixed_T;

@@ -29,8 +29,9 @@ double fLogit_mixed(gsl_vector *beta,
   int npar = beta->size; 

   double total = 0;

   double aux = 0;

+  

   // Changed loop start at 1 instead of 0 to avoid regularization of

-  // beta_0*\/ */

+  // beta_0*\/

   // #pragma omp parallel for reduction (+:total)

   for(int i = 1; i < npar; ++i)

     total += beta->data[i]*beta->data[i];

@@ -57,8 +58,9 @@ double fLogit_mixed(gsl_vector *beta,
 } 

 

 

-void logistic_mixed_pred(gsl_vector *beta  // Vector of parameters length = 1 + Sum_k(C_k - 1)

-			 ,gsl_matrix_int *X  //Matrix Nobs x K 

+void logistic_mixed_pred(gsl_vector *beta      // Vector of parameters

+					       // length = 1 + Sum_k(C_k -1)

+			 ,gsl_matrix_int *X    //Matrix Nobs x K 

 			 ,gsl_vector_int *nlev // Vector with number categories

 			 ,gsl_matrix *Xc   // continuous covariates  Matrix Nobs x Kc (NULL if not used)

 			 ,gsl_vector *yhat //Vector of prob. predicted by the logistic

@@ -287,39 +289,40 @@ int logistic_mixed_fit(gsl_vector *beta
 /* Categorical */

 /***************/

 

-// I need to bundle all the data that goes to the function to optimze together. 

+// I need to bundle all the data that goes to the function to optimze

+// together.

 typedef struct{

   gsl_matrix_int *X;

   gsl_vector_int *nlev;

   gsl_vector *y;

   double lambdaL1;

   double lambdaL2;

-}fix_parm_cat_T;

-

-

-double fLogit_cat(gsl_vector *beta

-		  ,gsl_matrix_int *X

-		  ,gsl_vector_int *nlev

-		  ,gsl_vector *y

-		  ,double lambdaL1

-		  ,double lambdaL2)

-{

+} fix_parm_cat_T;

+

+double fLogit_cat(gsl_vector *beta,

+		  gsl_matrix_int *X,

+		  gsl_vector_int *nlev,

+		  gsl_vector *y,

+		  double lambdaL1,

+		  double lambdaL2) {

   int n = y->size; 

-  //  int k = X->size2; 

   int npar = beta->size; 

   double total = 0;

   double aux = 0;

-  /*   omp_set_num_threads(ompthr); */

-  /*   /\* Changed loop start at 1 instead of 0 to avoid regularization of beta 0*\/ */

-  /*   /\*#pragma omp parallel for reduction (+:total)*\/ */

+  // omp_set_num_threads(ompthr); /\* Changed loop start at 1 instead

+  // of 0 to avoid regularization of beta 0*\/ /\*#pragma omp parallel

+  // for reduction (+:total)*\/

   for(int i = 1; i < npar; ++i)

     total += beta->data[i]*beta->data[i];

   total = (-total*lambdaL2/2);

-  /*   /\*#pragma omp parallel for reduction (+:aux)*\/ */

+  

+  // /\*#pragma omp parallel for reduction (+:aux)*\/

   for(int i = 1; i < npar; ++i)

     aux += (beta->data[i]>0 ? beta->data[i] : -beta->data[i]);

   total = total-aux*lambdaL1;

-  /* #pragma omp parallel for schedule(static) shared(n,beta,X,nlev,y) reduction (+:total) */

+  

+  // #pragma omp parallel for schedule(static) shared(n,beta,X,nlev,y)

+  // #reduction (+:total)

   for(int i = 0; i < n; ++i) {

     double Xbetai=beta->data[0];

     int iParm=1;

@@ -333,7 +336,6 @@ double fLogit_cat(gsl_vector *beta
   return -total;

 } 

 

-

 void logistic_cat_pred(gsl_vector *beta  // Vector of parameters length = 1 + Sum_k(C_k - 1)

 		       ,gsl_matrix_int *X  //Matrix Nobs x K 

 		       ,gsl_vector_int *nlev // Vector with number categories

diff --git a/src/mvlmm.h b/src/mvlmm.h
index 9ff567c..d495c26 100644
--- a/src/mvlmm.h
+++ b/src/mvlmm.h
@@ -1,6 +1,6 @@
 /*
  Genome-wide Efficient Mixed Model Association (GEMMA)
- Copyright (C) 2011  Xiang Zhou
+ Copyright (C) 2011-2017, Xiang Zhou
 
  This program is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
@@ -13,36 +13,25 @@
  GNU General Public License for more details.
 
  You should have received a copy of the GNU General Public License
- along with this program.  If not, see <http://www.gnu.org/licenses/>.
- */
+ along with this program. If not, see <http://www.gnu.org/licenses/>.
+*/
 
 #ifndef __MVLMM_H__
 #define __MVLMM_H__
 
 #include "gsl/gsl_vector.h"
 #include "gsl/gsl_matrix.h"
-
-
-#ifdef FORCE_FLOAT
-#include "param_float.h"
-#include "io_float.h"
-#else
 #include "param.h"
 #include "io.h"
-#endif
 
 using namespace std;
 
-
-
-
-
 class MVLMM {
 
 public:
-	// IO related parameters
-	int a_mode;				//analysis mode, 1/2/3/4 for Frequentist tests
-	size_t d_pace;		//display pace
+	// IO-related parameters.
+	int a_mode;	// Analysis mode: 1/2/3/4 for Frequentist tests.
+	size_t d_pace;	// Display pace.
 
 	string file_bfile;
 	string file_geno;
@@ -50,48 +39,68 @@ public:
 	string file_out;
 	string path_out;
 
-	// MVLMM related parameters
+	// MVLMM-related parameters.
 	double l_min;
 	double l_max;
 	size_t n_region;
 	double logl_remle_H0, logl_mle_H0;
 	vector<double> Vg_remle_null, Ve_remle_null, Vg_mle_null, Ve_mle_null;
-	vector<double> VVg_remle_null, VVe_remle_null, VVg_mle_null, VVe_mle_null;
-	vector<double> beta_remle_null, se_beta_remle_null, beta_mle_null, se_beta_mle_null;
+        vector<double> VVg_remle_null, VVe_remle_null, VVg_mle_null;
+        vector<double> VVe_mle_null;
+        vector<double> beta_remle_null, se_beta_remle_null, beta_mle_null;
+        vector<double> se_beta_mle_null;
 	double p_nr;
 	size_t em_iter, nr_iter;
 	double em_prec, nr_prec;
 	size_t crt;
 
-	// Summary statistics
-	size_t ni_total, ni_test;	//number of individuals
-	size_t ns_total, ns_test;	//number of snps
+	// Summary statistics.
+	size_t ni_total, ni_test; // Number of individuals.
+	size_t ns_total, ns_test; // Number of SNPs.
 	size_t n_cvt;
 	size_t n_ph;
-	double time_UtX;		//time spent on optimization iterations
-	double time_opt;		//time spent on optimization iterations
+	double time_UtX;	  // Time spent on optimization iterations.
+	double time_opt;	  // Time spent on optimization iterations.
+
+        // Indicator for individuals (phenotypes): 0 missing, 1
+        // available for analysis.
+	vector<int> indicator_idv;
 
-	vector<int> indicator_idv;				//indicator for individuals (phenotypes), 0 missing, 1 available for analysis
-	vector<int> indicator_snp;				//sequence indicator for SNPs: 0 ignored because of (a) maf, (b) miss, (c) non-poly; 1 available for analysis
+    	// Sequence indicator for SNPs: 0 ignored because of (a) maf,
+    	// (b) miss, (c) non-poly; 1 available for analysis.
+	vector<int> indicator_snp;
 
-	vector<SNPINFO> snpInfo;		//record SNP information
+	vector<SNPINFO> snpInfo;    // Record SNP information.
 
-	// Not included in PARAM
-	vector<MPHSUMSTAT> sumStat;		//Output SNPSummary Data
+	// Not included in PARAM.
+	vector<MPHSUMSTAT> sumStat; // Output SNPSummary Data.
 
 	// Main functions
 	void CopyFromParam (PARAM &cPar);
 	void CopyToParam (PARAM &cPar);
-	void AnalyzeBimbam (const gsl_matrix *U, const gsl_vector *eval, const gsl_matrix *UtW, const gsl_matrix *UtY);
-	void AnalyzePlink (const gsl_matrix *U, const gsl_vector *eval, const gsl_matrix *UtW, const gsl_matrix *UtY);
-	void Analyzebgen (const gsl_matrix *U, const gsl_vector *eval, const gsl_matrix *UtW, const gsl_matrix *UtY);
-	void AnalyzeBimbamGXE (const gsl_matrix *U, const gsl_vector *eval, const gsl_matrix *UtW, const gsl_matrix *UtY, const gsl_vector *env);
-	void AnalyzePlinkGXE (const gsl_matrix *U, const gsl_vector *eval, const gsl_matrix *UtW, const gsl_matrix *UtY, const gsl_vector *env);
+	void AnalyzeBimbam (const gsl_matrix *U, const gsl_vector *eval,
+			    const gsl_matrix *UtW, const gsl_matrix *UtY);
+	void AnalyzePlink (const gsl_matrix *U, const gsl_vector *eval,
+			   const gsl_matrix *UtW, const gsl_matrix *UtY);
+	void Analyzebgen (const gsl_matrix *U, const gsl_vector *eval,
+			  const gsl_matrix *UtW, const gsl_matrix *UtY);
+	void AnalyzeBimbamGXE (const gsl_matrix *U, const gsl_vector *eval,
+			       const gsl_matrix *UtW, const gsl_matrix *UtY,
+			       const gsl_vector *env);
+        void AnalyzePlinkGXE (const gsl_matrix *U, const gsl_vector *eval,
+			      const gsl_matrix *UtW, const gsl_matrix *UtY,
+			      const gsl_vector *env);
 	void WriteFiles ();
 
 };
 
-void CalcMvLmmVgVeBeta (const gsl_vector *eval, const gsl_matrix *UtW, const gsl_matrix *UtY, const size_t em_iter, const size_t nr_iter, const double em_prec, const double nr_prec, const double l_min, const double l_max, const size_t n_region, gsl_matrix *V_g, gsl_matrix *V_e, gsl_matrix *B, gsl_matrix *se_B);
+void CalcMvLmmVgVeBeta (const gsl_vector *eval, const gsl_matrix *UtW,
+			const gsl_matrix *UtY, const size_t em_iter,
+			const size_t nr_iter, const double em_prec,
+			const double nr_prec, const double l_min,
+			const double l_max, const size_t n_region,
+			gsl_matrix *V_g, gsl_matrix *V_e, gsl_matrix *B,
+			gsl_matrix *se_B);
 
 #endif