about summary refs log tree commit diff
diff options
context:
space:
mode:
authorPeter Carbonetto2017-05-23 22:36:54 -0500
committerPeter Carbonetto2017-05-23 22:36:54 -0500
commit77332754b8d8bc34a7f3796e154c3d194a25864f (patch)
tree2cbff4881b57a3975c0883855ae004aea6955310
parentfe2812653048cf4b048b890b5225075550336164 (diff)
downloadpangemma-77332754b8d8bc34a7f3796e154c3d194a25864f.tar.gz
Adjusted formatting in README.
-rw-r--r--README.md8
1 files changed, 4 insertions, 4 deletions
diff --git a/README.md b/README.md
index 735d07b..a4aa0c8 100644
--- a/README.md
+++ b/README.md
@@ -41,21 +41,21 @@ MQS algorithm to estimate variance components.
 
 If you use GEMMA for published work, please cite our paper:
 
-Xiang Zhou and Matthew Stephens (2012). [Genome-wide efficient
++ Xiang Zhou and Matthew Stephens (2012). [Genome-wide efficient
 mixed-model analysis for association studies.](http://doi.org/10.1038/ng.2310) 
 *Nature Genetics* **44**, 821–824.
 
 If you use the multivariate linear mixed model (mvLMM) in your
 research, please cite:
 
-Xiang Zhou and Matthew Stephens (2014). [Efficient multivariate linear
++ Xiang Zhou and Matthew Stephens (2014). [Efficient multivariate linear
 mixed model algorithms for genome-wide association
 studies.](http://doi.org/10.1038/nmeth.2848)
 *Nature Methods* **11**, 407–409.
 
 If you use the Bayesian sparse linear mixed model (BSLMM), please cite:
 
-Xiang Zhou, Peter Carbonetto and Matthew Stephens (2013). [Polygenic
++ Xiang Zhou, Peter Carbonetto and Matthew Stephens (2013). [Polygenic
 modeling with bayesian sparse linear mixed
 models.](http://doi.org/10.1371/journal.pgen.1003264) *PLoS Genetics*
 **9**, e1003264. 
@@ -63,7 +63,7 @@ models.](http://doi.org/10.1371/journal.pgen.1003264) *PLoS Genetics*
 And if you use of the variance component estimation using summary
 statistics, please cite:
 
-Xiang Zhou (2016). [A unified framework for variance component
++ Xiang Zhou (2016). [A unified framework for variance component
 estimation with summary statistics in genome-wide association
 studies.](https://doi.org/10.1101/042846) *bioRxiv* 042846.