diff options
author | rupertoverall | 2023-07-10 15:09:47 +0200 |
---|---|---|
committer | GitHub | 2023-07-10 15:09:47 +0200 |
commit | 1b7060314c1a6d55d1e68d4fb2facf60d598cdb0 (patch) | |
tree | c02288420a902797c5338ca7d76aa70331ff05a5 /api | |
parent | d4b848fb70f8abcb9aa3abc0f033b44e1c2d88bc (diff) | |
download | gn-docs-1b7060314c1a6d55d1e68d4fb2facf60d598cdb0.tar.gz |
Create case-studies.md
Diffstat (limited to 'api')
-rw-r--r-- | api/case-studies.md | 361 |
1 files changed, 361 insertions, 0 deletions
diff --git a/api/case-studies.md b/api/case-studies.md new file mode 100644 index 0000000..15f974a --- /dev/null +++ b/api/case-studies.md @@ -0,0 +1,361 @@ +# Case studies + +## The Hp1bp3 transcript +Investigate Hp1bp3, which has a cis-QTL in hippocampus and is associated with cognitive ageing. + +___ +Search for the dataset: + +https://genenetwork.org/api/v2/Mus_musculus/BXD/datasets?search=hippocampus + +[API v1]: # https://genenetwork.org/api/v_pre1/datasets/bxd +``` +[ + { + "AvgID": 1, + "CreateTime": "Mon, 24 Oct 2005 00:00:00 GMT", + "DataScale": "log2", + "FullName": "Hippocampus Consortium M430v2 (Oct05) MAS5", + "Id": 86, + "Long_Abbreviation": "Hippocampus_M430_V2_BXD_MAS5_Oct05", + "ProbeFreezeId": 24, + "ShortName": "Hippocampus M430v2 BXD 10/05 MAS5", + "Short_Abbreviation": "HC_M2_1005_M", + "confidentiality": 0, + "public": 0 + }, + { + "AvgID": 3, + "CreateTime": "Mon, 24 Oct 2005 00:00:00 GMT", + "DataScale": "log2", + "FullName": "Hippocampus Consortium M430v2 (Oct05) RMA", + "Id": 87, + "Long_Abbreviation": "Hippocampus_M430_V2_BXD_RMA_Oct05", + "ProbeFreezeId": 24, + "ShortName": "Hippocampus M430v2 BXD 10/05 RMA", + "Short_Abbreviation": "HC_M2_1005_R", + "confidentiality": 0, + "public": 0 + }, + { + "AvgID": 2, + "CreateTime": "Mon, 24 Oct 2005 00:00:00 GMT", + "DataScale": "log2", + "FullName": "Hippocampus Consortium M430v2 (Oct05) PDNN", + "Id": 88, + "Long_Abbreviation": "Hippocampus_M430_V2_BXD_PDNN_Oct05", + "ProbeFreezeId": 24, + "ShortName": "Hippocampus M430v2 BXD 10/05 PDNN", + "Short_Abbreviation": "HC_M2_1005_P", + "confidentiality": 0, + "public": 0 + } +] + +``` +This should return a list of all hippocampal _datasets_ containing the phrase 'hippocampus' (or its lemma). +The user can then look through the descriptions and decide which one they need. +In this case the appropriate key is `HC_M2_0606_P`. + +We could also just get a listing of all datasets and work through them locally (by eye or with a local grep). + +https://genenetwork.org/api/v2/Mus_musculus/BXD/datasets + +In all cases, giving the generic term (`species`, `populations`, `datasets`, `traits`) will return a listing of all descendent options. + +Just using the instance keys as the endpoint (e.g. `api/v2/Mus_musculus`, `api/v2/Mus_musculus/BXD`, `api/v2/Mus_musculus/BXD/HC_M2_0606_P`) will return metadata about the level (about the species 'mouse', the population 'BXD' or the dataset 'HC_M2_0606_P' respectively in the above examples). + +___ +To continue, we dig down and search the dataset for the desired gene name: + +https://genenetwork.org/api/v2/Mus_musculus/BXD/HC_M2_0606_P/traits?search&symbol=Hp1bp3 + +``` +[ + { + "additive": -0.15845054446461, + "alias": "HP1BP74; HP1-BP74; Hp1bp74", + "chr": "4", + "description": "heterochromatin protein 1, binding protein 3", + "id": 78509, + "locus": "rsm10000002056", + "lrs": 57.6845496792109, + "mb": 138.242585, + "mean": 12.2393434343434, + "name": "1415751_at", + "p_value": 0.0, + "se": null, + "symbol": "Hp1bp3" + }, + { + "additive": -0.489152777777777, + "alias": "HP1BP74; HP1-BP74; Hp1bp74", + "chr": "4", + "description": "heterochromatin protein 1, binding protein 3", + "id": 102578, + "locus": "rsm10000002058", + "lrs": 96.3121317863362, + "mb": 138.244118, + "mean": 8.88365656565657, + "name": "1439845_at", + "p_value": 0.0, + "se": null, + "symbol": "Hp1bp3" + }, + { + "additive": -0.037382526029878, + "alias": "HP1BP74; HP1-BP74; Hp1bp74; 2310026L22Rik", + "chr": "4", + "description": "heterochromatin protein 1, binding protein 3", + "id": 110688, + "locus": "rs32937254", + "lrs": 13.2029671197265, + "mb": 138.21577, + "mean": 6.51316161616162, + "name": "1447955_at", + "p_value": 0.317, + "se": null, + "symbol": "Hp1bp3" + } +] +``` + +This gives us the three probesets associated with Hp1bp3 and some metadata (name, aliases, expression, precomputed QTL etc.). +We decide that `1439845_at` is the correct probeset. + +___ +Get more information about `1439845_at` including the metadata noted above, but also microarray platform, probe composition and mapping, chromosomal position, gene/transcript length, links to gene info (NCBI, Wikidata), homologous genes in other species, [what other datasets contain data for this gene] etc.: + +https://genenetwork.org/api/v2/Mus_musculus/BXD/HC_M2_0606_P/1439845_at + +[API v1]: # https://genenetwork.org/api/v_pre1/trait/HC_M2_0606_P/1439845_at +``` +[ + { + "additive": -0.489152777777777, + "alias": "HP1BP74; HP1-BP74; Hp1bp74", + "chr": "4", + "description": "heterochromatin protein 1, binding protein 3", + "id": 102578, + "locus": "rsm10000002058", + "lrs": 96.3121317863362, + "mb": 138.244118, + "mean": 8.88365656565657, + "name": "1439845_at", + "p_value": 0.0, + "se": null, + "symbol": "Hp1bp3", + "wikidata": "Q18251298", + "homologene", "7774", + } +] +``` +*Should include all of the data shown at https://genenetwork.org/show_trait?trait_id=1439845_at&dataset=HC_M2_0606_P* + +___ +Get the expression data for this trait: + +https://genenetwork.org/api/v2/Mus_musculus/BXD/HC_M2_0606_P/1439845_at/data + +``` +[ + { + "data_id": 23426549, + "sample_name": "129S1/SvImJ", + "sample_name_2": "129S1/SvImJ", + "se": 0.219, + "value": 6.61 + }, + { + "data_id": 23426549, + "sample_name": "A/J", + "sample_name_2": "A/J", + "se": 0.158, + "value": 6.536 + }, + { + "data_id": 23426549, + "sample_name": "AKR/J", + "sample_name_2": "AKR/J", + "se": 0.076, + "value": 6.486 + }, + { + "data_id": 23426549, + "sample_name": "B6D2F1", + "sample_name_2": "B6D2F1", + "se": 0.09, + "value": 6.561 + }, + . + . + . +] +``` + +This is a data endpoint, so the returned JSON includes a vector of the transcript expression values for this probeset. + +If we wanted to grab the whole microarray dataset, then we can just use the data keyword one level up. +Here, a return type can also be specified + +https://genenetwork.org/api/v2/Mus_musculus/BXD/HC_M2_0606_P/BXD/data.tsv + +This returns a tab-delimited table of data (probesets in columns, strains/individuals in rows) for download. + +___ +Get the QTL vector: + +https://genenetwork.org/api/v2/Mus_musculus/BXD/HC_M2_0606_P/1439845_at/qtl?method=GEMMA&genotype=mm10 + +[API v1]: # https://genenetwork.org/api/v_pre1/mapping?trait_id=1447955_at&db=HC_M2_0606_P&method=gemma&use_loco=FALSE&use_loco=0.01 +``` +[ + [ + { + "Mb": 3.00149, + "additive": -0.0017764785, + "chr": 1, + "lod_score": 0.06055383480931299, + "name": "rsm10000000001", + "p_value": 0.8698536 + }, + { + "Mb": 3.010274, + "additive": -0.0017764785, + "chr": 1, + "lod_score": 0.06055383480931299, + "name": "rs31443144", + "p_value": 0.8698536 + }, + { + "Mb": 3.492195, + "additive": -0.0017764785, + "chr": 1, + "lod_score": 0.06055383480931299, + "name": "rs6269442", + "p_value": 0.8698536 + }, + { + "Mb": 3.511204, + "additive": -0.0017764785, + "chr": 1, + "lod_score": 0.06055383480931299, + "name": "rs32285189", + "p_value": 0.8698536 + }, + { + "Mb": 3.659804, + "additive": -0.0017764785, + "chr": 1, + "lod_score": 0.06055383480931299, + "name": "rs258367496", + "p_value": 0.8698536 + }, + { + "Mb": 3.777023, + "additive": -0.0017764785, + "chr": 1, + "lod_score": 0.06055383480931299, + "name": "rs32430919", + "p_value": 0.8698536 + }, + . + . + . + ] +``` + +This is also a data endpoint, so we get a vector of p-values together with a vector of chromosomal positions. + + +___ +Correlate with all phenotypes: + +https://genenetwork.org/api/v2/Mus_musculus/BXD/HC_M2_0606_P/1439845_at/correlations?method=spearmann&dataset=phenotypes&n_results=10 + +[API v1]: # https://genenetwork.org/api/v_pre1/correlation?trait_id=1447955_at&db=HC_M2_0606_P&target_db=BXDPublish&type=sample&method=spearman&return=10 +[Error]: # This returns 500 results. +``` +[ + { + "#_strains": 7, + "p_value": 0.0025194724037946874, + "sample_r": 0.9285714285714288, + "trait": "12562" + }, + { + "#_strains": 13, + "p_value": 2.4445741031329683e-05, + "sample_r": 0.9023392305243964, + "trait": "12889" + }, + { + "#_strains": 7, + "p_value": 0.01369732661532562, + "sample_r": -0.8571428571428573, + "trait": "19087" + }, + { + "#_strains": 13, + "p_value": 0.00039102596905431295, + "sample_r": 0.8342668763658431, + "trait": "20884" + }, + { + "#_strains": 8, + "p_value": 0.01017554012345675, + "sample_r": -0.8333333333333335, + "trait": "10409" + }, + { + "#_strains": 8, + "p_value": 0.01017554012345675, + "sample_r": -0.8333333333333335, + "trait": "10410" + }, + { + "#_strains": 6, + "p_value": 0.04156268221574334, + "sample_r": 0.8285714285714287, + "trait": "20393" + }, + { + "#_strains": 6, + "p_value": 0.04156268221574334, + "sample_r": -0.8285714285714287, + "trait": "20595" + }, + { + "#_strains": 10, + "p_value": 0.0038149200825507135, + "sample_r": -0.8181818181818182, + "trait": "16177" + }, + { + "#_strains": 15, + "p_value": 0.000219365827727102, + "sample_r": 0.8142857142857142, + "trait": "27198" + } + ] +``` +It is not necessary to specify the target at any level above dataset as correlations can only be performed within a population. + +___ +Correlate with a specific trait: + +https://genenetwork.org/api/v2/Mus_musculus/BXD/HC_M2_0606_P/1439845_at/correlations?method=pearson&dataset=HC_M2_0606_P&traits=1415751_at,1447955_at + +Here, we have correlated against the two other Hs1bp3 probesets, which are specified by a comma-delimited list of trait IDs. + +Correlation across different datasets would be achieved by multiple API calls. +Although there may be a way to line up a series of calls and have them run as a batch (I presume more complicated queries like this would be done via a POST interface though). + +___ +More advanced searches could allow restricting the search to certain fields: + +https://genenetwork.org/api/v2/Mus_musculus/BXD/datasets?search&type=transcript&tag=hippocampus + +I would support using tags to associate keywords with items at all levels. +Here, the `search` parameter was left empty as we are looking for a phrase in a particular field. +If all parameters are empty, this should not fail but return the same as the `datasets` query without the parameters (i.e. return a listing of all available datasets). |