aboutsummaryrefslogtreecommitdiff
path: root/gnqa/paper1_eval/src/data/responses/general/experts/expert_general_05.json
blob: 8273f7101a6af5b2dd28216aafef29279a906696 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
{
    "created_at": "2024-06-01T14:26:03.986157Z",
    "data": {
        "amplify": false,
        "answer": "The potential benefits of gene editing technologies like CRISPR-Cas9 include the ability to modify genes for the treatment of diseases, improvement of crop species, and the development of personalized drug or cell therapies. It can also be used for functional screening in the development of therapies and for the study of molecular causes of ageing. However, there are risks associated with these technologies. These include off-target effects, which can lead to unwanted mutations, and the potential for wide-ranging deletions or recombination events. There's also a risk of triggering a P53 response leading to apoptosis in cycling cells, and the potential for subjects to generate antibodies to Cas9, which could limit gene therapies. Furthermore, the long-term safety of CRISPR genome editing in humans is yet to be determined.",
        "context": {
            "03110c8a-1232-40c2-8380-c9feb8b6468c": [
                {
                    "document_id": "03110c8a-1232-40c2-8380-c9feb8b6468c",
                    "text": "\n\nGene editing has gained considerable interest with the identification of the CRISPR-Cas9 system, 27 which allows for a targeted modification in the DNA sequence of an organism.Researchers can utilize their knowledge of the basic biology of the gene and its protein function to precisely change the DNA sequence, thus altering the protein function of the gene and allowing for edits to stay within the species.Researchers at the University of Missouri used the CRISPR-Cas9 system to modify the CD163 gene such that the PRRS virus is not able to replicate inside the pig. 28This slight modification of the swine genome through gene editing keeps the pigs from succumbing to PRRS which has an annual estimated loss to the United States swine industry of over $660 million per year.Despite this benefit, given the public's concerns over food safety, it is likely that approval for such technology is years away in the US, Canada and Europe.However, in some cultures, there is a wide range of non-livestock species that are consumed.Therefore, it is conceivable that these countries and cultures may be open to transgenic/gene edited livestock.They may see the importance of useful gene editing which may lead to approval and consumption of reasonable genetically edited animal products such as those with modifications that are already found in nature or those that offer a substantial welfare benefit to society."
                }
            ],
            "1942712a-a39d-44f7-9b2d-609926374cbd": [
                {
                    "document_id": "1942712a-a39d-44f7-9b2d-609926374cbd",
                    "text": "\n\nAs a researcher who has devoted an entire career since 1994 to the development of genome editing tools and methods, I have been amazed by the rapid progress in the field over the last few years.Considering the widespread use of the tools, I am sure that the pace will continue to accelerate.Indeed, programmable nucleases, may eventually enable humans-products of evolution-to become masters of evolution.delivered preassembled recombinant Cas9-guide RNA ribonucleoproteins (RNPs) into animal embryos 6,9 and plant 11 and mammalian cells [73][74][75] .Indeed, Cas9 RNPs were rapidly turned over in cells 73 , reducing off-target effects and mosaicism in gene-edited organisms 11 .Cas9 RNPs can be delivered into cells by various methods, including microinjection 6,9 , electroporation 73 , lipofection 74 and protein transduction 75 .Importantly-and unlike in conventional gene therapy, where therapeutic genes are delivered via plasmids or viral vectors-Cas9 RNP delivery does not involve the use of exogenous DNA; host innate immune responses against foreign DNA are not elicited, and undesired integration of foreign DNA into the host genome is avoided."
                }
            ],
            "33f1abde-a821-483b-b8b4-785f499db09d": [
                {
                    "document_id": "33f1abde-a821-483b-b8b4-785f499db09d",
                    "text": "\n\nIn comparison to a transgenic approach, a gene editing technique such as CRISPR-Cas9 offers the advantage that gene-edited crops are not considered genetically modified organism (GMO) in some countries, such as the US, where the demand for natural food colorants such as anthocyanins is high.Indeed, the use of GMO crops as a source of natural pigments may be inconsistent with consumer interests.However, carrot cultivars engineered with either the transgenic or gene editing approach have not been reported so far, but their development is possible."
                }
            ],
            "4f709611-ea0b-4bcc-a634-df5d518ccb54": [
                {
                    "document_id": "4f709611-ea0b-4bcc-a634-df5d518ccb54",
                    "text": "\n\nThe notable accuracy and versatility of CRISPR-Cas for genome editing also opened the door to its use in preclinical and translational settings.In the latter case, CRISPR in vivo gene editing has led to several proof-of-concept studies that would have been unachievable without it, as in the first ever correction of inherited pathogenic mutations linked to degenerative disease in a living organism [22] and even shown to be possible in human embryos [23,24].It also has great potential in the field of precision medicine as large-scale population DNA sequencing studies have provided vast amounts of information linking particular diseases with specific genetic mutations which could, in theory, be targeted through CRISPR [25,26].This could be used during the identification and validation of potential DNA targets during the development of personalised drug or cell therapies, which will require the generation of engineered cell lines and/or animal models.Techniques such as HDR-mediated gene targeting are too labour intensive, with low targeting efficiencies and long times necessary for their establishment, and consequently are not ideally suited for drug discovery purposes.Conversely, CRISPR-Cas has been proven to be efficient for editing virtually any kind of cell line, from primary immune cells to induced pluripotent stem cells (iPSCs) [27,28].Additionally, CRISPR can also be used for functional screening in the development of combined inhibitory therapy aimed at strengthening the efficiency of targeted therapeutics.An example of the latter is shown in a study where a variation of the technology known as CRISPR interference (CRISPRi) was used in genome-wide scale to identify different survival pathways used by cancer cells after oncogene inactivation and allowing the identification of successful combination therapies [29].In terms of translational applications, the overall safety of CRISPR genome editing in humans will require long-term scrutiny before its adoption in the clinic.Nonetheless, a number of CRISPR-based clinical trials are currently in progress, including studies focused on targeting patients' own T cells in order to improve the immune response towards some forms of malignant cancer [30,31], and others aimed at correcting pathogenic mutations in the hematopoietic cells of patients with beta-thalassemia and sickle cell disease [32]."
                },
                {
                    "document_id": "4f709611-ea0b-4bcc-a634-df5d518ccb54",
                    "text": "Caveats and Ethical Concerns of CRISPR-Cas Applications\n\nDespite the presence of both a PAM sequence and a specific gRNA, the CRISPR-Cas9 system is not infallible.In fact, DSBs can occur at different sites in the genome, potentially causing so-called \"off-target\" effects.This eventuality remains to date the biggest concern in the field, as possible undesirable modifications must be properly identified and followed in order to guarantee safety for medical purposes.Nevertheless, there is still little evidence of the biological consequence of Cas9 off-target effects.Two recent studies describe new methods to investigate potential off-target effects in both mammals and plants [33,34].In both cases, whole-genome sequencing revealed that selective nucleotide changes, such as conversion of an adenine to a guanine, caused off-target occurrence very rarely, with a frequency comparable to the one of spontaneous mutations.However, substitution of a cytosine with a thymidine was linked to a sizable number of off-target mutations.This newly acquired information adds to the plethora of studies conducted on the safety of CRISPR, which altogether highlight the need for the establishment of clinical standards for the future use of genome-editing techniques in the clinic.Despite this and other technical challenges still ahead for CRISPR genome editing, the pace at which this technology has developed in recent years suggests many of these concerns could be addressed soon, as long as proper ethical guidelines and regulatory mechanisms are established."
                },
                {
                    "document_id": "4f709611-ea0b-4bcc-a634-df5d518ccb54",
                    "text": "Conclusions\n\nThere is no reason to doubt that the development of CRISPR-Cas genome editing represents an unprecedented breakthrough in modern science, as it has potential applications in a wide array of disciplines ranging from agriculture, zoology and renewable energy to biomedicine and synthetic biology.This powerful tool holds promise for further elucidating the molecular causes of ageing by allowing scientists to probe genetic and epigenetic pathways with a level of sophistication that was unattainable just a few years ago.It will allow so in traditional animal and cell models of ageing, but it will also drastically accelerate the generation of refined versions of those models or even allow the development of new research approaches in non-model organisms.Moreover, CRISPR-based genome editing is already having a significant impact in research aiming to understand the cellular and molecular origins of age-related diseases, as well as developing potential treatments against them.The application of CRISPR-Cas gene editing for the treatment of age-related diseases is not over the horizon yet, as it will require the identification of causative genes and their role under a variety of contexts that could be as diverse as the ageing process is across individuals.However, CRISPR-Cas might also hold the key for solving such conundrum, as it has opened the way for achieving true personalised medicine by providing both the precision and scalability required for conducting genome-wide functional screens during the refinement of drug-and cell-based therapies for age-related diseases."
                },
                {
                    "document_id": "4f709611-ea0b-4bcc-a634-df5d518ccb54",
                    "text": "\n\nSince its discovery, CRISPR-Cas technology has ignited a biological revolution by providing a highly versatile platform that allows fast and efficient genome editing in an ever-growing list of organisms.In this chapter we will first describe the most recent advances in the development and application of the CRISPR-Cas platform in biomedical research.Then we will discuss the most recent and notable basic research applications of this technology in the study of the molecular causes of ageing.Finally, we will review how CRISPR-Cas has been used for creating new models for the study of age-related diseases, as well as for manipulating diseaseassociated gene pathways."
                }
            ],
            "50c72e55-b5fe-42a6-b837-64c28620a4c0": [
                {
                    "document_id": "50c72e55-b5fe-42a6-b837-64c28620a4c0",
                    "text": "Caveats of advanced genome editing tools\n\nOff-target effects.The DNA-binding domains of ZFNs and TALENs need to be very specific for the target site to avoid off-target cleavage, which results in unwanted mutations and potentially cytotoxic effects [27].CRISPR/Cas9 is also known to generate off-target alterations, albeit apparently at low incidence [28,29], since mispairing is allowed between the guide RNA and the genomic DNA.Nonetheless, caution is required in their design and use.Some strategies involving the optimization of the guide RNA/Cas9 include using of software tools to predict potential off-target sites (http://omictools.com/crispr-cas9-Figure1: Genome editing methodologies which can be applied to human pluripotent stem cells.Homologous recombination (HR), or the more advanced tools such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) or clustered regularly interspaced short palindromic repeat (CRISPR)/Cas system can be applied to human pluripotent stem cells (hPSCs) either to 1) create naturally occurring mutations or 2) repair a mutation to generate isogenic controls in hPSCs, to understand the function of a gene of interest.c1268-p1.html),truncating the guide RNA (<20 nucleotides) to decrease off-target mutagenesis [30], lowering the dosage of guide RNA and Cas9 plasmids, and decreasing the number of mismatches between the guide RNA and the genomic DNA.A \"double nick\" system with Cas9 nickase, which contains a single inactive catalytic domain, may also be used [31e33]."
                }
            ],
            "52480703-5353-4e55-a06b-110fd59db3a6": [
                {
                    "document_id": "52480703-5353-4e55-a06b-110fd59db3a6",
                    "text": "CRISPR screening technologies\n\nThe discovery of CRISPR-Cas9 as a sequence-specific programmable nuclease democratized gene editing and fueled progress in forward genetic screening [20 , 66] .Genetic screens using Cas9 with a pooled singleguide RNA (sgRNA) library allow the interrogation of seemingly all genes in a genome in a single experiment [96 , 97] [null] .Engineered Cas9 variants further extend the versatility of forward genetic screening.Catalytically inactive Cas9 (dCas9) fused with chromatin effector domains permit specific activation (CRISPRa) or inhibition (CRISPRi) of gene expression [37 , 54] .Recently developed and emerging technologies -base editors, prime editors, and Cas transposases -are beginning to enable new types of genetic screens with directed, controlled, and on demand mutations by allowing the creation of user specified modifications, such as single base conversion, deletions, and insertions [4 , 42 , 58] ."
                }
            ],
            "801c9288-70c9-4d14-b8bc-13ee6708803a": [
                {
                    "document_id": "801c9288-70c9-4d14-b8bc-13ee6708803a",
                    "text": "\n\nComing on the heels of engineered nucleases, CRISPR-Cas9 tools have accelerated the pace of genomic research by permitting highly efficient knockouts or edits of virtually any gene in cells or model organisms.Multiple CRISPR-Cas9-based clinical trials are in progress or are expected to begin soon.Although Cas9engineered cells haven't yet demonstrated efficacy at scale, early trial results suggest that such cells are stable and don't cause acute adverse reactions in humans.Long-term safety is yet to be determined.Current applications largely focus on single-gene disorders for which gene editing can be carried out ex vivo on appropriate cells, such as bone marrow hematopoietic stem cells in the case of sickle cell anemia.Exploration is under way to develop delivery systems that can target the gene-editing apparatus to the appropriate tissue in vivo."
                },
                {
                    "document_id": "801c9288-70c9-4d14-b8bc-13ee6708803a",
                    "text": "\n\nOver the past 8 years, CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated protein 9) technologies have emerged as accessible and adaptable tools for studying and altering genomes. 5RISPR-Cas9 can be used to induce genome edits by creating targeted DNA breaks that trigger site-specific DNA repair.In nextgeneration formats, it can also control the transcriptional output of genes or alter genome sequences using a process of nucleotide base editing that does not require repair of DNA breaks.As these technologies continue to mature, it will become increasingly possible to alter cellular genomes efficiently and accurately."
                }
            ],
            "a7f21808-dce3-4110-8e7c-ceb2437e72ff": [
                {
                    "document_id": "a7f21808-dce3-4110-8e7c-ceb2437e72ff",
                    "text": "\n\nThe type II CRISPR-Cas9 systems, repurposed from prokaryotic adaptive immune responses, are now widely used for targeted genome modifications in plants, animals, and human cells (Kim et al. 2014;Woo et al. 2015;Zuris et al. 2015).In particular, Cas9 nucleases have shown promise for gene and cell therapy (Maeder and Gersbach 2016).Typically, these nucleases are expressed or delivered in vivo using plasmid DNA or viruses (Yin et al. 2014;Ran et al. 2015).However, plasmid DNA delivery is often inefficient, especially in vivo, and can cause integration of small plasmid fragments degraded by endogenous nucleases at on-target and offtarget sites in the genome (Kim et al. 2014).Viral delivery of Cas9 can be highly efficient in vivo (Ran et al. 2015;Long et al. 2016;Nelson et al. 2016;Tabebordbar et al. 2016), but may be hampered by antibodies or T cells induced against the protein (Shankar et al. 2007;Calcedo et al. 2015;Chew et al. 2016).We and others have shown that preassembled Cas9 ribonucleoproteins (RNPs) can be delivered to human primary and stem cells and mice to modify target genes (Kim et al. 2014;Schumann et al. 2015;Zuris et al. 2015).Cas9 RNPs are rapidly turned over in cells, reducing off-target effects.Furthermore, Cas9 RNPs are unlikely to be limited by host immune systems because they function and disappear before the generation of antibodies and T cells directed against them.Currently, despite these advantages of RNPs, the difficult delivery of Cas9 RNPs in vivo limits its utility for therapeutic applications (Zuris et al. 2015).Here, we show that in vivo genome editing of an wild-type gene, whose up-regulation is responsible for pathogenesis, could be a new therapeutic modality for the treatment of nongenetic degenerative diseases.Our ultimate goal is to harness Cas9 RNPs for a clinical application of therapeutic genome surgery in patients with AMD."
                }
            ],
            "ac00c552-7514-49d4-9e90-ab01c22472ae": [
                {
                    "document_id": "ac00c552-7514-49d4-9e90-ab01c22472ae",
                    "text": "\n\nClustered regularly interspaced short palindromic repeat (CRISPR)-Cas nucleases have revolutionized the field of gene editing and have tremendous application in the field of molecular medicine [98][99][100][101][102].Despite a significant surge in CRISPR/Cas9mediated genome editing in various disease models, the progress in the field of AD has lagged behind substantially.We believe that genome editing can significantly improve the development of AD models and also create novel opportunities for the development of the next generation precision targeted AD gene and stem cell therapies.Since there are several excellent review articles on CRISPR/Cas9-mediated genome editing, here we will limit our focus on select recent articles that are noteworthy.CRISPR/Cas9 system can be engineered to either activate transcription (gain-of-function) or achieve gene silencing (Loss-of-function).Dahlman et al. have developed a CRISPR-based system that uses catalytically active Cas9 and distinct single guide (sgRNA) constructs to activate and knockout different genes in the same cell [103].Konermann et al. have used structure-guided engineering of a CRISPR-Cas9 complex to mediate efficient transcriptional activation at endogenous genomic loci [104].Using crystallographic studies, they have engineered a combination of sgRNA2.0,NLS-dCas9-VP64 and MS2-p65-HSF1 to develop one of the most effective transcription activation system."
                }
            ],
            "b72eb0d1-50e3-4def-94bc-abf77891f519": [
                {
                    "document_id": "b72eb0d1-50e3-4def-94bc-abf77891f519",
                    "text": "Limitations of CRISPR-Cas9\n\nCRISPR provides a simple and easy tool not only for in vitro use but potentially also for in vivo genome editing.However, there are limitations and downsides to this approach.First, and despite considerable improvements in the technology, the risk of the offtarget effect remains and must be considered carefully.Second, DSB may lead to wide-ranging deletions or recombination events involving the on-target site (204).Third, in cycling cells, DNA double strand breaks caused by Cas9 cleavage may trigger a P53 response leading to apoptosis and enrichment for potentially oncogenic P53-deficient cells (205,206).Fourth, subjects may generate antibodies to Cas9, potentially limiting gene therapies (207,208)."
                },
                {
                    "document_id": "b72eb0d1-50e3-4def-94bc-abf77891f519",
                    "text": "\n\nGenome editing tools that target the desired genomic region and allow for variants to be altered (e.g. from risk to protective), or for more substantial changes to be made (e.g. the deletion of a longer stretch of DNA harbouring a number of variants) and can help to answer each of these questions.These technologies are evolving rapidly (Figure 1 and Table 2).The most recently developed of these, Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) technology, originally developed by Doudna, Charpentier and their colleagues (72,73) and Zhang and his colleagues (50) has become a widely used tool for this purpose.Engineered CRISPR/Cas9 technology uses a guide RNA (gRNA) to direct CRISPR-associated endonuclease (Cas) to the target DNA and generate a double strand DNA break.Correction of a mutation or variant in the target DNA sequence can then be carried out by homology-directed DNA repair (HDR) with a donor template.Since its discovery eight years ago, CRISPR technology has evolved quickly to be a critical part of the molecular biologist's toolbox."
                }
            ],
            "c3ae2186-ef48-46a5-b214-dc944366df8f": [
                {
                    "document_id": "c3ae2186-ef48-46a5-b214-dc944366df8f",
                    "text": "INTRODUCTION\n\nGenome editing technologies based on the clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease Cas9 enable rapid and efficient modification of endogenous genes in a variety of cell types, allowing for analysis of gene function in many organs in vivo.CRISPR-Cas9 induces DNA double strand breaks (DSBs) at single-guide RNA (sgRNA)-specific loci in the genome, which are repaired through either non-homologous end-joining (NHEJ) or homology-directed repair (HDR) pathways.While NHEJ introduces unpredictable pattern of insertion or deletion (indel) mutations, HDR directs a precise recombination event between a homologous DNA donor template and the damaged DNA site (Cong et al., 2013;Cox et al., 2015;Doudna and Charpentier, 2014;Heidenreich and Zhang, 2016;Jinek et al., 2012;Mali et al., 2013;Sander and Joung, 2014;Wang et al., 2013;Yang et al., 2013).Thus, HDR can be used to precisely introduce sequence insertions, deletions or mutations by encoding the desired changes in the donor template DNA."
                }
            ],
            "d14e93b5-01de-4208-8255-baae7898a7bb": [
                {
                    "document_id": "d14e93b5-01de-4208-8255-baae7898a7bb",
                    "text": "\nCRISPR technology has rapidly changed the face of biological research, such that precise genome editing has now become routine for many labs within several years of its initial development.What makes CRISPR/Cas9 so revolutionary is the ability to target a protein (Cas9) to an exact genomic locus, through designing a specific short complementary nucleotide sequence, that together with a common scaffold sequence, constitute the guide RNA bridging the protein and the DNA.Wild-type Cas9 cleaves both DNA strands at its target sequence, but this protein can also be modified to exert many other functions.For instance, by attaching an activation domain to catalytically inactive Cas9 and targeting a promoter region, it is possible to stimulate the expression of a specific endogenous gene.In principle, any genomic region can be targeted, and recent efforts have successfully generated pooled guide RNA libraries for coding and regulatory regions of human, mouse and Drosophila genomes with high coverage, thus facilitating functional phenotypic screening.In this review, we will highlight recent developments in the area of CRISPR-based functional genomics and discuss potential future directions, with a special focus on mammalian cell systems and arrayed library screening."
                },
                {
                    "document_id": "d14e93b5-01de-4208-8255-baae7898a7bb",
                    "text": "\n\nCRISPR technology has rapidly changed the face of biological research, such that precise genome editing has now become routine for many labs within several years of its initial development.What makes CRISPR/Cas9 so revolutionary is the ability to target a protein (Cas9) to an exact genomic locus, through designing a specific short complementary nucleotide sequence, that together with a common scaffold sequence, constitute the guide RNA bridging the protein and the DNA.Wild-type Cas9 cleaves both DNA strands at its target sequence, but this protein can also be modified to exert many other functions.For instance, by attaching an activation domain to catalytically inactive Cas9 and targeting a promoter region, it is possible to stimulate the expression of a specific endogenous gene.In principle, any genomic region can be targeted, and recent efforts have successfully generated pooled guide RNA libraries for coding and regulatory regions of human, mouse and Drosophila genomes with high coverage, thus facilitating functional phenotypic screening.In this review, we will highlight recent developments in the area of CRISPR-based functional genomics and discuss potential future directions, with a special focus on mammalian cell systems and arrayed library screening."
                },
                {
                    "document_id": "d14e93b5-01de-4208-8255-baae7898a7bb",
                    "text": "\n\nThe recent development of clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 for experimental purposes has dismantled the perception that genome editing technology is off-limits for screening in mammalian systems (Heintze et al., 2013).Since this system employs the basic principle of Watson-Crick base pairing for gene targeting, generation of libraries with whole-genome target coverage is relatively easy and cost-effective.For instance, simple protocols are available to synthesize pooled lentiviral libraries by in silico design of oligonucleotides, which can then be cloned, packaged and delivered to cells by viral transduction (Paddison et al., 2004;LeProust et al., 2010).Similarly, the generation of arrayed libraries can be achieved by following protocols originally developed for arrayed shRNA library production that have been in use for a number of years (Moffat et al., 2006).All in all, the stage is set for CRISPR to make an enormous impact on genomic screening and thus scientific discovery in the coming years, and recent demonstrations of this system have shown great promise (Shalem et al., 2015).However, a number of technical challenges must be addressed in order to maximize the benefit of this technology.In this review, we will discuss current applications of CRISPR in functional genomics and provide a perspective on future developments in this area."
                }
            ],
            "e5cf067c-8be0-4b0a-b376-7882cdc9d96c": [
                {
                    "document_id": "e5cf067c-8be0-4b0a-b376-7882cdc9d96c",
                    "text": "Genome editing for crop improvement\n\nReports of CRISPR-Cas9-based genome editing first appeared in 2013 (Cong et al., 2013;Feng et al., 2013;Mao et al., 2013).Since then, genome editing technologies have proven to be powerful and efficient tools for the improvement of many crop species.At present, genome editing has been widely used to introduce/modify agronomically important traits, such as increased yield, improved nutritional quality, and resistance to biotic and abiotic stresses, in multiple crops, including rice, wheat, maize, tomato, and potato (Lu et al., 2017;Soyk et al., 2017;Tang et al., 2017;D'Ambrosio et al., 2018;Ye et al., 2018;Miao et al., 2019;Zhang et al., 2019;Zhong et al., 2019;Butt et al., 2020;Zhang et al., 2020c;Li et al., 2021b;Zhan et al., 2021).CRISPR-Cas-based genome editing has been extended to targeted mutagenesis, base editing, and precisely targeted gene/allele replacement or tagging in plants.mportantly, using CRISPR-Cas9 technology, transgenes present in the genomes of genome-edited plants can be removed by chromosomal segregation via a simple self-pollination or hybridization step.Gene editing technologies continue to be developed and utilized (Mao et al., 2013;Lu and Zhu, 2017;Lu et al., 2020)."
                }
            ]
        },
        "data_source": [],
        "document_id": "38E097866214E3EEFE346FB836ABF345",
        "engine": "gpt-4",
        "first_load": false,
        "focus": "api",
        "keywords": [
            "CRISPR-Cas9",
            "gene&editing",
            "off-target&effects",
            "genome",
            "clinical&trials",
            "agriculture",
            "biomedicine",
            "precision&medicine",
            "transgenic",
            "ethical&concerns"
        ],
        "metadata": [],
        "question": "What are the potential benefits and risks associated with gene editing technologies like CRISPR-Cas9?",
        "subquestions": null,
        "task_id": "38E097866214E3EEFE346FB836ABF345",
        "usage": {
            "chatgpt": 9104,
            "gpt-4": 6248,
            "gpt-4-turbo-preview": 5340
        },
        "user_id": 2
    },
    "document_id": "38E097866214E3EEFE346FB836ABF345",
    "task_id": "38E097866214E3EEFE346FB836ABF345"
}