1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
|
import logging
import os
from openai import AsyncOpenAI, AuthenticationError, OpenAI
from r2r.base import EmbeddingConfig, EmbeddingProvider, VectorSearchResult
logger = logging.getLogger(__name__)
class OpenAIEmbeddingProvider(EmbeddingProvider):
MODEL_TO_TOKENIZER = {
"text-embedding-ada-002": "cl100k_base",
"text-embedding-3-small": "cl100k_base",
"text-embedding-3-large": "cl100k_base",
}
MODEL_TO_DIMENSIONS = {
"text-embedding-ada-002": [1536],
"text-embedding-3-small": [512, 1536],
"text-embedding-3-large": [256, 1024, 3072],
}
def __init__(self, config: EmbeddingConfig):
super().__init__(config)
provider = config.provider
if not provider:
raise ValueError(
"Must set provider in order to initialize OpenAIEmbeddingProvider."
)
if provider != "openai":
raise ValueError(
"OpenAIEmbeddingProvider must be initialized with provider `openai`."
)
if not os.getenv("OPENAI_API_KEY"):
raise ValueError(
"Must set OPENAI_API_KEY in order to initialize OpenAIEmbeddingProvider."
)
self.client = OpenAI()
self.async_client = AsyncOpenAI()
if config.rerank_model:
raise ValueError(
"OpenAIEmbeddingProvider does not support separate reranking."
)
self.base_model = config.base_model
self.base_dimension = config.base_dimension
if self.base_model not in OpenAIEmbeddingProvider.MODEL_TO_TOKENIZER:
raise ValueError(
f"OpenAI embedding model {self.base_model} not supported."
)
if (
self.base_dimension
and self.base_dimension
not in OpenAIEmbeddingProvider.MODEL_TO_DIMENSIONS[self.base_model]
):
raise ValueError(
f"Dimensions {self.dimension} for {self.base_model} are not supported"
)
if not self.base_model or not self.base_dimension:
raise ValueError(
"Must set base_model and base_dimension in order to initialize OpenAIEmbeddingProvider."
)
if config.rerank_model:
raise ValueError(
"OpenAIEmbeddingProvider does not support separate reranking."
)
def get_embedding(
self,
text: str,
stage: EmbeddingProvider.PipeStage = EmbeddingProvider.PipeStage.BASE,
) -> list[float]:
if stage != EmbeddingProvider.PipeStage.BASE:
raise ValueError(
"OpenAIEmbeddingProvider only supports search stage."
)
try:
return (
self.client.embeddings.create(
input=[text],
model=self.base_model,
dimensions=self.base_dimension
or OpenAIEmbeddingProvider.MODEL_TO_DIMENSIONS[
self.base_model
][-1],
)
.data[0]
.embedding
)
except AuthenticationError as e:
raise ValueError(
"Invalid OpenAI API key provided. Please check your OPENAI_API_KEY environment variable."
) from e
async def async_get_embedding(
self,
text: str,
stage: EmbeddingProvider.PipeStage = EmbeddingProvider.PipeStage.BASE,
) -> list[float]:
if stage != EmbeddingProvider.PipeStage.BASE:
raise ValueError(
"OpenAIEmbeddingProvider only supports search stage."
)
try:
response = await self.async_client.embeddings.create(
input=[text],
model=self.base_model,
dimensions=self.base_dimension
or OpenAIEmbeddingProvider.MODEL_TO_DIMENSIONS[
self.base_model
][-1],
)
return response.data[0].embedding
except AuthenticationError as e:
raise ValueError(
"Invalid OpenAI API key provided. Please check your OPENAI_API_KEY environment variable."
) from e
def get_embeddings(
self,
texts: list[str],
stage: EmbeddingProvider.PipeStage = EmbeddingProvider.PipeStage.BASE,
) -> list[list[float]]:
if stage != EmbeddingProvider.PipeStage.BASE:
raise ValueError(
"OpenAIEmbeddingProvider only supports search stage."
)
try:
return [
ele.embedding
for ele in self.client.embeddings.create(
input=texts,
model=self.base_model,
dimensions=self.base_dimension
or OpenAIEmbeddingProvider.MODEL_TO_DIMENSIONS[
self.base_model
][-1],
).data
]
except AuthenticationError as e:
raise ValueError(
"Invalid OpenAI API key provided. Please check your OPENAI_API_KEY environment variable."
) from e
async def async_get_embeddings(
self,
texts: list[str],
stage: EmbeddingProvider.PipeStage = EmbeddingProvider.PipeStage.BASE,
) -> list[list[float]]:
if stage != EmbeddingProvider.PipeStage.BASE:
raise ValueError(
"OpenAIEmbeddingProvider only supports search stage."
)
try:
response = await self.async_client.embeddings.create(
input=texts,
model=self.base_model,
dimensions=self.base_dimension
or OpenAIEmbeddingProvider.MODEL_TO_DIMENSIONS[
self.base_model
][-1],
)
return [ele.embedding for ele in response.data]
except AuthenticationError as e:
raise ValueError(
"Invalid OpenAI API key provided. Please check your OPENAI_API_KEY environment variable."
) from e
def rerank(
self,
query: str,
results: list[VectorSearchResult],
stage: EmbeddingProvider.PipeStage = EmbeddingProvider.PipeStage.RERANK,
limit: int = 10,
):
return results[:limit]
def tokenize_string(self, text: str, model: str) -> list[int]:
try:
import tiktoken
except ImportError:
raise ValueError(
"Must download tiktoken library to run `tokenize_string`."
)
# tiktoken encoding -
# cl100k_base - gpt-4, gpt-3.5-turbo, text-embedding-ada-002, text-embedding-3-small, text-embedding-3-large
if model not in OpenAIEmbeddingProvider.MODEL_TO_TOKENIZER:
raise ValueError(f"OpenAI embedding model {model} not supported.")
encoding = tiktoken.get_encoding(
OpenAIEmbeddingProvider.MODEL_TO_TOKENIZER[model]
)
return encoding.encode(text)
|