aboutsummaryrefslogtreecommitdiff
path: root/R2R/r2r/pipes/retrieval/vector_search_pipe.py
blob: 742de16b0222256e7d544551453fc792d747dfe9 (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import json
import logging
import uuid
from typing import Any, AsyncGenerator, Optional

from r2r.base import (
    AsyncPipe,
    AsyncState,
    EmbeddingProvider,
    PipeType,
    VectorDBProvider,
    VectorSearchResult,
    VectorSearchSettings,
)

from ..abstractions.search_pipe import SearchPipe

logger = logging.getLogger(__name__)


class VectorSearchPipe(SearchPipe):
    def __init__(
        self,
        vector_db_provider: VectorDBProvider,
        embedding_provider: EmbeddingProvider,
        type: PipeType = PipeType.SEARCH,
        config: Optional[SearchPipe.SearchConfig] = None,
        *args,
        **kwargs,
    ):
        super().__init__(
            type=type,
            config=config or SearchPipe.SearchConfig(),
            *args,
            **kwargs,
        )
        self.embedding_provider = embedding_provider
        self.vector_db_provider = vector_db_provider

    async def search(
        self,
        message: str,
        run_id: uuid.UUID,
        vector_search_settings: VectorSearchSettings,
        *args: Any,
        **kwargs: Any,
    ) -> AsyncGenerator[VectorSearchResult, None]:
        await self.enqueue_log(
            run_id=run_id, key="search_query", value=message
        )
        search_filters = (
            vector_search_settings.search_filters or self.config.search_filters
        )
        search_limit = (
            vector_search_settings.search_limit or self.config.search_limit
        )
        results = []
        query_vector = self.embedding_provider.get_embedding(
            message,
        )
        search_results = (
            self.vector_db_provider.hybrid_search(
                query_vector=query_vector,
                query_text=message,
                filters=search_filters,
                limit=search_limit,
            )
            if vector_search_settings.do_hybrid_search
            else self.vector_db_provider.search(
                query_vector=query_vector,
                filters=search_filters,
                limit=search_limit,
            )
        )
        reranked_results = self.embedding_provider.rerank(
            query=message, results=search_results, limit=search_limit
        )
        for result in reranked_results:
            result.metadata["associatedQuery"] = message
            results.append(result)
            yield result
        await self.enqueue_log(
            run_id=run_id,
            key="search_results",
            value=json.dumps([ele.json() for ele in results]),
        )

    async def _run_logic(
        self,
        input: AsyncPipe.Input,
        state: AsyncState,
        run_id: uuid.UUID,
        vector_search_settings: VectorSearchSettings = VectorSearchSettings(),
        *args: Any,
        **kwargs: Any,
    ) -> AsyncGenerator[VectorSearchResult, None]:
        search_queries = []
        search_results = []
        async for search_request in input.message:
            search_queries.append(search_request)
            async for result in self.search(
                message=search_request,
                run_id=run_id,
                vector_search_settings=vector_search_settings,
                *args,
                **kwargs,
            ):
                search_results.append(result)
                yield result

        await state.update(
            self.config.name, {"output": {"search_results": search_results}}
        )

        await state.update(
            self.config.name,
            {
                "output": {
                    "search_queries": search_queries,
                    "search_results": search_results,
                }
            },
        )