1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
|
import logging
import uuid
from typing import Any, AsyncGenerator, Optional, Tuple
from r2r.base import (
AggregateSearchResult,
AsyncPipe,
AsyncState,
LLMProvider,
PipeType,
PromptProvider,
)
from r2r.base.abstractions.llm import GenerationConfig, RAGCompletion
from ..abstractions.generator_pipe import GeneratorPipe
logger = logging.getLogger(__name__)
class SearchRAGPipe(GeneratorPipe):
class Input(AsyncPipe.Input):
message: AsyncGenerator[Tuple[str, AggregateSearchResult], None]
def __init__(
self,
llm_provider: LLMProvider,
prompt_provider: PromptProvider,
type: PipeType = PipeType.GENERATOR,
config: Optional[GeneratorPipe] = None,
*args,
**kwargs,
):
super().__init__(
llm_provider=llm_provider,
prompt_provider=prompt_provider,
type=type,
config=config
or GeneratorPipe.Config(
name="default_rag_pipe", task_prompt="default_rag"
),
*args,
**kwargs,
)
async def _run_logic(
self,
input: Input,
state: AsyncState,
run_id: uuid.UUID,
rag_generation_config: GenerationConfig,
*args: Any,
**kwargs: Any,
) -> AsyncGenerator[RAGCompletion, None]:
context = ""
search_iteration = 1
total_results = 0
# must select a query if there are multiple
sel_query = None
async for query, search_results in input.message:
if search_iteration == 1:
sel_query = query
context_piece, total_results = await self._collect_context(
query, search_results, search_iteration, total_results
)
context += context_piece
search_iteration += 1
messages = self._get_message_payload(sel_query, context)
response = await self.llm_provider.aget_completion(
messages=messages, generation_config=rag_generation_config
)
yield RAGCompletion(completion=response, search_results=search_results)
await self.enqueue_log(
run_id=run_id,
key="llm_response",
value=response.choices[0].message.content,
)
def _get_message_payload(self, query: str, context: str) -> dict:
return [
{
"role": "system",
"content": self.prompt_provider.get_prompt(
self.config.system_prompt,
),
},
{
"role": "user",
"content": self.prompt_provider.get_prompt(
self.config.task_prompt,
inputs={
"query": query,
"context": context,
},
),
},
]
async def _collect_context(
self,
query: str,
results: AggregateSearchResult,
iteration: int,
total_results: int,
) -> Tuple[str, int]:
context = f"Query:\n{query}\n\n"
if results.vector_search_results:
context += f"Vector Search Results({iteration}):\n"
it = total_results + 1
for result in results.vector_search_results:
context += f"[{it}]: {result.metadata['text']}\n\n"
it += 1
total_results = (
it - 1
) # Update total_results based on the last index used
if results.kg_search_results:
context += f"Knowledge Graph ({iteration}):\n"
it = total_results + 1
for query, search_results in results.kg_search_results: # [1]:
context += f"Query: {query}\n\n"
context += f"Results:\n"
for search_result in search_results:
context += f"[{it}]: {search_result}\n\n"
it += 1
total_results = (
it - 1
) # Update total_results based on the last index used
return context, total_results
|