1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
|
import logging
import uuid
from typing import Any, Optional
from r2r.base import (
AsyncState,
KGProvider,
KGSearchSettings,
KVLoggingSingleton,
LLMProvider,
PipeType,
PromptProvider,
)
from ..abstractions.generator_pipe import GeneratorPipe
logger = logging.getLogger(__name__)
class KGAgentSearchPipe(GeneratorPipe):
"""
Embeds and stores documents using a specified embedding model and database.
"""
def __init__(
self,
kg_provider: KGProvider,
llm_provider: LLMProvider,
prompt_provider: PromptProvider,
pipe_logger: Optional[KVLoggingSingleton] = None,
type: PipeType = PipeType.INGESTOR,
config: Optional[GeneratorPipe.PipeConfig] = None,
*args,
**kwargs,
):
"""
Initializes the embedding pipe with necessary components and configurations.
"""
super().__init__(
llm_provider=llm_provider,
prompt_provider=prompt_provider,
type=type,
config=config
or GeneratorPipe.Config(
name="kg_rag_pipe", task_prompt="kg_agent"
),
pipe_logger=pipe_logger,
*args,
**kwargs,
)
self.kg_provider = kg_provider
self.llm_provider = llm_provider
self.prompt_provider = prompt_provider
self.pipe_run_info = None
async def _run_logic(
self,
input: GeneratorPipe.Input,
state: AsyncState,
run_id: uuid.UUID,
kg_search_settings: KGSearchSettings,
*args: Any,
**kwargs: Any,
):
async for message in input.message:
# TODO - Remove hard code
formatted_prompt = self.prompt_provider.get_prompt(
"kg_agent", {"input": message}
)
messages = self._get_message_payload(formatted_prompt)
result = await self.llm_provider.aget_completion(
messages=messages,
generation_config=kg_search_settings.agent_generation_config,
)
extraction = result.choices[0].message.content
query = extraction.split("```cypher")[1].split("```")[0]
result = self.kg_provider.structured_query(query)
yield (query, result)
await self.enqueue_log(
run_id=run_id,
key="kg_agent_response",
value=extraction,
)
await self.enqueue_log(
run_id=run_id,
key="kg_agent_execution_result",
value=result,
)
def _get_message_payload(self, message: str) -> dict:
return [
{
"role": "system",
"content": self.prompt_provider.get_prompt(
self.config.system_prompt,
),
},
{"role": "user", "content": message},
]
|