1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
|
import asyncio
import copy
import json
import logging
import uuid
from typing import Any, AsyncGenerator, Optional
from r2r.base import (
AsyncState,
Extraction,
Fragment,
FragmentType,
KGExtraction,
KGProvider,
KVLoggingSingleton,
LLMProvider,
PipeType,
PromptProvider,
TextSplitter,
extract_entities,
extract_triples,
generate_id_from_label,
)
from r2r.base.pipes.base_pipe import AsyncPipe
logger = logging.getLogger(__name__)
class ClientError(Exception):
"""Base class for client connection errors."""
pass
class KGExtractionPipe(AsyncPipe):
"""
Embeds and stores documents using a specified embedding model and database.
"""
def __init__(
self,
kg_provider: KGProvider,
llm_provider: LLMProvider,
prompt_provider: PromptProvider,
text_splitter: TextSplitter,
kg_batch_size: int = 1,
id_prefix: str = "demo",
pipe_logger: Optional[KVLoggingSingleton] = None,
type: PipeType = PipeType.INGESTOR,
config: Optional[AsyncPipe.PipeConfig] = None,
*args,
**kwargs,
):
"""
Initializes the embedding pipe with necessary components and configurations.
"""
super().__init__(
pipe_logger=pipe_logger,
type=type,
config=config
or AsyncPipe.PipeConfig(name="default_embedding_pipe"),
)
self.kg_provider = kg_provider
self.prompt_provider = prompt_provider
self.llm_provider = llm_provider
self.text_splitter = text_splitter
self.kg_batch_size = kg_batch_size
self.id_prefix = id_prefix
self.pipe_run_info = None
async def fragment(
self, extraction: Extraction, run_id: uuid.UUID
) -> AsyncGenerator[Fragment, None]:
"""
Splits text into manageable chunks for embedding.
"""
if not isinstance(extraction, Extraction):
raise ValueError(
f"Expected an Extraction, but received {type(extraction)}."
)
if not isinstance(extraction.data, str):
raise ValueError(
f"Expected a string, but received {type(extraction.data)}."
)
text_chunks = [
ele.page_content
for ele in self.text_splitter.create_documents([extraction.data])
]
for iteration, chunk in enumerate(text_chunks):
fragment = Fragment(
id=generate_id_from_label(f"{extraction.id}-{iteration}"),
type=FragmentType.TEXT,
data=chunk,
metadata=copy.deepcopy(extraction.metadata),
extraction_id=extraction.id,
document_id=extraction.document_id,
)
yield fragment
async def transform_fragments(
self, fragments: list[Fragment]
) -> AsyncGenerator[Fragment, None]:
"""
Transforms text chunks based on their metadata, e.g., adding prefixes.
"""
async for fragment in fragments:
if "chunk_prefix" in fragment.metadata:
prefix = fragment.metadata.pop("chunk_prefix")
fragment.data = f"{prefix}\n{fragment.data}"
yield fragment
async def extract_kg(
self,
fragment: Fragment,
retries: int = 3,
delay: int = 2,
) -> KGExtraction:
"""
Extracts NER triples from a list of fragments with retries.
"""
task_prompt = self.prompt_provider.get_prompt(
self.kg_provider.config.kg_extraction_prompt,
inputs={"input": fragment.data},
)
messages = self.prompt_provider._get_message_payload(
self.prompt_provider.get_prompt("default_system"), task_prompt
)
for attempt in range(retries):
try:
response = await self.llm_provider.aget_completion(
messages, self.kg_provider.config.kg_extraction_config
)
kg_extraction = response.choices[0].message.content
# Parsing JSON from the response
kg_json = (
json.loads(
kg_extraction.split("```json")[1].split("```")[0]
)
if """```json""" in kg_extraction
else json.loads(kg_extraction)
)
llm_payload = kg_json.get("entities_and_triples", {})
# Extract triples with detailed logging
entities = extract_entities(llm_payload)
triples = extract_triples(llm_payload, entities)
# Create KG extraction object
return KGExtraction(entities=entities, triples=triples)
except (
ClientError,
json.JSONDecodeError,
KeyError,
IndexError,
) as e:
logger.error(f"Error in extract_kg: {e}")
if attempt < retries - 1:
await asyncio.sleep(delay)
else:
logger.error(f"Failed after retries with {e}")
# raise e # Ensure the exception is raised after the final attempt
return KGExtraction(entities={}, triples=[])
async def _process_batch(
self,
fragment_batch: list[Fragment],
) -> list[KGExtraction]:
"""
Embeds a batch of fragments and yields vector entries.
"""
tasks = [
asyncio.create_task(self.extract_kg(fragment))
for fragment in fragment_batch
]
return await asyncio.gather(*tasks)
async def _run_logic(
self,
input: AsyncPipe.Input,
state: AsyncState,
run_id: uuid.UUID,
*args: Any,
**kwargs: Any,
) -> AsyncGenerator[KGExtraction, None]:
"""
Executes the embedding pipe: chunking, transforming, embedding, and storing documents.
"""
batch_tasks = []
fragment_batch = []
fragment_info = {}
async for extraction in input.message:
async for fragment in self.transform_fragments(
self.fragment(extraction, run_id)
):
if extraction.document_id in fragment_info:
fragment_info[extraction.document_id] += 1
else:
fragment_info[extraction.document_id] = 1
extraction.metadata["chunk_order"] = fragment_info[
extraction.document_id
]
fragment_batch.append(fragment)
if len(fragment_batch) >= self.kg_batch_size:
# Here, ensure `_process_batch` is scheduled as a coroutine, not called directly
batch_tasks.append(
self._process_batch(fragment_batch.copy())
) # pass a copy if necessary
fragment_batch.clear() # Clear the batch for new fragments
logger.debug(
f"Fragmented the input document ids into counts as shown: {fragment_info}"
)
if fragment_batch: # Process any remaining fragments
batch_tasks.append(self._process_batch(fragment_batch.copy()))
# Process tasks as they complete
for task in asyncio.as_completed(batch_tasks):
batch_result = await task # Wait for the next task to complete
for kg_extraction in batch_result:
yield kg_extraction
|