1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
|
import logging
import os
from typing import Any, Optional
from r2r.base import (
AsyncPipe,
EmbeddingConfig,
EmbeddingProvider,
EvalProvider,
KGProvider,
KVLoggingSingleton,
LLMConfig,
LLMProvider,
PromptProvider,
VectorDBConfig,
VectorDBProvider,
)
from r2r.pipelines import (
EvalPipeline,
IngestionPipeline,
RAGPipeline,
SearchPipeline,
)
from ..abstractions import R2RPipelines, R2RPipes, R2RProviders
from .config import R2RConfig
logger = logging.getLogger(__name__)
class R2RProviderFactory:
def __init__(self, config: R2RConfig):
self.config = config
def create_vector_db_provider(
self, vector_db_config: VectorDBConfig, *args, **kwargs
) -> VectorDBProvider:
vector_db_provider: Optional[VectorDBProvider] = None
if vector_db_config.provider == "pgvector":
from r2r.providers.vector_dbs import PGVectorDB
vector_db_provider = PGVectorDB(vector_db_config)
else:
raise ValueError(
f"Vector database provider {vector_db_config.provider} not supported"
)
if not vector_db_provider:
raise ValueError("Vector database provider not found")
if not self.config.embedding.base_dimension:
raise ValueError("Search dimension not found in embedding config")
vector_db_provider.initialize_collection(
self.config.embedding.base_dimension
)
return vector_db_provider
def create_embedding_provider(
self, embedding: EmbeddingConfig, *args, **kwargs
) -> EmbeddingProvider:
embedding_provider: Optional[EmbeddingProvider] = None
if embedding.provider == "openai":
if not os.getenv("OPENAI_API_KEY"):
raise ValueError(
"Must set OPENAI_API_KEY in order to initialize OpenAIEmbeddingProvider."
)
from r2r.providers.embeddings import OpenAIEmbeddingProvider
embedding_provider = OpenAIEmbeddingProvider(embedding)
elif embedding.provider == "ollama":
from r2r.providers.embeddings import OllamaEmbeddingProvider
embedding_provider = OllamaEmbeddingProvider(embedding)
elif embedding.provider == "sentence-transformers":
from r2r.providers.embeddings import (
SentenceTransformerEmbeddingProvider,
)
embedding_provider = SentenceTransformerEmbeddingProvider(
embedding
)
elif embedding is None:
embedding_provider = None
else:
raise ValueError(
f"Embedding provider {embedding.provider} not supported"
)
return embedding_provider
def create_eval_provider(
self, eval_config, prompt_provider, *args, **kwargs
) -> Optional[EvalProvider]:
if eval_config.provider == "local":
from r2r.providers.eval import LLMEvalProvider
llm_provider = self.create_llm_provider(eval_config.llm)
eval_provider = LLMEvalProvider(
eval_config,
llm_provider=llm_provider,
prompt_provider=prompt_provider,
)
elif eval_config.provider is None:
eval_provider = None
else:
raise ValueError(
f"Eval provider {eval_config.provider} not supported."
)
return eval_provider
def create_llm_provider(
self, llm_config: LLMConfig, *args, **kwargs
) -> LLMProvider:
llm_provider: Optional[LLMProvider] = None
if llm_config.provider == "openai":
from r2r.providers.llms import OpenAILLM
llm_provider = OpenAILLM(llm_config)
elif llm_config.provider == "litellm":
from r2r.providers.llms import LiteLLM
llm_provider = LiteLLM(llm_config)
else:
raise ValueError(
f"Language model provider {llm_config.provider} not supported"
)
if not llm_provider:
raise ValueError("Language model provider not found")
return llm_provider
def create_prompt_provider(
self, prompt_config, *args, **kwargs
) -> PromptProvider:
prompt_provider = None
if prompt_config.provider == "local":
from r2r.prompts import R2RPromptProvider
prompt_provider = R2RPromptProvider()
else:
raise ValueError(
f"Prompt provider {prompt_config.provider} not supported"
)
return prompt_provider
def create_kg_provider(self, kg_config, *args, **kwargs):
if kg_config.provider == "neo4j":
from r2r.providers.kg import Neo4jKGProvider
return Neo4jKGProvider(kg_config)
elif kg_config.provider is None:
return None
else:
raise ValueError(
f"KG provider {kg_config.provider} not supported."
)
def create_providers(
self,
vector_db_provider_override: Optional[VectorDBProvider] = None,
embedding_provider_override: Optional[EmbeddingProvider] = None,
eval_provider_override: Optional[EvalProvider] = None,
llm_provider_override: Optional[LLMProvider] = None,
prompt_provider_override: Optional[PromptProvider] = None,
kg_provider_override: Optional[KGProvider] = None,
*args,
**kwargs,
) -> R2RProviders:
prompt_provider = (
prompt_provider_override
or self.create_prompt_provider(self.config.prompt, *args, **kwargs)
)
return R2RProviders(
vector_db=vector_db_provider_override
or self.create_vector_db_provider(
self.config.vector_database, *args, **kwargs
),
embedding=embedding_provider_override
or self.create_embedding_provider(
self.config.embedding, *args, **kwargs
),
eval=eval_provider_override
or self.create_eval_provider(
self.config.eval,
prompt_provider=prompt_provider,
*args,
**kwargs,
),
llm=llm_provider_override
or self.create_llm_provider(
self.config.completions, *args, **kwargs
),
prompt=prompt_provider_override
or self.create_prompt_provider(
self.config.prompt, *args, **kwargs
),
kg=kg_provider_override
or self.create_kg_provider(self.config.kg, *args, **kwargs),
)
class R2RPipeFactory:
def __init__(self, config: R2RConfig, providers: R2RProviders):
self.config = config
self.providers = providers
def create_pipes(
self,
parsing_pipe_override: Optional[AsyncPipe] = None,
embedding_pipe_override: Optional[AsyncPipe] = None,
kg_pipe_override: Optional[AsyncPipe] = None,
kg_storage_pipe_override: Optional[AsyncPipe] = None,
kg_agent_pipe_override: Optional[AsyncPipe] = None,
vector_storage_pipe_override: Optional[AsyncPipe] = None,
vector_search_pipe_override: Optional[AsyncPipe] = None,
rag_pipe_override: Optional[AsyncPipe] = None,
streaming_rag_pipe_override: Optional[AsyncPipe] = None,
eval_pipe_override: Optional[AsyncPipe] = None,
*args,
**kwargs,
) -> R2RPipes:
return R2RPipes(
parsing_pipe=parsing_pipe_override
or self.create_parsing_pipe(
self.config.ingestion.get("excluded_parsers"), *args, **kwargs
),
embedding_pipe=embedding_pipe_override
or self.create_embedding_pipe(*args, **kwargs),
kg_pipe=kg_pipe_override or self.create_kg_pipe(*args, **kwargs),
kg_storage_pipe=kg_storage_pipe_override
or self.create_kg_storage_pipe(*args, **kwargs),
kg_agent_search_pipe=kg_agent_pipe_override
or self.create_kg_agent_pipe(*args, **kwargs),
vector_storage_pipe=vector_storage_pipe_override
or self.create_vector_storage_pipe(*args, **kwargs),
vector_search_pipe=vector_search_pipe_override
or self.create_vector_search_pipe(*args, **kwargs),
rag_pipe=rag_pipe_override
or self.create_rag_pipe(*args, **kwargs),
streaming_rag_pipe=streaming_rag_pipe_override
or self.create_rag_pipe(stream=True, *args, **kwargs),
eval_pipe=eval_pipe_override
or self.create_eval_pipe(*args, **kwargs),
)
def create_parsing_pipe(
self, excluded_parsers: Optional[list] = None, *args, **kwargs
) -> Any:
from r2r.pipes import ParsingPipe
return ParsingPipe(excluded_parsers=excluded_parsers or [])
def create_embedding_pipe(self, *args, **kwargs) -> Any:
if self.config.embedding.provider is None:
return None
from r2r.base import RecursiveCharacterTextSplitter
from r2r.pipes import EmbeddingPipe
text_splitter_config = self.config.embedding.extra_fields.get(
"text_splitter"
)
if not text_splitter_config:
raise ValueError(
"Text splitter config not found in embedding config"
)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=text_splitter_config["chunk_size"],
chunk_overlap=text_splitter_config["chunk_overlap"],
length_function=len,
is_separator_regex=False,
)
return EmbeddingPipe(
embedding_provider=self.providers.embedding,
vector_db_provider=self.providers.vector_db,
text_splitter=text_splitter,
embedding_batch_size=self.config.embedding.batch_size,
)
def create_vector_storage_pipe(self, *args, **kwargs) -> Any:
if self.config.embedding.provider is None:
return None
from r2r.pipes import VectorStoragePipe
return VectorStoragePipe(vector_db_provider=self.providers.vector_db)
def create_vector_search_pipe(self, *args, **kwargs) -> Any:
if self.config.embedding.provider is None:
return None
from r2r.pipes import VectorSearchPipe
return VectorSearchPipe(
vector_db_provider=self.providers.vector_db,
embedding_provider=self.providers.embedding,
)
def create_kg_pipe(self, *args, **kwargs) -> Any:
if self.config.kg.provider is None:
return None
from r2r.base import RecursiveCharacterTextSplitter
from r2r.pipes import KGExtractionPipe
text_splitter_config = self.config.kg.extra_fields.get("text_splitter")
if not text_splitter_config:
raise ValueError("Text splitter config not found in kg config.")
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=text_splitter_config["chunk_size"],
chunk_overlap=text_splitter_config["chunk_overlap"],
length_function=len,
is_separator_regex=False,
)
return KGExtractionPipe(
kg_provider=self.providers.kg,
llm_provider=self.providers.llm,
prompt_provider=self.providers.prompt,
vector_db_provider=self.providers.vector_db,
text_splitter=text_splitter,
kg_batch_size=self.config.kg.batch_size,
)
def create_kg_storage_pipe(self, *args, **kwargs) -> Any:
if self.config.kg.provider is None:
return None
from r2r.pipes import KGStoragePipe
return KGStoragePipe(
kg_provider=self.providers.kg,
embedding_provider=self.providers.embedding,
)
def create_kg_agent_pipe(self, *args, **kwargs) -> Any:
if self.config.kg.provider is None:
return None
from r2r.pipes import KGAgentSearchPipe
return KGAgentSearchPipe(
kg_provider=self.providers.kg,
llm_provider=self.providers.llm,
prompt_provider=self.providers.prompt,
)
def create_rag_pipe(self, stream: bool = False, *args, **kwargs) -> Any:
if stream:
from r2r.pipes import StreamingSearchRAGPipe
return StreamingSearchRAGPipe(
llm_provider=self.providers.llm,
prompt_provider=self.providers.prompt,
)
else:
from r2r.pipes import SearchRAGPipe
return SearchRAGPipe(
llm_provider=self.providers.llm,
prompt_provider=self.providers.prompt,
)
def create_eval_pipe(self, *args, **kwargs) -> Any:
from r2r.pipes import EvalPipe
return EvalPipe(eval_provider=self.providers.eval)
class R2RPipelineFactory:
def __init__(self, config: R2RConfig, pipes: R2RPipes):
self.config = config
self.pipes = pipes
def create_ingestion_pipeline(self, *args, **kwargs) -> IngestionPipeline:
"""factory method to create an ingestion pipeline."""
ingestion_pipeline = IngestionPipeline()
ingestion_pipeline.add_pipe(
pipe=self.pipes.parsing_pipe, parsing_pipe=True
)
# Add embedding pipes if provider is set
if self.config.embedding.provider is not None:
ingestion_pipeline.add_pipe(
self.pipes.embedding_pipe, embedding_pipe=True
)
ingestion_pipeline.add_pipe(
self.pipes.vector_storage_pipe, embedding_pipe=True
)
# Add KG pipes if provider is set
if self.config.kg.provider is not None:
ingestion_pipeline.add_pipe(self.pipes.kg_pipe, kg_pipe=True)
ingestion_pipeline.add_pipe(
self.pipes.kg_storage_pipe, kg_pipe=True
)
return ingestion_pipeline
def create_search_pipeline(self, *args, **kwargs) -> SearchPipeline:
"""factory method to create an ingestion pipeline."""
search_pipeline = SearchPipeline()
# Add vector search pipes if embedding provider and vector provider is set
if (
self.config.embedding.provider is not None
and self.config.vector_database.provider is not None
):
search_pipeline.add_pipe(
self.pipes.vector_search_pipe, vector_search_pipe=True
)
# Add KG pipes if provider is set
if self.config.kg.provider is not None:
search_pipeline.add_pipe(
self.pipes.kg_agent_search_pipe, kg_pipe=True
)
return search_pipeline
def create_rag_pipeline(
self,
search_pipeline: SearchPipeline,
stream: bool = False,
*args,
**kwargs,
) -> RAGPipeline:
rag_pipe = (
self.pipes.streaming_rag_pipe if stream else self.pipes.rag_pipe
)
rag_pipeline = RAGPipeline()
rag_pipeline.set_search_pipeline(search_pipeline)
rag_pipeline.add_pipe(rag_pipe)
return rag_pipeline
def create_eval_pipeline(self, *args, **kwargs) -> EvalPipeline:
eval_pipeline = EvalPipeline()
eval_pipeline.add_pipe(self.pipes.eval_pipe)
return eval_pipeline
def create_pipelines(
self,
ingestion_pipeline: Optional[IngestionPipeline] = None,
search_pipeline: Optional[SearchPipeline] = None,
rag_pipeline: Optional[RAGPipeline] = None,
streaming_rag_pipeline: Optional[RAGPipeline] = None,
eval_pipeline: Optional[EvalPipeline] = None,
*args,
**kwargs,
) -> R2RPipelines:
try:
self.configure_logging()
except Exception as e:
logger.warn(f"Error configuring logging: {e}")
search_pipeline = search_pipeline or self.create_search_pipeline(
*args, **kwargs
)
return R2RPipelines(
ingestion_pipeline=ingestion_pipeline
or self.create_ingestion_pipeline(*args, **kwargs),
search_pipeline=search_pipeline,
rag_pipeline=rag_pipeline
or self.create_rag_pipeline(
search_pipeline=search_pipeline,
stream=False,
*args,
**kwargs,
),
streaming_rag_pipeline=streaming_rag_pipeline
or self.create_rag_pipeline(
search_pipeline=search_pipeline,
stream=True,
*args,
**kwargs,
),
eval_pipeline=eval_pipeline
or self.create_eval_pipeline(*args, **kwargs),
)
def configure_logging(self):
KVLoggingSingleton.configure(self.config.logging)
|