1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
|
# Source - LangChain
# URL: https://github.com/langchain-ai/langchain/blob/6a5b084704afa22ca02f78d0464f35aed75d1ff2/libs/langchain/langchain/text_splitter.py#L851
"""**Text Splitters** are classes for splitting text.
**Class hierarchy:**
.. code-block::
BaseDocumentTransformer --> TextSplitter --> <name>TextSplitter # Example: CharacterTextSplitter
RecursiveCharacterTextSplitter --> <name>TextSplitter
Note: **MarkdownHeaderTextSplitter** and **HTMLHeaderTextSplitter do not derive from TextSplitter.
**Main helpers:**
.. code-block::
Document, Tokenizer, Language, LineType, HeaderType
""" # noqa: E501
from __future__ import annotations
import copy
import json
import logging
import pathlib
import re
from abc import ABC, abstractmethod
from dataclasses import dataclass
from enum import Enum
from io import BytesIO, StringIO
from typing import (
AbstractSet,
Any,
Callable,
Collection,
Iterable,
Literal,
Optional,
Sequence,
Tuple,
Type,
TypedDict,
TypeVar,
cast,
)
import requests
from pydantic import BaseModel, Field, PrivateAttr
from typing_extensions import NotRequired
logger = logging.getLogger()
TS = TypeVar("TS", bound="TextSplitter")
class BaseSerialized(TypedDict):
"""Base class for serialized objects."""
lc: int
id: list[str]
name: NotRequired[str]
graph: NotRequired[dict[str, Any]]
class SerializedConstructor(BaseSerialized):
"""Serialized constructor."""
type: Literal["constructor"]
kwargs: dict[str, Any]
class SerializedSecret(BaseSerialized):
"""Serialized secret."""
type: Literal["secret"]
class SerializedNotImplemented(BaseSerialized):
"""Serialized not implemented."""
type: Literal["not_implemented"]
repr: Optional[str]
def try_neq_default(value: Any, key: str, model: BaseModel) -> bool:
"""Try to determine if a value is different from the default.
Args:
value: The value.
key: The key.
model: The model.
Returns:
Whether the value is different from the default.
"""
try:
return model.__fields__[key].get_default() != value
except Exception:
return True
class Serializable(BaseModel, ABC):
"""Serializable base class."""
@classmethod
def is_lc_serializable(cls) -> bool:
"""Is this class serializable?"""
return False
@classmethod
def get_lc_namespace(cls) -> list[str]:
"""Get the namespace of the langchain object.
For example, if the class is `langchain.llms.openai.OpenAI`, then the
namespace is ["langchain", "llms", "openai"]
"""
return cls.__module__.split(".")
@property
def lc_secrets(self) -> dict[str, str]:
"""A map of constructor argument names to secret ids.
For example, {"openai_api_key": "OPENAI_API_KEY"}
"""
return {}
@property
def lc_attributes(self) -> dict:
"""List of attribute names that should be included in the serialized
kwargs.
These attributes must be accepted by the constructor.
"""
return {}
@classmethod
def lc_id(cls) -> list[str]:
"""A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path to
the object.
"""
return [*cls.get_lc_namespace(), cls.__name__]
class Config:
extra = "ignore"
def __repr_args__(self) -> Any:
return [
(k, v)
for k, v in super().__repr_args__()
if (k not in self.__fields__ or try_neq_default(v, k, self))
]
_lc_kwargs: dict[str, Any] = PrivateAttr(default_factory=dict)
def __init__(self, **kwargs: Any) -> None:
super().__init__(**kwargs)
self._lc_kwargs = kwargs
def to_json(
self,
) -> SerializedConstructor | SerializedNotImplemented:
if not self.is_lc_serializable():
return self.to_json_not_implemented()
secrets = dict()
# Get latest values for kwargs if there is an attribute with same name
lc_kwargs = {
k: getattr(self, k, v)
for k, v in self._lc_kwargs.items()
if not (self.__exclude_fields__ or {}).get(k, False) # type: ignore
}
# Merge the lc_secrets and lc_attributes from every class in the MRO
for cls in [None, *self.__class__.mro()]:
# Once we get to Serializable, we're done
if cls is Serializable:
break
if cls:
deprecated_attributes = [
"lc_namespace",
"lc_serializable",
]
for attr in deprecated_attributes:
if hasattr(cls, attr):
raise ValueError(
f"Class {self.__class__} has a deprecated "
f"attribute {attr}. Please use the corresponding "
f"classmethod instead."
)
# Get a reference to self bound to each class in the MRO
this = cast(
Serializable, self if cls is None else super(cls, self)
)
secrets.update(this.lc_secrets)
# Now also add the aliases for the secrets
# This ensures known secret aliases are hidden.
# Note: this does NOT hide any other extra kwargs
# that are not present in the fields.
for key in list(secrets):
value = secrets[key]
if key in this.__fields__:
secrets[this.__fields__[key].alias] = value # type: ignore
lc_kwargs.update(this.lc_attributes)
# include all secrets, even if not specified in kwargs
# as these secrets may be passed as an environment variable instead
for key in secrets.keys():
secret_value = getattr(self, key, None) or lc_kwargs.get(key)
if secret_value is not None:
lc_kwargs.update({key: secret_value})
return {
"lc": 1,
"type": "constructor",
"id": self.lc_id(),
"kwargs": (
lc_kwargs
if not secrets
else _replace_secrets(lc_kwargs, secrets)
),
}
def to_json_not_implemented(self) -> SerializedNotImplemented:
return to_json_not_implemented(self)
def _replace_secrets(
root: dict[Any, Any], secrets_map: dict[str, str]
) -> dict[Any, Any]:
result = root.copy()
for path, secret_id in secrets_map.items():
[*parts, last] = path.split(".")
current = result
for part in parts:
if part not in current:
break
current[part] = current[part].copy()
current = current[part]
if last in current:
current[last] = {
"lc": 1,
"type": "secret",
"id": [secret_id],
}
return result
def to_json_not_implemented(obj: object) -> SerializedNotImplemented:
"""Serialize a "not implemented" object.
Args:
obj: object to serialize
Returns:
SerializedNotImplemented
"""
_id: list[str] = []
try:
if hasattr(obj, "__name__"):
_id = [*obj.__module__.split("."), obj.__name__]
elif hasattr(obj, "__class__"):
_id = [
*obj.__class__.__module__.split("."),
obj.__class__.__name__,
]
except Exception:
pass
result: SerializedNotImplemented = {
"lc": 1,
"type": "not_implemented",
"id": _id,
"repr": None,
}
try:
result["repr"] = repr(obj)
except Exception:
pass
return result
class SplitterDocument(Serializable):
"""Class for storing a piece of text and associated metadata."""
page_content: str
"""String text."""
metadata: dict = Field(default_factory=dict)
"""Arbitrary metadata about the page content (e.g., source, relationships
to other documents, etc.)."""
type: Literal["Document"] = "Document"
def __init__(self, page_content: str, **kwargs: Any) -> None:
"""Pass page_content in as positional or named arg."""
super().__init__(page_content=page_content, **kwargs)
@classmethod
def is_lc_serializable(cls) -> bool:
"""Return whether this class is serializable."""
return True
@classmethod
def get_lc_namespace(cls) -> list[str]:
"""Get the namespace of the langchain object."""
return ["langchain", "schema", "document"]
class BaseDocumentTransformer(ABC):
"""Abstract base class for document transformation systems.
A document transformation system takes a sequence of Documents and returns a
sequence of transformed Documents.
Example:
.. code-block:: python
class EmbeddingsRedundantFilter(BaseDocumentTransformer, BaseModel):
embeddings: Embeddings
similarity_fn: Callable = cosine_similarity
similarity_threshold: float = 0.95
class Config:
arbitrary_types_allowed = True
def transform_documents(
self, documents: Sequence[Document], **kwargs: Any
) -> Sequence[Document]:
stateful_documents = get_stateful_documents(documents)
embedded_documents = _get_embeddings_from_stateful_docs(
self.embeddings, stateful_documents
)
included_idxs = _filter_similar_embeddings(
embedded_documents, self.similarity_fn, self.similarity_threshold
)
return [stateful_documents[i] for i in sorted(included_idxs)]
async def atransform_documents(
self, documents: Sequence[Document], **kwargs: Any
) -> Sequence[Document]:
raise NotImplementedError
""" # noqa: E501
@abstractmethod
def transform_documents(
self, documents: Sequence[SplitterDocument], **kwargs: Any
) -> Sequence[SplitterDocument]:
"""Transform a list of documents.
Args:
documents: A sequence of Documents to be transformed.
Returns:
A list of transformed Documents.
"""
async def atransform_documents(
self, documents: Sequence[SplitterDocument], **kwargs: Any
) -> Sequence[SplitterDocument]:
"""Asynchronously transform a list of documents.
Args:
documents: A sequence of Documents to be transformed.
Returns:
A list of transformed Documents.
"""
raise NotImplementedError("This method is not implemented.")
# return await langchain_core.runnables.config.run_in_executor(
# None, self.transform_documents, documents, **kwargs
# )
def _make_spacy_pipe_for_splitting(
pipe: str, *, max_length: int = 1_000_000
) -> Any: # avoid importing spacy
try:
import spacy
except ImportError:
raise ImportError(
"Spacy is not installed, run `pip install spacy`."
) from None
if pipe == "sentencizer":
from spacy.lang.en import English
sentencizer = English()
sentencizer.add_pipe("sentencizer")
else:
sentencizer = spacy.load(pipe, exclude=["ner", "tagger"])
sentencizer.max_length = max_length
return sentencizer
def _split_text_with_regex(
text: str, separator: str, keep_separator: bool
) -> list[str]:
# Now that we have the separator, split the text
if separator:
if keep_separator:
# The parentheses in the pattern keep the delimiters in the result.
_splits = re.split(f"({separator})", text)
splits = [
_splits[i] + _splits[i + 1] for i in range(1, len(_splits), 2)
]
if len(_splits) % 2 == 0:
splits += _splits[-1:]
splits = [_splits[0]] + splits
else:
splits = re.split(separator, text)
else:
splits = list(text)
return [s for s in splits if s != ""]
class TextSplitter(BaseDocumentTransformer, ABC):
"""Interface for splitting text into chunks."""
def __init__(
self,
chunk_size: int = 4000,
chunk_overlap: int = 200,
length_function: Callable[[str], int] = len,
keep_separator: bool = False,
add_start_index: bool = False,
strip_whitespace: bool = True,
) -> None:
"""Create a new TextSplitter.
Args:
chunk_size: Maximum size of chunks to return
chunk_overlap: Overlap in characters between chunks
length_function: Function that measures the length of given chunks
keep_separator: Whether to keep the separator in the chunks
add_start_index: If `True`, includes chunk's start index in
metadata
strip_whitespace: If `True`, strips whitespace from the start and
end of every document
"""
if chunk_overlap > chunk_size:
raise ValueError(
f"Got a larger chunk overlap ({chunk_overlap}) than chunk size "
f"({chunk_size}), should be smaller."
)
self._chunk_size = chunk_size
self._chunk_overlap = chunk_overlap
self._length_function = length_function
self._keep_separator = keep_separator
self._add_start_index = add_start_index
self._strip_whitespace = strip_whitespace
@abstractmethod
def split_text(self, text: str) -> list[str]:
"""Split text into multiple components."""
def create_documents(
self, texts: list[str], metadatas: Optional[list[dict]] = None
) -> list[SplitterDocument]:
"""Create documents from a list of texts."""
_metadatas = metadatas or [{}] * len(texts)
documents = []
for i, text in enumerate(texts):
index = 0
previous_chunk_len = 0
for chunk in self.split_text(text):
metadata = copy.deepcopy(_metadatas[i])
if self._add_start_index:
offset = index + previous_chunk_len - self._chunk_overlap
index = text.find(chunk, max(0, offset))
metadata["start_index"] = index
previous_chunk_len = len(chunk)
new_doc = SplitterDocument(
page_content=chunk, metadata=metadata
)
documents.append(new_doc)
return documents
def split_documents(
self, documents: Iterable[SplitterDocument]
) -> list[SplitterDocument]:
"""Split documents."""
texts, metadatas = [], []
for doc in documents:
texts.append(doc.page_content)
metadatas.append(doc.metadata)
return self.create_documents(texts, metadatas=metadatas)
def _join_docs(self, docs: list[str], separator: str) -> Optional[str]:
text = separator.join(docs)
if self._strip_whitespace:
text = text.strip()
if text == "":
return None
else:
return text
def _merge_splits(
self, splits: Iterable[str], separator: str
) -> list[str]:
# We now want to combine these smaller pieces into medium size
# chunks to send to the LLM.
separator_len = self._length_function(separator)
docs = []
current_doc: list[str] = []
total = 0
for d in splits:
_len = self._length_function(d)
if (
total + _len + (separator_len if len(current_doc) > 0 else 0)
> self._chunk_size
):
if total > self._chunk_size:
logger.warning(
f"Created a chunk of size {total}, "
f"which is longer than the specified {self._chunk_size}"
)
if len(current_doc) > 0:
doc = self._join_docs(current_doc, separator)
if doc is not None:
docs.append(doc)
# Keep on popping if:
# - we have a larger chunk than in the chunk overlap
# - or if we still have any chunks and the length is long
while total > self._chunk_overlap or (
total
+ _len
+ (separator_len if len(current_doc) > 0 else 0)
> self._chunk_size
and total > 0
):
total -= self._length_function(current_doc[0]) + (
separator_len if len(current_doc) > 1 else 0
)
current_doc = current_doc[1:]
current_doc.append(d)
total += _len + (separator_len if len(current_doc) > 1 else 0)
doc = self._join_docs(current_doc, separator)
if doc is not None:
docs.append(doc)
return docs
@classmethod
def from_huggingface_tokenizer(
cls, tokenizer: Any, **kwargs: Any
) -> TextSplitter:
"""Text splitter that uses HuggingFace tokenizer to count length."""
try:
from transformers import PreTrainedTokenizerBase
if not isinstance(tokenizer, PreTrainedTokenizerBase):
raise ValueError(
"Tokenizer received was not an instance of PreTrainedTokenizerBase"
)
def _huggingface_tokenizer_length(text: str) -> int:
return len(tokenizer.encode(text))
except ImportError:
raise ValueError(
"Could not import transformers python package. "
"Please install it with `pip install transformers`."
) from None
return cls(length_function=_huggingface_tokenizer_length, **kwargs)
@classmethod
def from_tiktoken_encoder(
cls: Type[TS],
encoding_name: str = "gpt2",
model: Optional[str] = None,
allowed_special: Literal["all"] | AbstractSet[str] = set(),
disallowed_special: Literal["all"] | Collection[str] = "all",
**kwargs: Any,
) -> TS:
"""Text splitter that uses tiktoken encoder to count length."""
try:
import tiktoken
except ImportError:
raise ImportError("""Could not import tiktoken python package.
This is needed in order to calculate max_tokens_for_prompt.
Please install it with `pip install tiktoken`.""") from None
if model is not None:
enc = tiktoken.encoding_for_model(model)
else:
enc = tiktoken.get_encoding(encoding_name)
def _tiktoken_encoder(text: str) -> int:
return len(
enc.encode(
text,
allowed_special=allowed_special,
disallowed_special=disallowed_special,
)
)
if issubclass(cls, TokenTextSplitter):
extra_kwargs = {
"encoding_name": encoding_name,
"model": model,
"allowed_special": allowed_special,
"disallowed_special": disallowed_special,
}
kwargs = {**kwargs, **extra_kwargs}
return cls(length_function=_tiktoken_encoder, **kwargs)
def transform_documents(
self, documents: Sequence[SplitterDocument], **kwargs: Any
) -> Sequence[SplitterDocument]:
"""Transform sequence of documents by splitting them."""
return self.split_documents(list(documents))
class CharacterTextSplitter(TextSplitter):
"""Splitting text that looks at characters."""
DEFAULT_SEPARATOR: str = "\n\n"
def __init__(
self,
separator: str = DEFAULT_SEPARATOR,
is_separator_regex: bool = False,
**kwargs: Any,
) -> None:
"""Create a new TextSplitter."""
super().__init__(**kwargs)
self._separator = separator
self._is_separator_regex = is_separator_regex
def split_text(self, text: str) -> list[str]:
"""Split incoming text and return chunks."""
# First we naively split the large input into a bunch of smaller ones.
separator = (
self._separator
if self._is_separator_regex
else re.escape(self._separator)
)
splits = _split_text_with_regex(text, separator, self._keep_separator)
_separator = "" if self._keep_separator else self._separator
return self._merge_splits(splits, _separator)
class LineType(TypedDict):
"""Line type as typed dict."""
metadata: dict[str, str]
content: str
class HeaderType(TypedDict):
"""Header type as typed dict."""
level: int
name: str
data: str
class MarkdownHeaderTextSplitter:
"""Splitting markdown files based on specified headers."""
def __init__(
self,
headers_to_split_on: list[Tuple[str, str]],
return_each_line: bool = False,
strip_headers: bool = True,
):
"""Create a new MarkdownHeaderTextSplitter.
Args:
headers_to_split_on: Headers we want to track
return_each_line: Return each line w/ associated headers
strip_headers: Strip split headers from the content of the chunk
"""
# Output line-by-line or aggregated into chunks w/ common headers
self.return_each_line = return_each_line
# Given the headers we want to split on,
# (e.g., "#, ##, etc") order by length
self.headers_to_split_on = sorted(
headers_to_split_on, key=lambda split: len(split[0]), reverse=True
)
# Strip headers split headers from the content of the chunk
self.strip_headers = strip_headers
def aggregate_lines_to_chunks(
self, lines: list[LineType]
) -> list[SplitterDocument]:
"""Combine lines with common metadata into chunks
Args:
lines: Line of text / associated header metadata
"""
aggregated_chunks: list[LineType] = []
for line in lines:
if (
aggregated_chunks
and aggregated_chunks[-1]["metadata"] == line["metadata"]
):
# If the last line in the aggregated list
# has the same metadata as the current line,
# append the current content to the last lines's content
aggregated_chunks[-1]["content"] += " \n" + line["content"]
elif (
aggregated_chunks
and aggregated_chunks[-1]["metadata"] != line["metadata"]
# may be issues if other metadata is present
and len(aggregated_chunks[-1]["metadata"])
< len(line["metadata"])
and aggregated_chunks[-1]["content"].split("\n")[-1][0] == "#"
and not self.strip_headers
):
# If the last line in the aggregated list
# has different metadata as the current line,
# and has shallower header level than the current line,
# and the last line is a header,
# and we are not stripping headers,
# append the current content to the last line's content
aggregated_chunks[-1]["content"] += " \n" + line["content"]
# and update the last line's metadata
aggregated_chunks[-1]["metadata"] = line["metadata"]
else:
# Otherwise, append the current line to the aggregated list
aggregated_chunks.append(line)
return [
SplitterDocument(
page_content=chunk["content"], metadata=chunk["metadata"]
)
for chunk in aggregated_chunks
]
def split_text(self, text: str) -> list[SplitterDocument]:
"""Split markdown file
Args:
text: Markdown file"""
# Split the input text by newline character ("\n").
lines = text.split("\n")
# Final output
lines_with_metadata: list[LineType] = []
# Content and metadata of the chunk currently being processed
current_content: list[str] = []
current_metadata: dict[str, str] = {}
# Keep track of the nested header structure
# header_stack: list[dict[str, int | str]] = []
header_stack: list[HeaderType] = []
initial_metadata: dict[str, str] = {}
in_code_block = False
opening_fence = ""
for line in lines:
stripped_line = line.strip()
if not in_code_block:
# Exclude inline code spans
if (
stripped_line.startswith("```")
and stripped_line.count("```") == 1
):
in_code_block = True
opening_fence = "```"
elif stripped_line.startswith("~~~"):
in_code_block = True
opening_fence = "~~~"
else:
if stripped_line.startswith(opening_fence):
in_code_block = False
opening_fence = ""
if in_code_block:
current_content.append(stripped_line)
continue
# Check each line against each of the header types (e.g., #, ##)
for sep, name in self.headers_to_split_on:
# Check if line starts with a header that we intend to split on
if stripped_line.startswith(sep) and (
# Header with no text OR header is followed by space
# Both are valid conditions that sep is being used a header
len(stripped_line) == len(sep)
or stripped_line[len(sep)] == " "
):
# Ensure we are tracking the header as metadata
if name is not None:
# Get the current header level
current_header_level = sep.count("#")
# Pop out headers of lower or same level from the stack
while (
header_stack
and header_stack[-1]["level"]
>= current_header_level
):
# We have encountered a new header
# at the same or higher level
popped_header = header_stack.pop()
# Clear the metadata for the
# popped header in initial_metadata
if popped_header["name"] in initial_metadata:
initial_metadata.pop(popped_header["name"])
# Push the current header to the stack
header: HeaderType = {
"level": current_header_level,
"name": name,
"data": stripped_line[len(sep) :].strip(),
}
header_stack.append(header)
# Update initial_metadata with the current header
initial_metadata[name] = header["data"]
# Add the previous line to the lines_with_metadata
# only if current_content is not empty
if current_content:
lines_with_metadata.append(
{
"content": "\n".join(current_content),
"metadata": current_metadata.copy(),
}
)
current_content.clear()
if not self.strip_headers:
current_content.append(stripped_line)
break
else:
if stripped_line:
current_content.append(stripped_line)
elif current_content:
lines_with_metadata.append(
{
"content": "\n".join(current_content),
"metadata": current_metadata.copy(),
}
)
current_content.clear()
current_metadata = initial_metadata.copy()
if current_content:
lines_with_metadata.append(
{
"content": "\n".join(current_content),
"metadata": current_metadata,
}
)
# lines_with_metadata has each line with associated header metadata
# aggregate these into chunks based on common metadata
if not self.return_each_line:
return self.aggregate_lines_to_chunks(lines_with_metadata)
else:
return [
SplitterDocument(
page_content=chunk["content"], metadata=chunk["metadata"]
)
for chunk in lines_with_metadata
]
class ElementType(TypedDict):
"""Element type as typed dict."""
url: str
xpath: str
content: str
metadata: dict[str, str]
class HTMLHeaderTextSplitter:
"""Splitting HTML files based on specified headers.
Requires lxml package.
"""
def __init__(
self,
headers_to_split_on: list[Tuple[str, str]],
return_each_element: bool = False,
):
"""Create a new HTMLHeaderTextSplitter.
Args:
headers_to_split_on: list of tuples of headers we want to track
mapped to (arbitrary) keys for metadata. Allowed header values:
h1, h2, h3, h4, h5, h6
e.g. [("h1", "Header 1"), ("h2", "Header 2)].
return_each_element: Return each element w/ associated headers.
"""
# Output element-by-element or aggregated into chunks w/ common headers
self.return_each_element = return_each_element
self.headers_to_split_on = sorted(headers_to_split_on)
def aggregate_elements_to_chunks(
self, elements: list[ElementType]
) -> list[SplitterDocument]:
"""Combine elements with common metadata into chunks.
Args:
elements: HTML element content with associated identifying
info and metadata
"""
aggregated_chunks: list[ElementType] = []
for element in elements:
if (
aggregated_chunks
and aggregated_chunks[-1]["metadata"] == element["metadata"]
):
# If the last element in the aggregated list
# has the same metadata as the current element,
# append the current content to the last element's content
aggregated_chunks[-1]["content"] += " \n" + element["content"]
else:
# Otherwise, append the current element to the aggregated list
aggregated_chunks.append(element)
return [
SplitterDocument(
page_content=chunk["content"], metadata=chunk["metadata"]
)
for chunk in aggregated_chunks
]
def split_text_from_url(self, url: str) -> list[SplitterDocument]:
"""Split HTML from web URL.
Args:
url: web URL
"""
r = requests.get(url)
return self.split_text_from_file(BytesIO(r.content))
def split_text(self, text: str) -> list[SplitterDocument]:
"""Split HTML text string.
Args:
text: HTML text
"""
return self.split_text_from_file(StringIO(text))
def split_text_from_file(self, file: Any) -> list[SplitterDocument]:
"""Split HTML file.
Args:
file: HTML file
"""
try:
from lxml import etree
except ImportError:
raise ImportError(
"Unable to import lxml, run `pip install lxml`."
) from None
# use lxml library to parse html document and return xml ElementTree
# Explicitly encoding in utf-8 allows non-English
# html files to be processed without garbled characters
parser = etree.HTMLParser(encoding="utf-8")
tree = etree.parse(file, parser)
# document transformation for "structure-aware" chunking is handled
# with xsl. See comments in html_chunks_with_headers.xslt for more
# detailed information.
xslt_path = (
pathlib.Path(__file__).parent
/ "document_transformers/xsl/html_chunks_with_headers.xslt"
)
xslt_tree = etree.parse(xslt_path)
transform = etree.XSLT(xslt_tree)
result = transform(tree)
result_dom = etree.fromstring(str(result))
# create filter and mapping for header metadata
header_filter = [header[0] for header in self.headers_to_split_on]
header_mapping = dict(self.headers_to_split_on)
# map xhtml namespace prefix
ns_map = {"h": "http://www.w3.org/1999/xhtml"}
# build list of elements from DOM
elements = []
for element in result_dom.findall("*//*", ns_map):
if element.findall("*[@class='headers']") or element.findall(
"*[@class='chunk']"
):
elements.append(
ElementType(
url=file,
xpath="".join(
[
node.text
for node in element.findall(
"*[@class='xpath']", ns_map
)
]
),
content="".join(
[
node.text
for node in element.findall(
"*[@class='chunk']", ns_map
)
]
),
metadata={
# Add text of specified headers to
# metadata using header mapping.
header_mapping[node.tag]: node.text
for node in filter(
lambda x: x.tag in header_filter,
element.findall(
"*[@class='headers']/*", ns_map
),
)
},
)
)
if not self.return_each_element:
return self.aggregate_elements_to_chunks(elements)
else:
return [
SplitterDocument(
page_content=chunk["content"], metadata=chunk["metadata"]
)
for chunk in elements
]
# should be in newer Python versions (3.11+)
# @dataclass(frozen=True, kw_only=True, slots=True)
@dataclass(frozen=True)
class Tokenizer:
"""Tokenizer data class."""
chunk_overlap: int
"""Overlap in tokens between chunks."""
tokens_per_chunk: int
"""Maximum number of tokens per chunk."""
decode: Callable[[list[int]], str]
"""Function to decode a list of token ids to a string."""
encode: Callable[[str], list[int]]
"""Function to encode a string to a list of token ids."""
def split_text_on_tokens(*, text: str, tokenizer: Tokenizer) -> list[str]:
"""Split incoming text and return chunks using tokenizer."""
splits: list[str] = []
input_ids = tokenizer.encode(text)
start_idx = 0
cur_idx = min(start_idx + tokenizer.tokens_per_chunk, len(input_ids))
chunk_ids = input_ids[start_idx:cur_idx]
while start_idx < len(input_ids):
splits.append(tokenizer.decode(chunk_ids))
if cur_idx == len(input_ids):
break
start_idx += tokenizer.tokens_per_chunk - tokenizer.chunk_overlap
cur_idx = min(start_idx + tokenizer.tokens_per_chunk, len(input_ids))
chunk_ids = input_ids[start_idx:cur_idx]
return splits
class TokenTextSplitter(TextSplitter):
"""Splitting text to tokens using model tokenizer."""
def __init__(
self,
encoding_name: str = "gpt2",
model: Optional[str] = None,
allowed_special: Literal["all"] | AbstractSet[str] = set(),
disallowed_special: Literal["all"] | Collection[str] = "all",
**kwargs: Any,
) -> None:
"""Create a new TextSplitter."""
super().__init__(**kwargs)
try:
import tiktoken
except ImportError:
raise ImportError(
"Could not import tiktoken python package. "
"This is needed in order to for TokenTextSplitter. "
"Please install it with `pip install tiktoken`."
) from None
if model is not None:
enc = tiktoken.encoding_for_model(model)
else:
enc = tiktoken.get_encoding(encoding_name)
self._tokenizer = enc
self._allowed_special = allowed_special
self._disallowed_special = disallowed_special
def split_text(self, text: str) -> list[str]:
def _encode(_text: str) -> list[int]:
return self._tokenizer.encode(
_text,
allowed_special=self._allowed_special,
disallowed_special=self._disallowed_special,
)
tokenizer = Tokenizer(
chunk_overlap=self._chunk_overlap,
tokens_per_chunk=self._chunk_size,
decode=self._tokenizer.decode,
encode=_encode,
)
return split_text_on_tokens(text=text, tokenizer=tokenizer)
class SentenceTransformersTokenTextSplitter(TextSplitter):
"""Splitting text to tokens using sentence model tokenizer."""
def __init__(
self,
chunk_overlap: int = 50,
model: str = "sentence-transformers/all-mpnet-base-v2",
tokens_per_chunk: Optional[int] = None,
**kwargs: Any,
) -> None:
"""Create a new TextSplitter."""
super().__init__(**kwargs, chunk_overlap=chunk_overlap)
try:
from sentence_transformers import SentenceTransformer
except ImportError:
raise ImportError(
"""Could not import sentence_transformer python package.
This is needed in order to for
SentenceTransformersTokenTextSplitter.
Please install it with `pip install sentence-transformers`.
"""
) from None
self.model = model
self._model = SentenceTransformer(self.model, trust_remote_code=True)
self.tokenizer = self._model.tokenizer
self._initialize_chunk_configuration(tokens_per_chunk=tokens_per_chunk)
def _initialize_chunk_configuration(
self, *, tokens_per_chunk: Optional[int]
) -> None:
self.maximum_tokens_per_chunk = cast(int, self._model.max_seq_length)
if tokens_per_chunk is None:
self.tokens_per_chunk = self.maximum_tokens_per_chunk
else:
self.tokens_per_chunk = tokens_per_chunk
if self.tokens_per_chunk > self.maximum_tokens_per_chunk:
raise ValueError(
f"The token limit of the models '{self.model}'"
f" is: {self.maximum_tokens_per_chunk}."
f" Argument tokens_per_chunk={self.tokens_per_chunk}"
f" > maximum token limit."
)
def split_text(self, text: str) -> list[str]:
def encode_strip_start_and_stop_token_ids(text: str) -> list[int]:
return self._encode(text)[1:-1]
tokenizer = Tokenizer(
chunk_overlap=self._chunk_overlap,
tokens_per_chunk=self.tokens_per_chunk,
decode=self.tokenizer.decode,
encode=encode_strip_start_and_stop_token_ids,
)
return split_text_on_tokens(text=text, tokenizer=tokenizer)
def count_tokens(self, *, text: str) -> int:
return len(self._encode(text))
_max_length_equal_32_bit_integer: int = 2**32
def _encode(self, text: str) -> list[int]:
token_ids_with_start_and_end_token_ids = self.tokenizer.encode(
text,
max_length=self._max_length_equal_32_bit_integer,
truncation="do_not_truncate",
)
return token_ids_with_start_and_end_token_ids
class Language(str, Enum):
"""Enum of the programming languages."""
CPP = "cpp"
GO = "go"
JAVA = "java"
KOTLIN = "kotlin"
JS = "js"
TS = "ts"
PHP = "php"
PROTO = "proto"
PYTHON = "python"
RST = "rst"
RUBY = "ruby"
RUST = "rust"
SCALA = "scala"
SWIFT = "swift"
MARKDOWN = "markdown"
LATEX = "latex"
HTML = "html"
SOL = "sol"
CSHARP = "csharp"
COBOL = "cobol"
C = "c"
LUA = "lua"
PERL = "perl"
class RecursiveCharacterTextSplitter(TextSplitter):
"""Splitting text by recursively look at characters.
Recursively tries to split by different characters to find one that works.
"""
def __init__(
self,
separators: Optional[list[str]] = None,
keep_separator: bool = True,
is_separator_regex: bool = False,
chunk_size: int = 4000,
chunk_overlap: int = 200,
**kwargs: Any,
) -> None:
"""Create a new TextSplitter."""
super().__init__(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
keep_separator=keep_separator,
**kwargs,
)
self._separators = separators or ["\n\n", "\n", " ", ""]
self._is_separator_regex = is_separator_regex
self.chunk_size = chunk_size
self.chunk_overlap = chunk_overlap
def _split_text(self, text: str, separators: list[str]) -> list[str]:
"""Split incoming text and return chunks."""
final_chunks = []
# Get appropriate separator to use
separator = separators[-1]
new_separators = []
for i, _s in enumerate(separators):
_separator = _s if self._is_separator_regex else re.escape(_s)
if _s == "":
separator = _s
break
if re.search(_separator, text):
separator = _s
new_separators = separators[i + 1 :]
break
_separator = (
separator if self._is_separator_regex else re.escape(separator)
)
splits = _split_text_with_regex(text, _separator, self._keep_separator)
# Now go merging things, recursively splitting longer texts.
_good_splits = []
_separator = "" if self._keep_separator else separator
for s in splits:
if self._length_function(s) < self._chunk_size:
_good_splits.append(s)
else:
if _good_splits:
merged_text = self._merge_splits(_good_splits, _separator)
final_chunks.extend(merged_text)
_good_splits = []
if not new_separators:
final_chunks.append(s)
else:
other_info = self._split_text(s, new_separators)
final_chunks.extend(other_info)
if _good_splits:
merged_text = self._merge_splits(_good_splits, _separator)
final_chunks.extend(merged_text)
return final_chunks
def split_text(self, text: str) -> list[str]:
return self._split_text(text, self._separators)
@classmethod
def from_language(
cls, language: Language, **kwargs: Any
) -> RecursiveCharacterTextSplitter:
separators = cls.get_separators_for_language(language)
return cls(separators=separators, is_separator_regex=True, **kwargs)
@staticmethod
def get_separators_for_language(language: Language) -> list[str]:
if language == Language.CPP:
return [
# Split along class definitions
"\nclass ",
# Split along function definitions
"\nvoid ",
"\nint ",
"\nfloat ",
"\ndouble ",
# Split along control flow statements
"\nif ",
"\nfor ",
"\nwhile ",
"\nswitch ",
"\ncase ",
# Split by the normal type of lines
"\n\n",
"\n",
" ",
"",
]
elif language == Language.GO:
return [
# Split along function definitions
"\nfunc ",
"\nvar ",
"\nconst ",
"\ntype ",
# Split along control flow statements
"\nif ",
"\nfor ",
"\nswitch ",
"\ncase ",
# Split by the normal type of lines
"\n\n",
"\n",
" ",
"",
]
elif language == Language.JAVA:
return [
# Split along class definitions
"\nclass ",
# Split along method definitions
"\npublic ",
"\nprotected ",
"\nprivate ",
"\nstatic ",
# Split along control flow statements
"\nif ",
"\nfor ",
"\nwhile ",
"\nswitch ",
"\ncase ",
# Split by the normal type of lines
"\n\n",
"\n",
" ",
"",
]
elif language == Language.KOTLIN:
return [
# Split along class definitions
"\nclass ",
# Split along method definitions
"\npublic ",
"\nprotected ",
"\nprivate ",
"\ninternal ",
"\ncompanion ",
"\nfun ",
"\nval ",
"\nvar ",
# Split along control flow statements
"\nif ",
"\nfor ",
"\nwhile ",
"\nwhen ",
"\ncase ",
"\nelse ",
# Split by the normal type of lines
"\n\n",
"\n",
" ",
"",
]
elif language == Language.JS:
return [
# Split along function definitions
"\nfunction ",
"\nconst ",
"\nlet ",
"\nvar ",
"\nclass ",
# Split along control flow statements
"\nif ",
"\nfor ",
"\nwhile ",
"\nswitch ",
"\ncase ",
"\ndefault ",
# Split by the normal type of lines
"\n\n",
"\n",
" ",
"",
]
elif language == Language.TS:
return [
"\nenum ",
"\ninterface ",
"\nnamespace ",
"\ntype ",
# Split along class definitions
"\nclass ",
# Split along function definitions
"\nfunction ",
"\nconst ",
"\nlet ",
"\nvar ",
# Split along control flow statements
"\nif ",
"\nfor ",
"\nwhile ",
"\nswitch ",
"\ncase ",
"\ndefault ",
# Split by the normal type of lines
"\n\n",
"\n",
" ",
"",
]
elif language == Language.PHP:
return [
# Split along function definitions
"\nfunction ",
# Split along class definitions
"\nclass ",
# Split along control flow statements
"\nif ",
"\nforeach ",
"\nwhile ",
"\ndo ",
"\nswitch ",
"\ncase ",
# Split by the normal type of lines
"\n\n",
"\n",
" ",
"",
]
elif language == Language.PROTO:
return [
# Split along message definitions
"\nmessage ",
# Split along service definitions
"\nservice ",
# Split along enum definitions
"\nenum ",
# Split along option definitions
"\noption ",
# Split along import statements
"\nimport ",
# Split along syntax declarations
"\nsyntax ",
# Split by the normal type of lines
"\n\n",
"\n",
" ",
"",
]
elif language == Language.PYTHON:
return [
# First, try to split along class definitions
"\nclass ",
"\ndef ",
"\n\tdef ",
# Now split by the normal type of lines
"\n\n",
"\n",
" ",
"",
]
elif language == Language.RST:
return [
# Split along section titles
"\n=+\n",
"\n-+\n",
"\n\\*+\n",
# Split along directive markers
"\n\n.. *\n\n",
# Split by the normal type of lines
"\n\n",
"\n",
" ",
"",
]
elif language == Language.RUBY:
return [
# Split along method definitions
"\ndef ",
"\nclass ",
# Split along control flow statements
"\nif ",
"\nunless ",
"\nwhile ",
"\nfor ",
"\ndo ",
"\nbegin ",
"\nrescue ",
# Split by the normal type of lines
"\n\n",
"\n",
" ",
"",
]
elif language == Language.RUST:
return [
# Split along function definitions
"\nfn ",
"\nconst ",
"\nlet ",
# Split along control flow statements
"\nif ",
"\nwhile ",
"\nfor ",
"\nloop ",
"\nmatch ",
"\nconst ",
# Split by the normal type of lines
"\n\n",
"\n",
" ",
"",
]
elif language == Language.SCALA:
return [
# Split along class definitions
"\nclass ",
"\nobject ",
# Split along method definitions
"\ndef ",
"\nval ",
"\nvar ",
# Split along control flow statements
"\nif ",
"\nfor ",
"\nwhile ",
"\nmatch ",
"\ncase ",
# Split by the normal type of lines
"\n\n",
"\n",
" ",
"",
]
elif language == Language.SWIFT:
return [
# Split along function definitions
"\nfunc ",
# Split along class definitions
"\nclass ",
"\nstruct ",
"\nenum ",
# Split along control flow statements
"\nif ",
"\nfor ",
"\nwhile ",
"\ndo ",
"\nswitch ",
"\ncase ",
# Split by the normal type of lines
"\n\n",
"\n",
" ",
"",
]
elif language == Language.MARKDOWN:
return [
# First, try to split along Markdown headings
# (starting with level 2)
"\n#{1,6} ",
# Note the alternative syntax for headings (below)
# is not handled here
# Heading level 2
# ---------------
# End of code block
"```\n",
# Horizontal lines
"\n\\*\\*\\*+\n",
"\n---+\n",
"\n___+\n",
# Note that this splitter doesn't handle
# horizontal lines defined
# by *three or more* of ***, ---, or ___,
# but this is not handled
"\n\n",
"\n",
" ",
"",
]
elif language == Language.LATEX:
return [
# First, try to split along Latex sections
"\n\\\\chapter{",
"\n\\\\section{",
"\n\\\\subsection{",
"\n\\\\subsubsection{",
# Now split by environments
"\n\\\\begin{enumerate}",
"\n\\\\begin{itemize}",
"\n\\\\begin{description}",
"\n\\\\begin{list}",
"\n\\\\begin{quote}",
"\n\\\\begin{quotation}",
"\n\\\\begin{verse}",
"\n\\\\begin{verbatim}",
# Now split by math environments
"\n\\\begin{align}",
"$$",
"$",
# Now split by the normal type of lines
" ",
"",
]
elif language == Language.HTML:
return [
# First, try to split along HTML tags
"<body",
"<div",
"<p",
"<br",
"<li",
"<h1",
"<h2",
"<h3",
"<h4",
"<h5",
"<h6",
"<span",
"<table",
"<tr",
"<td",
"<th",
"<ul",
"<ol",
"<header",
"<footer",
"<nav",
# Head
"<head",
"<style",
"<script",
"<meta",
"<title",
"",
]
elif language == Language.CSHARP:
return [
"\ninterface ",
"\nenum ",
"\nimplements ",
"\ndelegate ",
"\nevent ",
# Split along class definitions
"\nclass ",
"\nabstract ",
# Split along method definitions
"\npublic ",
"\nprotected ",
"\nprivate ",
"\nstatic ",
"\nreturn ",
# Split along control flow statements
"\nif ",
"\ncontinue ",
"\nfor ",
"\nforeach ",
"\nwhile ",
"\nswitch ",
"\nbreak ",
"\ncase ",
"\nelse ",
# Split by exceptions
"\ntry ",
"\nthrow ",
"\nfinally ",
"\ncatch ",
# Split by the normal type of lines
"\n\n",
"\n",
" ",
"",
]
elif language == Language.SOL:
return [
# Split along compiler information definitions
"\npragma ",
"\nusing ",
# Split along contract definitions
"\ncontract ",
"\ninterface ",
"\nlibrary ",
# Split along method definitions
"\nconstructor ",
"\ntype ",
"\nfunction ",
"\nevent ",
"\nmodifier ",
"\nerror ",
"\nstruct ",
"\nenum ",
# Split along control flow statements
"\nif ",
"\nfor ",
"\nwhile ",
"\ndo while ",
"\nassembly ",
# Split by the normal type of lines
"\n\n",
"\n",
" ",
"",
]
elif language == Language.COBOL:
return [
# Split along divisions
"\nIDENTIFICATION DIVISION.",
"\nENVIRONMENT DIVISION.",
"\nDATA DIVISION.",
"\nPROCEDURE DIVISION.",
# Split along sections within DATA DIVISION
"\nWORKING-STORAGE SECTION.",
"\nLINKAGE SECTION.",
"\nFILE SECTION.",
# Split along sections within PROCEDURE DIVISION
"\nINPUT-OUTPUT SECTION.",
# Split along paragraphs and common statements
"\nOPEN ",
"\nCLOSE ",
"\nREAD ",
"\nWRITE ",
"\nIF ",
"\nELSE ",
"\nMOVE ",
"\nPERFORM ",
"\nUNTIL ",
"\nVARYING ",
"\nACCEPT ",
"\nDISPLAY ",
"\nSTOP RUN.",
# Split by the normal type of lines
"\n",
" ",
"",
]
else:
raise ValueError(
f"Language {language} is not supported! "
f"Please choose from {list(Language)}"
)
class NLTKTextSplitter(TextSplitter):
"""Splitting text using NLTK package."""
def __init__(
self, separator: str = "\n\n", language: str = "english", **kwargs: Any
) -> None:
"""Initialize the NLTK splitter."""
super().__init__(**kwargs)
try:
from nltk.tokenize import sent_tokenize
self._tokenizer = sent_tokenize
except ImportError:
raise ImportError("""NLTK is not installed, please install it with
`pip install nltk`.""") from None
self._separator = separator
self._language = language
def split_text(self, text: str) -> list[str]:
"""Split incoming text and return chunks."""
# First we naively split the large input into a bunch of smaller ones.
splits = self._tokenizer(text, language=self._language)
return self._merge_splits(splits, self._separator)
class SpacyTextSplitter(TextSplitter):
"""Splitting text using Spacy package.
Per default, Spacy's `en_core_web_sm` model is used and
its default max_length is 1000000 (it is the length of maximum character
this model takes which can be increased for large files). For a faster,
but potentially less accurate splitting, you can use `pipe='sentencizer'`.
"""
def __init__(
self,
separator: str = "\n\n",
pipe: str = "en_core_web_sm",
max_length: int = 1_000_000,
**kwargs: Any,
) -> None:
"""Initialize the spacy text splitter."""
super().__init__(**kwargs)
self._tokenizer = _make_spacy_pipe_for_splitting(
pipe, max_length=max_length
)
self._separator = separator
def split_text(self, text: str) -> list[str]:
"""Split incoming text and return chunks."""
splits = (s.text for s in self._tokenizer(text).sents)
return self._merge_splits(splits, self._separator)
class KonlpyTextSplitter(TextSplitter):
"""Splitting text using Konlpy package.
It is good for splitting Korean text.
"""
def __init__(
self,
separator: str = "\n\n",
**kwargs: Any,
) -> None:
"""Initialize the Konlpy text splitter."""
super().__init__(**kwargs)
self._separator = separator
try:
from konlpy.tag import Kkma
except ImportError:
raise ImportError("""
Konlpy is not installed, please install it with
`pip install konlpy`
""") from None
self.kkma = Kkma()
def split_text(self, text: str) -> list[str]:
"""Split incoming text and return chunks."""
splits = self.kkma.sentences(text)
return self._merge_splits(splits, self._separator)
# For backwards compatibility
class PythonCodeTextSplitter(RecursiveCharacterTextSplitter):
"""Attempts to split the text along Python syntax."""
def __init__(self, **kwargs: Any) -> None:
"""Initialize a PythonCodeTextSplitter."""
separators = self.get_separators_for_language(Language.PYTHON)
super().__init__(separators=separators, **kwargs)
class MarkdownTextSplitter(RecursiveCharacterTextSplitter):
"""Attempts to split the text along Markdown-formatted headings."""
def __init__(self, **kwargs: Any) -> None:
"""Initialize a MarkdownTextSplitter."""
separators = self.get_separators_for_language(Language.MARKDOWN)
super().__init__(separators=separators, **kwargs)
class LatexTextSplitter(RecursiveCharacterTextSplitter):
"""Attempts to split the text along Latex-formatted layout elements."""
def __init__(self, **kwargs: Any) -> None:
"""Initialize a LatexTextSplitter."""
separators = self.get_separators_for_language(Language.LATEX)
super().__init__(separators=separators, **kwargs)
class RecursiveJsonSplitter:
def __init__(
self, max_chunk_size: int = 2000, min_chunk_size: Optional[int] = None
):
super().__init__()
self.max_chunk_size = max_chunk_size
self.min_chunk_size = (
min_chunk_size
if min_chunk_size is not None
else max(max_chunk_size - 200, 50)
)
@staticmethod
def _json_size(data: dict) -> int:
"""Calculate the size of the serialized JSON object."""
return len(json.dumps(data))
@staticmethod
def _set_nested_dict(d: dict, path: list[str], value: Any) -> None:
"""Set a value in a nested dictionary based on the given path."""
for key in path[:-1]:
d = d.setdefault(key, {})
d[path[-1]] = value
def _list_to_dict_preprocessing(self, data: Any) -> Any:
if isinstance(data, dict):
# Process each key-value pair in the dictionary
return {
k: self._list_to_dict_preprocessing(v) for k, v in data.items()
}
elif isinstance(data, list):
# Convert the list to a dictionary with index-based keys
return {
str(i): self._list_to_dict_preprocessing(item)
for i, item in enumerate(data)
}
else:
# The item is neither a dict nor a list, return unchanged
return data
def _json_split(
self,
data: dict[str, Any],
current_path: list[str] | None = None,
chunks: list[dict] | None = None,
) -> list[dict]:
"""Split json into maximum size dictionaries while preserving
structure."""
if current_path is None:
current_path = []
if chunks is None:
chunks = [{}]
if isinstance(data, dict):
for key, value in data.items():
new_path = current_path + [key]
chunk_size = self._json_size(chunks[-1])
size = self._json_size({key: value})
remaining = self.max_chunk_size - chunk_size
if size < remaining:
# Add item to current chunk
self._set_nested_dict(chunks[-1], new_path, value)
else:
if chunk_size >= self.min_chunk_size:
# Chunk is big enough, start a new chunk
chunks.append({})
# Iterate
self._json_split(value, new_path, chunks)
else:
# handle single item
self._set_nested_dict(chunks[-1], current_path, data)
return chunks
def split_json(
self,
json_data: dict[str, Any],
convert_lists: bool = False,
) -> list[dict]:
"""Splits JSON into a list of JSON chunks."""
if convert_lists:
chunks = self._json_split(
self._list_to_dict_preprocessing(json_data)
)
else:
chunks = self._json_split(json_data)
# Remove the last chunk if it's empty
if not chunks[-1]:
chunks.pop()
return chunks
def split_text(
self, json_data: dict[str, Any], convert_lists: bool = False
) -> list[str]:
"""Splits JSON into a list of JSON formatted strings."""
chunks = self.split_json(
json_data=json_data, convert_lists=convert_lists
)
# Convert to string
return [json.dumps(chunk) for chunk in chunks]
def create_documents(
self,
texts: list[dict],
convert_lists: bool = False,
metadatas: Optional[list[dict]] = None,
) -> list[SplitterDocument]:
"""Create documents from a list of json objects (dict)."""
_metadatas = metadatas or [{}] * len(texts)
documents = []
for i, text in enumerate(texts):
for chunk in self.split_text(
json_data=text, convert_lists=convert_lists
):
metadata = copy.deepcopy(_metadatas[i])
new_doc = SplitterDocument(
page_content=chunk, metadata=metadata
)
documents.append(new_doc)
return documents
|