aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/shared/abstractions/vector.py
blob: 0b88a765a1401256ccec1a06bb0a894c3a3dce68 (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
"""Abstraction for a vector that can be stored in the system."""

from enum import Enum
from typing import Any, Optional
from uuid import UUID

from pydantic import BaseModel, Field

from .base import R2RSerializable


class VectorType(str, Enum):
    FIXED = "FIXED"


class IndexMethod(str, Enum):
    """An enum representing the index methods available.

    This class currently only supports the 'ivfflat' method but may
    expand in the future.

    Attributes:
        auto (str): Automatically choose the best available index method.
        ivfflat (str): The ivfflat index method.
        hnsw (str): The hnsw index method.
    """

    auto = "auto"
    ivfflat = "ivfflat"
    hnsw = "hnsw"

    def __str__(self) -> str:
        return self.value


class IndexMeasure(str, Enum):
    """An enum representing the types of distance measures available for
    indexing.

    Attributes:
        cosine_distance (str): The cosine distance measure for indexing.
        l2_distance (str): The Euclidean (L2) distance measure for indexing.
        max_inner_product (str): The maximum inner product measure for indexing.
    """

    l2_distance = "l2_distance"
    max_inner_product = "max_inner_product"
    cosine_distance = "cosine_distance"
    l1_distance = "l1_distance"
    hamming_distance = "hamming_distance"
    jaccard_distance = "jaccard_distance"

    def __str__(self) -> str:
        return self.value

    @property
    def ops(self) -> str:
        return {
            IndexMeasure.l2_distance: "_l2_ops",
            IndexMeasure.max_inner_product: "_ip_ops",
            IndexMeasure.cosine_distance: "_cosine_ops",
            IndexMeasure.l1_distance: "_l1_ops",
            IndexMeasure.hamming_distance: "_hamming_ops",
            IndexMeasure.jaccard_distance: "_jaccard_ops",
        }[self]

    @property
    def pgvector_repr(self) -> str:
        return {
            IndexMeasure.l2_distance: "<->",
            IndexMeasure.max_inner_product: "<#>",
            IndexMeasure.cosine_distance: "<=>",
            IndexMeasure.l1_distance: "<+>",
            IndexMeasure.hamming_distance: "<~>",
            IndexMeasure.jaccard_distance: "<%>",
        }[self]


class IndexArgsIVFFlat(R2RSerializable):
    """A class for arguments that can optionally be supplied to the index
    creation method when building an IVFFlat type index.

    Attributes:
        nlist (int): The number of IVF centroids that the index should use
    """

    n_lists: int


class IndexArgsHNSW(R2RSerializable):
    """A class for arguments that can optionally be supplied to the index
    creation method when building an HNSW type index.

    Ref: https://github.com/pgvector/pgvector#index-options

    Both attributes are Optional in case the user only wants to specify one and
    leave the other as default

    Attributes:
        m (int): Maximum number of connections per node per layer (default: 16)
        ef_construction (int): Size of the dynamic candidate list for
            constructing the graph (default: 64)
    """

    m: Optional[int] = 16
    ef_construction: Optional[int] = 64


class VectorTableName(str, Enum):
    """This enum represents the different tables where we store vectors."""

    CHUNKS = "chunks"
    ENTITIES_DOCUMENT = "documents_entities"
    GRAPHS_ENTITIES = "graphs_entities"
    # TODO: Add support for relationships
    # TRIPLES = "relationship"
    COMMUNITIES = "graphs_communities"

    def __str__(self) -> str:
        return self.value


class VectorQuantizationType(str, Enum):
    """An enum representing the types of quantization available for vectors.

    Attributes:
        FP32 (str): 32-bit floating point quantization.
        FP16 (str): 16-bit floating point quantization.
        INT1 (str): 1-bit integer quantization.
        SPARSE (str): Sparse vector quantization.
    """

    FP32 = "FP32"
    FP16 = "FP16"
    INT1 = "INT1"
    SPARSE = "SPARSE"

    def __str__(self) -> str:
        return self.value

    @property
    def db_type(self) -> str:
        db_type_mapping = {
            "FP32": "vector",
            "FP16": "halfvec",
            "INT1": "bit",
            "SPARSE": "sparsevec",
        }
        return db_type_mapping[self.value]


class VectorQuantizationSettings(R2RSerializable):
    quantization_type: VectorQuantizationType = Field(
        default=VectorQuantizationType.FP32
    )


class Vector(R2RSerializable):
    """A vector with the option to fix the number of elements."""

    data: list[float]
    type: VectorType = Field(default=VectorType.FIXED)
    length: int = Field(default=-1)

    def __init__(self, **data):
        super().__init__(**data)
        if (
            self.type == VectorType.FIXED
            and self.length > 0
            and len(self.data) != self.length
        ):
            raise ValueError(
                f"Vector must be exactly {self.length} elements long."
            )

    def __repr__(self) -> str:
        return (
            f"Vector(data={self.data}, type={self.type}, length={self.length})"
        )


class VectorEntry(R2RSerializable):
    """A vector entry that can be stored directly in supported vector
    databases."""

    id: UUID
    document_id: UUID
    owner_id: UUID
    collection_ids: list[UUID]
    vector: Vector
    text: str
    metadata: dict[str, Any]

    def __str__(self) -> str:
        """Return a string representation of the VectorEntry."""
        return (
            f"VectorEntry("
            f"chunk_id={self.id}, "
            f"document_id={self.document_id}, "
            f"owner_id={self.owner_id}, "
            f"collection_ids={self.collection_ids}, "
            f"vector={self.vector}, "
            f"text={self.text}, "
            f"metadata={self.metadata})"
        )

    def __repr__(self) -> str:
        """Return an unambiguous string representation of the VectorEntry."""
        return self.__str__()


class StorageResult(R2RSerializable):
    """A result of a storage operation."""

    success: bool
    document_id: UUID
    num_chunks: int = 0
    error_message: Optional[str] = None

    def __str__(self) -> str:
        """Return a string representation of the StorageResult."""
        return f"StorageResult(success={self.success}, error_message={self.error_message})"

    def __repr__(self) -> str:
        """Return an unambiguous string representation of the StorageResult."""
        return self.__str__()


class IndexConfig(BaseModel):
    name: Optional[str] = Field(default=None)
    table_name: Optional[str] = Field(default=VectorTableName.CHUNKS)
    index_method: Optional[str] = Field(default=IndexMethod.hnsw)
    index_measure: Optional[str] = Field(default=IndexMeasure.cosine_distance)
    index_arguments: Optional[IndexArgsIVFFlat | IndexArgsHNSW] = Field(
        default=None
    )
    index_name: Optional[str] = Field(default=None)
    index_column: Optional[str] = Field(default=None)
    concurrently: Optional[bool] = Field(default=True)