aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/shared/abstractions/document.py
blob: 513392f81c7bd487913f8fca59e532ef0f77431d (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
"""Abstractions for documents and their extractions."""

import json
import logging
from datetime import datetime
from enum import Enum
from typing import Any, Optional
from uuid import UUID, uuid4

from pydantic import Field

from .base import R2RSerializable
from .llm import GenerationConfig

logger = logging.getLogger()


class DocumentType(str, Enum):
    """Types of documents that can be stored."""

    # Audio
    MP3 = "mp3"

    # CSV
    CSV = "csv"

    # Email
    EML = "eml"
    MSG = "msg"
    P7S = "p7s"

    # EPUB
    EPUB = "epub"

    # Excel
    XLS = "xls"
    XLSX = "xlsx"

    # HTML
    HTML = "html"
    HTM = "htm"

    # Image
    BMP = "bmp"
    HEIC = "heic"
    JPEG = "jpeg"
    PNG = "png"
    TIFF = "tiff"
    JPG = "jpg"
    SVG = "svg"

    # Markdown
    MD = "md"

    # Org Mode
    ORG = "org"

    # Open Office
    ODT = "odt"

    # PDF
    PDF = "pdf"

    # Plain text
    TXT = "txt"
    JSON = "json"

    # PowerPoint
    PPT = "ppt"
    PPTX = "pptx"

    # reStructured Text
    RST = "rst"

    # Rich Text
    RTF = "rtf"

    # TSV
    TSV = "tsv"

    # Video/GIF
    GIF = "gif"

    # Word
    DOC = "doc"
    DOCX = "docx"

    # XML
    XML = "xml"


class Document(R2RSerializable):
    id: UUID = Field(default_factory=uuid4)
    collection_ids: list[UUID]
    owner_id: UUID
    document_type: DocumentType
    metadata: dict

    class Config:
        arbitrary_types_allowed = True
        ignore_extra = False
        json_encoders = {
            UUID: str,
        }
        populate_by_name = True


class IngestionStatus(str, Enum):
    """Status of document processing."""

    PENDING = "pending"
    PARSING = "parsing"
    EXTRACTING = "extracting"
    CHUNKING = "chunking"
    EMBEDDING = "embedding"
    AUGMENTING = "augmenting"
    STORING = "storing"
    ENRICHING = "enriching"

    FAILED = "failed"
    SUCCESS = "success"

    def __str__(self):
        return self.value

    @classmethod
    def table_name(cls) -> str:
        return "documents"

    @classmethod
    def id_column(cls) -> str:
        return "document_id"


class GraphExtractionStatus(str, Enum):
    """Status of graph creation per document."""

    PENDING = "pending"
    PROCESSING = "processing"
    SUCCESS = "success"
    ENRICHED = "enriched"
    FAILED = "failed"

    def __str__(self):
        return self.value

    @classmethod
    def table_name(cls) -> str:
        return "documents"

    @classmethod
    def id_column(cls) -> str:
        return "id"


class GraphConstructionStatus(str, Enum):
    """Status of graph enrichment per collection."""

    PENDING = "pending"
    PROCESSING = "processing"
    OUTDATED = "outdated"
    SUCCESS = "success"
    FAILED = "failed"

    def __str__(self):
        return self.value

    @classmethod
    def table_name(cls) -> str:
        return "collections"

    @classmethod
    def id_column(cls) -> str:
        return "id"


class DocumentResponse(R2RSerializable):
    """Base class for document information handling."""

    id: UUID
    collection_ids: list[UUID]
    owner_id: UUID
    document_type: DocumentType
    metadata: dict
    title: Optional[str] = None
    version: str
    size_in_bytes: Optional[int]
    ingestion_status: IngestionStatus = IngestionStatus.PENDING
    extraction_status: GraphExtractionStatus = GraphExtractionStatus.PENDING
    created_at: Optional[datetime] = None
    updated_at: Optional[datetime] = None
    ingestion_attempt_number: Optional[int] = None
    summary: Optional[str] = None
    summary_embedding: Optional[list[float]] = None  # Add optional embedding
    total_tokens: Optional[int] = None
    chunks: Optional[list] = None

    def convert_to_db_entry(self):
        """Prepare the document info for database entry, extracting certain
        fields from metadata."""
        now = datetime.now()

        # Format the embedding properly for Postgres vector type
        embedding = None
        if self.summary_embedding is not None:
            embedding = f"[{','.join(str(x) for x in self.summary_embedding)}]"

        return {
            "id": self.id,
            "collection_ids": self.collection_ids,
            "owner_id": self.owner_id,
            "document_type": self.document_type,
            "metadata": json.dumps(self.metadata),
            "title": self.title or "N/A",
            "version": self.version,
            "size_in_bytes": self.size_in_bytes,
            "ingestion_status": self.ingestion_status.value,
            "extraction_status": self.extraction_status.value,
            "created_at": self.created_at or now,
            "updated_at": self.updated_at or now,
            "ingestion_attempt_number": self.ingestion_attempt_number or 0,
            "summary": self.summary,
            "summary_embedding": embedding,
            "total_tokens": self.total_tokens or 0,  # ensure we pass 0 if None
        }

    class Config:
        json_schema_extra = {
            "example": {
                "id": "123e4567-e89b-12d3-a456-426614174000",
                "collection_ids": ["123e4567-e89b-12d3-a456-426614174000"],
                "owner_id": "123e4567-e89b-12d3-a456-426614174000",
                "document_type": "pdf",
                "metadata": {"title": "Sample Document"},
                "title": "Sample Document",
                "version": "1.0",
                "size_in_bytes": 123456,
                "ingestion_status": "pending",
                "extraction_status": "pending",
                "created_at": "2021-01-01T00:00:00",
                "updated_at": "2021-01-01T00:00:00",
                "ingestion_attempt_number": 0,
                "summary": "A summary of the document",
                "summary_embedding": [0.1, 0.2, 0.3],
                "total_tokens": 1000,
            }
        }


class UnprocessedChunk(R2RSerializable):
    """An extraction from a document."""

    id: Optional[UUID] = None
    document_id: Optional[UUID] = None
    collection_ids: list[UUID] = []
    metadata: dict = {}
    text: str


class UpdateChunk(R2RSerializable):
    """An extraction from a document."""

    id: UUID
    metadata: Optional[dict] = None
    text: str


class DocumentChunk(R2RSerializable):
    """An extraction from a document."""

    id: UUID
    document_id: UUID
    collection_ids: list[UUID]
    owner_id: UUID
    data: str | bytes
    metadata: dict


class RawChunk(R2RSerializable):
    text: str


class IngestionMode(str, Enum):
    hi_res = "hi-res"
    fast = "fast"
    custom = "custom"


class ChunkEnrichmentSettings(R2RSerializable):
    """Settings for chunk enrichment."""

    enable_chunk_enrichment: bool = Field(
        default=False,
        description="Whether to enable chunk enrichment or not",
    )
    n_chunks: int = Field(
        default=2,
        description="The number of preceding and succeeding chunks to include. Defaults to 2.",
    )
    generation_config: Optional[GenerationConfig] = Field(
        default=None,
        description="The generation config to use for chunk enrichment",
    )
    chunk_enrichment_prompt: Optional[str] = Field(
        default="chunk_enrichment",
        description="The prompt to use for chunk enrichment",
    )


class IngestionConfig(R2RSerializable):
    provider: str = "r2r"
    excluded_parsers: list[str] = ["mp4"]
    chunking_strategy: str = "recursive"
    chunk_enrichment_settings: ChunkEnrichmentSettings = (
        ChunkEnrichmentSettings()
    )
    extra_parsers: dict[str, Any] = {}

    audio_transcription_model: str = ""

    vision_img_prompt_name: str = "vision_img"

    vision_pdf_prompt_name: str = "vision_pdf"

    skip_document_summary: bool = False
    document_summary_system_prompt: str = "system"
    document_summary_task_prompt: str = "summary"
    chunks_for_document_summary: int = 128
    document_summary_model: str = ""

    @property
    def supported_providers(self) -> list[str]:
        return ["r2r", "unstructured_local", "unstructured_api"]

    def validate_config(self) -> None:
        if self.provider not in self.supported_providers:
            raise ValueError(f"Provider {self.provider} is not supported.")

    @classmethod
    def get_default(cls, mode: str) -> "IngestionConfig":
        """Return default ingestion configuration for a given mode."""
        if mode == "hi-res":
            # More thorough parsing, no skipping summaries, possibly larger `chunks_for_document_summary`.
            return cls(
                provider="r2r",
                excluded_parsers=["mp4"],
                chunk_enrichment_settings=ChunkEnrichmentSettings(),  # default
                extra_parsers={},
                audio_transcription_model="",
                vision_img_prompt_name="vision_img",
                vision_pdf_prompt_name="vision_pdf",
                skip_document_summary=False,
                document_summary_system_prompt="system",
                document_summary_task_prompt="summary",
                chunks_for_document_summary=256,  # larger for hi-res
                document_summary_model="",
            )

        elif mode == "fast":
            # Skip summaries and other enrichment steps for speed.
            return cls(
                provider="r2r",
                excluded_parsers=["mp4"],
                chunk_enrichment_settings=ChunkEnrichmentSettings(),  # default
                extra_parsers={},
                audio_transcription_model="",
                vision_img_prompt_name="vision_img",
                vision_pdf_prompt_name="vision_pdf",
                skip_document_summary=True,  # skip summaries
                document_summary_system_prompt="system",
                document_summary_task_prompt="summary",
                chunks_for_document_summary=64,
                document_summary_model="",
            )
        else:
            # For `custom` or any unrecognized mode, return a base config
            return cls()