aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/sdk/sync_methods/retrieval.py
blob: 4a927014b72295fca8165c432bdebea9e097a5da (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
import json
import uuid
from typing import Any, Generator, Optional

from shared.api.models import (
    WrappedAgentResponse,
    WrappedEmbeddingResponse,
    WrappedLLMChatCompletion,
    WrappedRAGResponse,
    WrappedSearchResponse,
)

from ..models import (
    AgentEvent,
    CitationData,
    CitationEvent,
    Delta,
    DeltaPayload,
    FinalAnswerData,
    FinalAnswerEvent,
    GenerationConfig,
    Message,
    MessageData,
    MessageDelta,
    MessageEvent,
    SearchMode,
    SearchResultsData,
    SearchResultsEvent,
    SearchSettings,
    ThinkingData,
    ThinkingEvent,
    ToolCallData,
    ToolCallEvent,
    ToolResultData,
    ToolResultEvent,
    UnknownEvent,
)


def parse_retrieval_event(raw: dict) -> Optional[AgentEvent]:
    """
    Convert a raw SSE event dict into a typed Pydantic model.

    Example raw dict:
        {
          "event": "message",
          "data": "{\"id\": \"msg_partial\", \"object\": \"agent.message.delta\", \"delta\": {...}}"
        }
    """
    event_type = raw.get("event", "unknown")

    # If event_type == "done", we usually return None to signal the SSE stream is finished.
    if event_type == "done":
        return None

    # The SSE "data" is JSON-encoded, so parse it
    data_str = raw.get("data", "")
    try:
        data_obj = json.loads(data_str)
    except json.JSONDecodeError as e:
        # You can decide whether to raise or return UnknownEvent
        raise ValueError(f"Could not parse JSON in SSE event data: {e}") from e

    # Now branch on event_type to build the right Pydantic model
    if event_type == "search_results":
        return SearchResultsEvent(
            event=event_type,
            data=SearchResultsData(**data_obj),
        )
    elif event_type == "message":
        # Parse nested delta structure manually before creating MessageData
        if "delta" in data_obj and isinstance(data_obj["delta"], dict):
            delta_dict = data_obj["delta"]

            # Convert content items to MessageDelta objects
            if "content" in delta_dict and isinstance(
                delta_dict["content"], list
            ):
                parsed_content = []
                for item in delta_dict["content"]:
                    if isinstance(item, dict):
                        # Parse payload to DeltaPayload
                        if "payload" in item and isinstance(
                            item["payload"], dict
                        ):
                            payload_dict = item["payload"]
                            item["payload"] = DeltaPayload(**payload_dict)
                        parsed_content.append(MessageDelta(**item))

                # Replace with parsed content
                delta_dict["content"] = parsed_content

            # Create properly typed Delta object
            data_obj["delta"] = Delta(**delta_dict)

        return MessageEvent(
            event=event_type,
            data=MessageData(**data_obj),
        )
    elif event_type == "citation":
        return CitationEvent(event=event_type, data=CitationData(**data_obj))
    elif event_type == "tool_call":
        return ToolCallEvent(event=event_type, data=ToolCallData(**data_obj))
    elif event_type == "tool_result":
        return ToolResultEvent(
            event=event_type, data=ToolResultData(**data_obj)
        )
    elif event_type == "thinking":
        # Parse nested delta structure manually before creating ThinkingData
        if "delta" in data_obj and isinstance(data_obj["delta"], dict):
            delta_dict = data_obj["delta"]

            # Convert content items to MessageDelta objects
            if "content" in delta_dict and isinstance(
                delta_dict["content"], list
            ):
                parsed_content = []
                for item in delta_dict["content"]:
                    if isinstance(item, dict):
                        # Parse payload to DeltaPayload
                        if "payload" in item and isinstance(
                            item["payload"], dict
                        ):
                            payload_dict = item["payload"]
                            item["payload"] = DeltaPayload(**payload_dict)
                        parsed_content.append(MessageDelta(**item))

                # Replace with parsed content
                delta_dict["content"] = parsed_content

            # Create properly typed Delta object
            data_obj["delta"] = Delta(**delta_dict)

        return ThinkingEvent(
            event=event_type,
            data=ThinkingData(**data_obj),
        )
    elif event_type == "final_answer":
        return FinalAnswerEvent(
            event=event_type, data=FinalAnswerData(**data_obj)
        )
    else:
        # Fallback if it doesn't match any known event
        return UnknownEvent(
            event=event_type,
            data=data_obj,
        )


def search_arg_parser(
    query: str,
    search_mode: Optional[str | SearchMode] = "custom",
    search_settings: Optional[dict | SearchSettings] = None,
) -> dict:
    if search_mode and not isinstance(search_mode, str):
        search_mode = search_mode.value

    if search_settings and not isinstance(search_settings, dict):
        search_settings = search_settings.model_dump()

    data: dict[str, Any] = {
        "query": query,
        "search_settings": search_settings,
    }
    if search_mode:
        data["search_mode"] = search_mode

    return data


def completion_arg_parser(
    messages: list[dict | Message],
    generation_config: Optional[dict | GenerationConfig] = None,
) -> dict:
    # FIXME: Needs a proper return type
    cast_messages: list[Message] = [
        Message(**msg) if isinstance(msg, dict) else msg for msg in messages
    ]

    if generation_config and not isinstance(generation_config, dict):
        generation_config = generation_config.model_dump()

    data: dict[str, Any] = {
        "messages": [msg.model_dump() for msg in cast_messages],
        "generation_config": generation_config,
    }
    return data


def embedding_arg_parser(
    text: str,
) -> dict:
    data: dict[str, Any] = {
        "text": text,
    }
    return data


def rag_arg_parser(
    query: str,
    rag_generation_config: Optional[dict | GenerationConfig] = None,
    search_mode: Optional[str | SearchMode] = "custom",
    search_settings: Optional[dict | SearchSettings] = None,
    task_prompt: Optional[str] = None,
    include_title_if_available: Optional[bool] = False,
    include_web_search: Optional[bool] = False,
) -> dict:
    if rag_generation_config and not isinstance(rag_generation_config, dict):
        rag_generation_config = rag_generation_config.model_dump()
    if search_settings and not isinstance(search_settings, dict):
        search_settings = search_settings.model_dump()

    data: dict[str, Any] = {
        "query": query,
        "rag_generation_config": rag_generation_config,
        "search_settings": search_settings,
        "task_prompt": task_prompt,
        "include_title_if_available": include_title_if_available,
        "include_web_search": include_web_search,
    }
    if search_mode:
        data["search_mode"] = search_mode
    return data


def agent_arg_parser(
    message: Optional[dict | Message] = None,
    rag_generation_config: Optional[dict | GenerationConfig] = None,
    research_generation_config: Optional[dict | GenerationConfig] = None,
    search_mode: Optional[str | SearchMode] = "custom",
    search_settings: Optional[dict | SearchSettings] = None,
    task_prompt: Optional[str] = None,
    include_title_if_available: Optional[bool] = True,
    conversation_id: Optional[str | uuid.UUID] = None,
    max_tool_context_length: Optional[int] = None,
    use_system_context: Optional[bool] = True,
    rag_tools: Optional[list[str]] = None,
    research_tools: Optional[list[str]] = None,
    tools: Optional[list[str]] = None,  # For backward compatibility
    mode: Optional[str] = "rag",
    needs_initial_conversation_name: Optional[bool] = None,
) -> dict:
    if rag_generation_config and not isinstance(rag_generation_config, dict):
        rag_generation_config = rag_generation_config.model_dump()
    if research_generation_config and not isinstance(
        research_generation_config, dict
    ):
        research_generation_config = research_generation_config.model_dump()
    if search_settings and not isinstance(search_settings, dict):
        search_settings = search_settings.model_dump()

    data: dict[str, Any] = {
        "rag_generation_config": rag_generation_config or {},
        "search_settings": search_settings,
        "task_prompt": task_prompt,
        "include_title_if_available": include_title_if_available,
        "conversation_id": (str(conversation_id) if conversation_id else None),
        "max_tool_context_length": max_tool_context_length,
        "use_system_context": use_system_context,
        "mode": mode,
    }

    # Handle generation configs based on mode
    if research_generation_config and mode == "research":
        data["research_generation_config"] = research_generation_config

    # Handle tool configurations
    if rag_tools:
        data["rag_tools"] = rag_tools
    if research_tools:
        data["research_tools"] = research_tools
    if tools:  # Backward compatibility
        data["tools"] = tools

    if search_mode:
        data["search_mode"] = search_mode

    if needs_initial_conversation_name:
        data["needs_initial_conversation_name"] = (
            needs_initial_conversation_name
        )

    if message:
        cast_message: Message = (
            Message(**message) if isinstance(message, dict) else message
        )
        data["message"] = cast_message.model_dump()
    return data


class RetrievalSDK:
    """SDK for interacting with documents in the v3 API."""

    def __init__(self, client):
        self.client = client

    def search(
        self,
        query: str,
        search_mode: Optional[str | SearchMode] = "custom",
        search_settings: Optional[dict | SearchSettings] = None,
    ) -> WrappedSearchResponse:
        """Conduct a vector and/or graph search.

        Args:
            query (str): The query to search for.
            search_settings (Optional[dict, SearchSettings]]): Vector search settings.

        Returns:
            WrappedSearchResponse
        """

        response_dict = self.client._make_request(
            "POST",
            "retrieval/search",
            json=search_arg_parser(
                query=query,
                search_mode=search_mode,
                search_settings=search_settings,
            ),
            version="v3",
        )

        return WrappedSearchResponse(**response_dict)

    def completion(
        self,
        messages: list[dict | Message],
        generation_config: Optional[dict | GenerationConfig] = None,
    ) -> WrappedLLMChatCompletion:
        cast_messages: list[Message] = [
            Message(**msg) if isinstance(msg, dict) else msg
            for msg in messages
        ]

        if generation_config and not isinstance(generation_config, dict):
            generation_config = generation_config.model_dump()

        data: dict[str, Any] = {
            "messages": [msg.model_dump() for msg in cast_messages],
            "generation_config": generation_config,
        }
        response_dict = self.client._make_request(
            "POST",
            "retrieval/completion",
            json=completion_arg_parser(messages, generation_config),
            version="v3",
        )

        return WrappedLLMChatCompletion(**response_dict)

    def embedding(
        self,
        text: str,
    ) -> WrappedEmbeddingResponse:
        response_dict = self.client._make_request(
            "POST",
            "retrieval/embedding",
            data=embedding_arg_parser(text),
            version="v3",
        )

        return WrappedEmbeddingResponse(**response_dict)

    def rag(
        self,
        query: str,
        rag_generation_config: Optional[dict | GenerationConfig] = None,
        search_mode: Optional[str | SearchMode] = "custom",
        search_settings: Optional[dict | SearchSettings] = None,
        task_prompt: Optional[str] = None,
        include_title_if_available: Optional[bool] = False,
        include_web_search: Optional[bool] = False,
    ) -> (
        WrappedRAGResponse
        | Generator[
            ThinkingEvent
            | SearchResultsEvent
            | MessageEvent
            | CitationEvent
            | FinalAnswerEvent
            | ToolCallEvent
            | ToolResultEvent
            | UnknownEvent
            | None,
            None,
            None,
        ]
    ):
        """Conducts a Retrieval Augmented Generation (RAG) search with the
        given query.

        Args:
            query (str): The query to search for.
            rag_generation_config (Optional[dict | GenerationConfig]): RAG generation configuration.
            search_settings (Optional[dict | SearchSettings]): Vector search settings.
            task_prompt (Optional[str]): Task prompt override.
            include_title_if_available (Optional[bool]): Include the title if available.

        Returns:
            WrappedRAGResponse | AsyncGenerator[RAGResponse, None]: The RAG response
        """
        data = rag_arg_parser(
            query=query,
            rag_generation_config=rag_generation_config,
            search_mode=search_mode,
            search_settings=search_settings,
            task_prompt=task_prompt,
            include_title_if_available=include_title_if_available,
            include_web_search=include_web_search,
        )
        rag_generation_config = data.get("rag_generation_config")
        if rag_generation_config and rag_generation_config.get(  # type: ignore
            "stream", False
        ):
            raw_stream = self.client._make_streaming_request(
                "POST",
                "retrieval/rag",
                json=data,
                version="v3",
            )
            # Wrap the raw stream to parse each event
            return (parse_retrieval_event(event) for event in raw_stream)

        response_dict = self.client._make_request(
            "POST",
            "retrieval/rag",
            json=data,
            version="v3",
        )

        return WrappedRAGResponse(**response_dict)

    def agent(
        self,
        message: Optional[dict | Message] = None,
        rag_generation_config: Optional[dict | GenerationConfig] = None,
        research_generation_config: Optional[dict | GenerationConfig] = None,
        search_mode: Optional[str | SearchMode] = "custom",
        search_settings: Optional[dict | SearchSettings] = None,
        task_prompt: Optional[str] = None,
        include_title_if_available: Optional[bool] = True,
        conversation_id: Optional[str | uuid.UUID] = None,
        max_tool_context_length: Optional[int] = None,
        use_system_context: Optional[bool] = True,
        # Tool configurations
        rag_tools: Optional[list[str]] = None,
        research_tools: Optional[list[str]] = None,
        tools: Optional[list[str]] = None,  # For backward compatibility
        mode: Optional[str] = "rag",
        needs_initial_conversation_name: Optional[bool] = None,
    ) -> (
        WrappedAgentResponse
        | Generator[
            ThinkingEvent
            | SearchResultsEvent
            | MessageEvent
            | CitationEvent
            | FinalAnswerEvent
            | ToolCallEvent
            | ToolResultEvent
            | UnknownEvent
            | None,
            None,
            None,
        ]
    ):
        """Performs a single turn in a conversation with a RAG agent.

        Args:
            message (Optional[dict | Message]): The message to send to the agent.
            rag_generation_config (Optional[dict | GenerationConfig]): Configuration for RAG generation in 'rag' mode.
            research_generation_config (Optional[dict | GenerationConfig]): Configuration for generation in 'research' mode.
            search_mode (Optional[str | SearchMode]): Pre-configured search modes: "basic", "advanced", or "custom".
            search_settings (Optional[dict | SearchSettings]): Vector search settings.
            task_prompt (Optional[str]): Task prompt override.
            include_title_if_available (Optional[bool]): Include the title if available.
            conversation_id (Optional[str | uuid.UUID]): ID of the conversation for maintaining context.
            max_tool_context_length (Optional[int]): Maximum context length for tool replies.
            use_system_context (Optional[bool]): Whether to use system context in the prompt.
            rag_tools (Optional[list[str]]): List of tools to enable for RAG mode.
                Available tools: "search_file_knowledge", "content", "web_search", "web_scrape", "search_file_descriptions".
            research_tools (Optional[list[str]]): List of tools to enable for Research mode.
                Available tools: "rag", "reasoning", "critique", "python_executor".
            tools (Optional[list[str]]): Deprecated. List of tools to execute.
            mode (Optional[str]): Mode to use for generation: "rag" for standard retrieval or "research" for deep analysis.
                Defaults to "rag".

        Returns:
            WrappedAgentResponse | AsyncGenerator[AgentEvent, None]: The agent response.
        """
        data = agent_arg_parser(
            message=message,
            rag_generation_config=rag_generation_config,
            research_generation_config=research_generation_config,
            search_mode=search_mode,
            search_settings=search_settings,
            task_prompt=task_prompt,
            include_title_if_available=include_title_if_available,
            conversation_id=conversation_id,
            max_tool_context_length=max_tool_context_length,
            use_system_context=use_system_context,
            rag_tools=rag_tools,
            research_tools=research_tools,
            tools=tools,
            mode=mode,
            needs_initial_conversation_name=needs_initial_conversation_name,
        )

        # Determine if streaming is enabled
        if search_mode:
            data["search_mode"] = search_mode

        if message:
            cast_message: Message = (
                Message(**message) if isinstance(message, dict) else message
            )
            data["message"] = cast_message.model_dump()

        is_stream = False
        if mode != "research":
            if rag_generation_config:
                if isinstance(rag_generation_config, dict):
                    is_stream = rag_generation_config.get(  # type: ignore
                        "stream", False
                    )
                else:
                    is_stream = rag_generation_config.stream
        else:
            if research_generation_config:
                if isinstance(research_generation_config, dict):
                    is_stream = research_generation_config.get(  # type: ignore
                        "stream", False
                    )
                else:
                    is_stream = research_generation_config.stream

        if is_stream:
            raw_stream = self.client._make_streaming_request(
                "POST",
                "retrieval/agent",
                json=data,
                version="v3",
            )
            return (parse_retrieval_event(event) for event in raw_stream)

        response_dict = self.client._make_request(
            "POST",
            "retrieval/agent",
            json=data,
            version="v3",
        )

        return WrappedAgentResponse(**response_dict)