1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
|
import collections
import math
from functools import lru_cache
from typing import (
TYPE_CHECKING,
Dict,
Iterable,
Iterator,
Mapping,
Sequence,
TypeVar,
Union,
)
from pip._vendor.resolvelib.providers import AbstractProvider
from .base import Candidate, Constraint, Requirement
from .candidates import REQUIRES_PYTHON_IDENTIFIER
from .factory import Factory
if TYPE_CHECKING:
from pip._vendor.resolvelib.providers import Preference
from pip._vendor.resolvelib.resolvers import RequirementInformation
PreferenceInformation = RequirementInformation[Requirement, Candidate]
_ProviderBase = AbstractProvider[Requirement, Candidate, str]
else:
_ProviderBase = AbstractProvider
# Notes on the relationship between the provider, the factory, and the
# candidate and requirement classes.
#
# The provider is a direct implementation of the resolvelib class. Its role
# is to deliver the API that resolvelib expects.
#
# Rather than work with completely abstract "requirement" and "candidate"
# concepts as resolvelib does, pip has concrete classes implementing these two
# ideas. The API of Requirement and Candidate objects are defined in the base
# classes, but essentially map fairly directly to the equivalent provider
# methods. In particular, `find_matches` and `is_satisfied_by` are
# requirement methods, and `get_dependencies` is a candidate method.
#
# The factory is the interface to pip's internal mechanisms. It is stateless,
# and is created by the resolver and held as a property of the provider. It is
# responsible for creating Requirement and Candidate objects, and provides
# services to those objects (access to pip's finder and preparer).
D = TypeVar("D")
V = TypeVar("V")
def _get_with_identifier(
mapping: Mapping[str, V],
identifier: str,
default: D,
) -> Union[D, V]:
"""Get item from a package name lookup mapping with a resolver identifier.
This extra logic is needed when the target mapping is keyed by package
name, which cannot be directly looked up with an identifier (which may
contain requested extras). Additional logic is added to also look up a value
by "cleaning up" the extras from the identifier.
"""
if identifier in mapping:
return mapping[identifier]
# HACK: Theoretically we should check whether this identifier is a valid
# "NAME[EXTRAS]" format, and parse out the name part with packaging or
# some regular expression. But since pip's resolver only spits out three
# kinds of identifiers: normalized PEP 503 names, normalized names plus
# extras, and Requires-Python, we can cheat a bit here.
name, open_bracket, _ = identifier.partition("[")
if open_bracket and name in mapping:
return mapping[name]
return default
class PipProvider(_ProviderBase):
"""Pip's provider implementation for resolvelib.
:params constraints: A mapping of constraints specified by the user. Keys
are canonicalized project names.
:params ignore_dependencies: Whether the user specified ``--no-deps``.
:params upgrade_strategy: The user-specified upgrade strategy.
:params user_requested: A set of canonicalized package names that the user
supplied for pip to install/upgrade.
"""
def __init__(
self,
factory: Factory,
constraints: Dict[str, Constraint],
ignore_dependencies: bool,
upgrade_strategy: str,
user_requested: Dict[str, int],
) -> None:
self._factory = factory
self._constraints = constraints
self._ignore_dependencies = ignore_dependencies
self._upgrade_strategy = upgrade_strategy
self._user_requested = user_requested
self._known_depths: Dict[str, float] = collections.defaultdict(lambda: math.inf)
def identify(self, requirement_or_candidate: Union[Requirement, Candidate]) -> str:
return requirement_or_candidate.name
def get_preference(
self,
identifier: str,
resolutions: Mapping[str, Candidate],
candidates: Mapping[str, Iterator[Candidate]],
information: Mapping[str, Iterable["PreferenceInformation"]],
backtrack_causes: Sequence["PreferenceInformation"],
) -> "Preference":
"""Produce a sort key for given requirement based on preference.
The lower the return value is, the more preferred this group of
arguments is.
Currently pip considers the following in order:
* Prefer if any of the known requirements is "direct", e.g. points to an
explicit URL.
* If equal, prefer if any requirement is "pinned", i.e. contains
operator ``===`` or ``==``.
* If equal, calculate an approximate "depth" and resolve requirements
closer to the user-specified requirements first. If the depth cannot
by determined (eg: due to no matching parents), it is considered
infinite.
* Order user-specified requirements by the order they are specified.
* If equal, prefers "non-free" requirements, i.e. contains at least one
operator, such as ``>=`` or ``<``.
* If equal, order alphabetically for consistency (helps debuggability).
"""
try:
next(iter(information[identifier]))
except StopIteration:
# There is no information for this identifier, so there's no known
# candidates.
has_information = False
else:
has_information = True
if has_information:
lookups = (r.get_candidate_lookup() for r, _ in information[identifier])
candidate, ireqs = zip(*lookups)
else:
candidate, ireqs = None, ()
operators = [
specifier.operator
for specifier_set in (ireq.specifier for ireq in ireqs if ireq)
for specifier in specifier_set
]
direct = candidate is not None
pinned = any(op[:2] == "==" for op in operators)
unfree = bool(operators)
try:
requested_order: Union[int, float] = self._user_requested[identifier]
except KeyError:
requested_order = math.inf
if has_information:
parent_depths = (
self._known_depths[parent.name] if parent is not None else 0.0
for _, parent in information[identifier]
)
inferred_depth = min(d for d in parent_depths) + 1.0
else:
inferred_depth = math.inf
else:
inferred_depth = 1.0
self._known_depths[identifier] = inferred_depth
requested_order = self._user_requested.get(identifier, math.inf)
# Requires-Python has only one candidate and the check is basically
# free, so we always do it first to avoid needless work if it fails.
requires_python = identifier == REQUIRES_PYTHON_IDENTIFIER
# Prefer the causes of backtracking on the assumption that the problem
# resolving the dependency tree is related to the failures that caused
# the backtracking
backtrack_cause = self.is_backtrack_cause(identifier, backtrack_causes)
return (
not requires_python,
not direct,
not pinned,
not backtrack_cause,
inferred_depth,
requested_order,
not unfree,
identifier,
)
def find_matches(
self,
identifier: str,
requirements: Mapping[str, Iterator[Requirement]],
incompatibilities: Mapping[str, Iterator[Candidate]],
) -> Iterable[Candidate]:
def _eligible_for_upgrade(identifier: str) -> bool:
"""Are upgrades allowed for this project?
This checks the upgrade strategy, and whether the project was one
that the user specified in the command line, in order to decide
whether we should upgrade if there's a newer version available.
(Note that we don't need access to the `--upgrade` flag, because
an upgrade strategy of "to-satisfy-only" means that `--upgrade`
was not specified).
"""
if self._upgrade_strategy == "eager":
return True
elif self._upgrade_strategy == "only-if-needed":
user_order = _get_with_identifier(
self._user_requested,
identifier,
default=None,
)
return user_order is not None
return False
constraint = _get_with_identifier(
self._constraints,
identifier,
default=Constraint.empty(),
)
return self._factory.find_candidates(
identifier=identifier,
requirements=requirements,
constraint=constraint,
prefers_installed=(not _eligible_for_upgrade(identifier)),
incompatibilities=incompatibilities,
is_satisfied_by=self.is_satisfied_by,
)
@lru_cache(maxsize=None)
def is_satisfied_by(self, requirement: Requirement, candidate: Candidate) -> bool:
return requirement.is_satisfied_by(candidate)
def get_dependencies(self, candidate: Candidate) -> Sequence[Requirement]:
with_requires = not self._ignore_dependencies
return [r for r in candidate.iter_dependencies(with_requires) if r is not None]
@staticmethod
def is_backtrack_cause(
identifier: str, backtrack_causes: Sequence["PreferenceInformation"]
) -> bool:
for backtrack_cause in backtrack_causes:
if identifier == backtrack_cause.requirement.name:
return True
if backtrack_cause.parent and identifier == backtrack_cause.parent.name:
return True
return False
|