aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/networkx/tests/test_all_random_functions.py
blob: 5e458150d1887f52d1aef1c6d2acacf1554f80da (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import pytest

np = pytest.importorskip("numpy")
import random

import networkx as nx
from networkx.algorithms import approximation as approx
from networkx.algorithms import threshold

progress = 0

# store the random numbers after setting a global seed
np.random.seed(42)
np_rv = np.random.rand()
random.seed(42)
py_rv = random.random()


def t(f, *args, **kwds):
    """call one function and check if global RNG changed"""
    global progress
    progress += 1
    print(progress, ",", end="")

    f(*args, **kwds)

    after_np_rv = np.random.rand()
    # if np_rv != after_np_rv:
    #    print(np_rv, after_np_rv, "don't match np!")
    assert np_rv == after_np_rv
    np.random.seed(42)

    after_py_rv = random.random()
    # if py_rv != after_py_rv:
    #    print(py_rv, after_py_rv, "don't match py!")
    assert py_rv == after_py_rv
    random.seed(42)


def run_all_random_functions(seed):
    n = 20
    m = 10
    k = l = 2
    s = v = 10
    p = q = p1 = p2 = p_in = p_out = 0.4
    alpha = radius = theta = 0.75
    sizes = (20, 20, 10)
    colors = [1, 2, 3]
    G = nx.barbell_graph(12, 20)
    H = nx.cycle_graph(3)
    H.add_weighted_edges_from((u, v, 0.2) for u, v in H.edges)
    deg_sequence = [3, 2, 1, 3, 2, 1, 3, 2, 1, 2, 1, 2, 1]
    in_degree_sequence = w = sequence = aseq = bseq = deg_sequence

    # print("starting...")
    t(nx.maximal_independent_set, G, seed=seed)
    t(nx.rich_club_coefficient, G, seed=seed, normalized=False)
    t(nx.random_reference, G, seed=seed)
    t(nx.lattice_reference, G, seed=seed)
    t(nx.sigma, G, 1, 2, seed=seed)
    t(nx.omega, G, 1, 2, seed=seed)
    # print("out of smallworld.py")
    t(nx.double_edge_swap, G, seed=seed)
    # print("starting connected_double_edge_swap")
    t(nx.connected_double_edge_swap, nx.complete_graph(9), seed=seed)
    # print("ending connected_double_edge_swap")
    t(nx.random_layout, G, seed=seed)
    t(nx.fruchterman_reingold_layout, G, seed=seed)
    t(nx.algebraic_connectivity, G, seed=seed)
    t(nx.fiedler_vector, G, seed=seed)
    t(nx.spectral_ordering, G, seed=seed)
    # print('starting average_clustering')
    t(approx.average_clustering, G, seed=seed)
    t(approx.simulated_annealing_tsp, H, "greedy", source=1, seed=seed)
    t(approx.threshold_accepting_tsp, H, "greedy", source=1, seed=seed)
    t(
        approx.traveling_salesman_problem,
        H,
        method=lambda G, weight: approx.simulated_annealing_tsp(
            G, "greedy", weight, seed=seed
        ),
    )
    t(
        approx.traveling_salesman_problem,
        H,
        method=lambda G, weight: approx.threshold_accepting_tsp(
            G, "greedy", weight, seed=seed
        ),
    )
    t(nx.betweenness_centrality, G, seed=seed)
    t(nx.edge_betweenness_centrality, G, seed=seed)
    t(nx.approximate_current_flow_betweenness_centrality, G, seed=seed)
    # print("kernighan")
    t(nx.algorithms.community.kernighan_lin_bisection, G, seed=seed)
    # nx.algorithms.community.asyn_lpa_communities(G, seed=seed)
    t(nx.algorithms.tree.greedy_branching, G, seed=seed)
    # print('done with graph argument functions')

    t(nx.spectral_graph_forge, G, alpha, seed=seed)
    t(nx.algorithms.community.asyn_fluidc, G, k, max_iter=1, seed=seed)
    t(
        nx.algorithms.connectivity.edge_augmentation.greedy_k_edge_augmentation,
        G,
        k,
        seed=seed,
    )
    t(nx.algorithms.coloring.strategy_random_sequential, G, colors, seed=seed)

    cs = ["d", "i", "i", "d", "d", "i"]
    t(threshold.swap_d, cs, seed=seed)
    t(nx.configuration_model, deg_sequence, seed=seed)
    t(
        nx.directed_configuration_model,
        in_degree_sequence,
        in_degree_sequence,
        seed=seed,
    )
    t(nx.expected_degree_graph, w, seed=seed)
    t(nx.random_degree_sequence_graph, sequence, seed=seed)
    joint_degrees = {
        1: {4: 1},
        2: {2: 2, 3: 2, 4: 2},
        3: {2: 2, 4: 1},
        4: {1: 1, 2: 2, 3: 1},
    }
    t(nx.joint_degree_graph, joint_degrees, seed=seed)
    joint_degree_sequence = [
        (1, 0),
        (1, 0),
        (1, 0),
        (2, 0),
        (1, 0),
        (2, 1),
        (0, 1),
        (0, 1),
    ]
    t(nx.random_clustered_graph, joint_degree_sequence, seed=seed)
    constructor = [(3, 3, 0.5), (10, 10, 0.7)]
    t(nx.random_shell_graph, constructor, seed=seed)
    t(nx.random_triad, G.to_directed(), seed=seed)
    mapping = {1: 0.4, 2: 0.3, 3: 0.3}
    t(nx.utils.random_weighted_sample, mapping, k, seed=seed)
    t(nx.utils.weighted_choice, mapping, seed=seed)
    t(nx.algorithms.bipartite.configuration_model, aseq, bseq, seed=seed)
    t(nx.algorithms.bipartite.preferential_attachment_graph, aseq, p, seed=seed)

    def kernel_integral(u, w, z):
        return z - w

    t(nx.random_kernel_graph, n, kernel_integral, seed=seed)

    sizes = [75, 75, 300]
    probs = [[0.25, 0.05, 0.02], [0.05, 0.35, 0.07], [0.02, 0.07, 0.40]]
    t(nx.stochastic_block_model, sizes, probs, seed=seed)
    t(nx.random_partition_graph, sizes, p_in, p_out, seed=seed)

    # print("starting generator functions")
    t(threshold.random_threshold_sequence, n, p, seed=seed)
    t(nx.tournament.random_tournament, n, seed=seed)
    t(nx.relaxed_caveman_graph, l, k, p, seed=seed)
    t(nx.planted_partition_graph, l, k, p_in, p_out, seed=seed)
    t(nx.gaussian_random_partition_graph, n, s, v, p_in, p_out, seed=seed)
    t(nx.gn_graph, n, seed=seed)
    t(nx.gnr_graph, n, p, seed=seed)
    t(nx.gnc_graph, n, seed=seed)
    t(nx.scale_free_graph, n, seed=seed)
    t(nx.directed.random_uniform_k_out_graph, n, k, seed=seed)
    t(nx.random_k_out_graph, n, k, alpha, seed=seed)
    N = 1000
    t(nx.partial_duplication_graph, N, n, p, q, seed=seed)
    t(nx.duplication_divergence_graph, n, p, seed=seed)
    t(nx.random_geometric_graph, n, radius, seed=seed)
    t(nx.soft_random_geometric_graph, n, radius, seed=seed)
    t(nx.geographical_threshold_graph, n, theta, seed=seed)
    t(nx.waxman_graph, n, seed=seed)
    t(nx.navigable_small_world_graph, n, seed=seed)
    t(nx.thresholded_random_geometric_graph, n, radius, theta, seed=seed)
    t(nx.uniform_random_intersection_graph, n, m, p, seed=seed)
    t(nx.k_random_intersection_graph, n, m, k, seed=seed)

    t(nx.general_random_intersection_graph, n, 2, [0.1, 0.5], seed=seed)
    t(nx.fast_gnp_random_graph, n, p, seed=seed)
    t(nx.gnp_random_graph, n, p, seed=seed)
    t(nx.dense_gnm_random_graph, n, m, seed=seed)
    t(nx.gnm_random_graph, n, m, seed=seed)
    t(nx.newman_watts_strogatz_graph, n, k, p, seed=seed)
    t(nx.watts_strogatz_graph, n, k, p, seed=seed)
    t(nx.connected_watts_strogatz_graph, n, k, p, seed=seed)
    t(nx.random_regular_graph, 3, n, seed=seed)
    t(nx.barabasi_albert_graph, n, m, seed=seed)
    t(nx.extended_barabasi_albert_graph, n, m, p, q, seed=seed)
    t(nx.powerlaw_cluster_graph, n, m, p, seed=seed)
    t(nx.random_lobster, n, p1, p2, seed=seed)
    t(nx.random_powerlaw_tree, n, seed=seed, tries=5000)
    t(nx.random_powerlaw_tree_sequence, 10, seed=seed, tries=5000)
    t(nx.random_labeled_tree, n, seed=seed)
    t(nx.utils.powerlaw_sequence, n, seed=seed)
    t(nx.utils.zipf_rv, 2.3, seed=seed)
    cdist = [0.2, 0.4, 0.5, 0.7, 0.9, 1.0]
    t(nx.utils.discrete_sequence, n, cdistribution=cdist, seed=seed)
    t(nx.algorithms.bipartite.random_graph, n, m, p, seed=seed)
    t(nx.algorithms.bipartite.gnmk_random_graph, n, m, k, seed=seed)
    LFR = nx.generators.LFR_benchmark_graph
    t(
        LFR,
        25,
        3,
        1.5,
        0.1,
        average_degree=3,
        min_community=10,
        seed=seed,
        max_community=20,
    )
    t(nx.random_internet_as_graph, n, seed=seed)
    # print("done")


# choose to test an integer seed, or whether a single RNG can be everywhere
# np_rng = np.random.RandomState(14)
# seed = np_rng
# seed = 14


@pytest.mark.slow
# print("NetworkX Version:", nx.__version__)
def test_rng_interface():
    global progress

    # try different kinds of seeds
    for seed in [14, np.random.RandomState(14)]:
        np.random.seed(42)
        random.seed(42)
        run_all_random_functions(seed)
        progress = 0

        # check that both global RNGs are unaffected
        after_np_rv = np.random.rand()
        #        if np_rv != after_np_rv:
        #            print(np_rv, after_np_rv, "don't match np!")
        assert np_rv == after_np_rv
        after_py_rv = random.random()
        #        if py_rv != after_py_rv:
        #            print(py_rv, after_py_rv, "don't match py!")
        assert py_rv == after_py_rv


#        print("\nDone testing seed:", seed)

# test_rng_interface()