1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
|
import pytest
import networkx as nx
from networkx.generators import line
from networkx.utils import edges_equal
class TestGeneratorLine:
def test_star(self):
G = nx.star_graph(5)
L = nx.line_graph(G)
assert nx.is_isomorphic(L, nx.complete_graph(5))
def test_path(self):
G = nx.path_graph(5)
L = nx.line_graph(G)
assert nx.is_isomorphic(L, nx.path_graph(4))
def test_cycle(self):
G = nx.cycle_graph(5)
L = nx.line_graph(G)
assert nx.is_isomorphic(L, G)
def test_digraph1(self):
G = nx.DiGraph([(0, 1), (0, 2), (0, 3)])
L = nx.line_graph(G)
# no edge graph, but with nodes
assert L.adj == {(0, 1): {}, (0, 2): {}, (0, 3): {}}
def test_multigraph1(self):
G = nx.MultiGraph([(0, 1), (0, 1), (1, 0), (0, 2), (2, 0), (0, 3)])
L = nx.line_graph(G)
# no edge graph, but with nodes
assert edges_equal(
L.edges(),
[
((0, 3, 0), (0, 1, 0)),
((0, 3, 0), (0, 2, 0)),
((0, 3, 0), (0, 2, 1)),
((0, 3, 0), (0, 1, 1)),
((0, 3, 0), (0, 1, 2)),
((0, 1, 0), (0, 1, 1)),
((0, 1, 0), (0, 2, 0)),
((0, 1, 0), (0, 1, 2)),
((0, 1, 0), (0, 2, 1)),
((0, 1, 1), (0, 1, 2)),
((0, 1, 1), (0, 2, 0)),
((0, 1, 1), (0, 2, 1)),
((0, 1, 2), (0, 2, 0)),
((0, 1, 2), (0, 2, 1)),
((0, 2, 0), (0, 2, 1)),
],
)
def test_multigraph2(self):
G = nx.MultiGraph([(1, 2), (2, 1)])
L = nx.line_graph(G)
assert edges_equal(L.edges(), [((1, 2, 0), (1, 2, 1))])
def test_multidigraph1(self):
G = nx.MultiDiGraph([(1, 2), (2, 1)])
L = nx.line_graph(G)
assert edges_equal(L.edges(), [((1, 2, 0), (2, 1, 0)), ((2, 1, 0), (1, 2, 0))])
def test_multidigraph2(self):
G = nx.MultiDiGraph([(0, 1), (0, 1), (0, 1), (1, 2)])
L = nx.line_graph(G)
assert edges_equal(
L.edges(),
[((0, 1, 0), (1, 2, 0)), ((0, 1, 1), (1, 2, 0)), ((0, 1, 2), (1, 2, 0))],
)
def test_digraph2(self):
G = nx.DiGraph([(0, 1), (1, 2), (2, 3)])
L = nx.line_graph(G)
assert edges_equal(L.edges(), [((0, 1), (1, 2)), ((1, 2), (2, 3))])
def test_create1(self):
G = nx.DiGraph([(0, 1), (1, 2), (2, 3)])
L = nx.line_graph(G, create_using=nx.Graph())
assert edges_equal(L.edges(), [((0, 1), (1, 2)), ((1, 2), (2, 3))])
def test_create2(self):
G = nx.Graph([(0, 1), (1, 2), (2, 3)])
L = nx.line_graph(G, create_using=nx.DiGraph())
assert edges_equal(L.edges(), [((0, 1), (1, 2)), ((1, 2), (2, 3))])
class TestGeneratorInverseLine:
def test_example(self):
G = nx.Graph()
G_edges = [
[1, 2],
[1, 3],
[1, 4],
[1, 5],
[2, 3],
[2, 5],
[2, 6],
[2, 7],
[3, 4],
[3, 5],
[6, 7],
[6, 8],
[7, 8],
]
G.add_edges_from(G_edges)
H = nx.inverse_line_graph(G)
solution = nx.Graph()
solution_edges = [
("a", "b"),
("a", "c"),
("a", "d"),
("a", "e"),
("c", "d"),
("e", "f"),
("e", "g"),
("f", "g"),
]
solution.add_edges_from(solution_edges)
assert nx.is_isomorphic(H, solution)
def test_example_2(self):
G = nx.Graph()
G_edges = [[1, 2], [1, 3], [2, 3], [3, 4], [3, 5], [4, 5]]
G.add_edges_from(G_edges)
H = nx.inverse_line_graph(G)
solution = nx.Graph()
solution_edges = [("a", "c"), ("b", "c"), ("c", "d"), ("d", "e"), ("d", "f")]
solution.add_edges_from(solution_edges)
assert nx.is_isomorphic(H, solution)
def test_pair(self):
G = nx.path_graph(2)
H = nx.inverse_line_graph(G)
solution = nx.path_graph(3)
assert nx.is_isomorphic(H, solution)
def test_line(self):
G = nx.path_graph(5)
solution = nx.path_graph(6)
H = nx.inverse_line_graph(G)
assert nx.is_isomorphic(H, solution)
def test_triangle_graph(self):
G = nx.complete_graph(3)
H = nx.inverse_line_graph(G)
alternative_solution = nx.Graph()
alternative_solution.add_edges_from([[0, 1], [0, 2], [0, 3]])
# there are two alternative inverse line graphs for this case
# so long as we get one of them the test should pass
assert nx.is_isomorphic(H, G) or nx.is_isomorphic(H, alternative_solution)
def test_cycle(self):
G = nx.cycle_graph(5)
H = nx.inverse_line_graph(G)
assert nx.is_isomorphic(H, G)
def test_empty(self):
G = nx.Graph()
H = nx.inverse_line_graph(G)
assert nx.is_isomorphic(H, nx.complete_graph(1))
def test_K1(self):
G = nx.complete_graph(1)
H = nx.inverse_line_graph(G)
solution = nx.path_graph(2)
assert nx.is_isomorphic(H, solution)
def test_edgeless_graph(self):
G = nx.empty_graph(5)
with pytest.raises(nx.NetworkXError, match="edgeless graph"):
nx.inverse_line_graph(G)
def test_selfloops_error(self):
G = nx.cycle_graph(4)
G.add_edge(0, 0)
pytest.raises(nx.NetworkXError, nx.inverse_line_graph, G)
def test_non_line_graphs(self):
# Tests several known non-line graphs for impossibility
# Adapted from L.W.Beineke, "Characterizations of derived graphs"
# claw graph
claw = nx.star_graph(3)
pytest.raises(nx.NetworkXError, nx.inverse_line_graph, claw)
# wheel graph with 6 nodes
wheel = nx.wheel_graph(6)
pytest.raises(nx.NetworkXError, nx.inverse_line_graph, wheel)
# K5 with one edge remove
K5m = nx.complete_graph(5)
K5m.remove_edge(0, 1)
pytest.raises(nx.NetworkXError, nx.inverse_line_graph, K5m)
# graph without any odd triangles (contains claw as induced subgraph)
G = nx.compose(nx.path_graph(2), nx.complete_bipartite_graph(2, 3))
pytest.raises(nx.NetworkXError, nx.inverse_line_graph, G)
## Variations on a diamond graph
# Diamond + 2 edges (+ "roof")
G = nx.diamond_graph()
G.add_edges_from([(4, 0), (5, 3)])
pytest.raises(nx.NetworkXError, nx.inverse_line_graph, G)
G.add_edge(4, 5)
pytest.raises(nx.NetworkXError, nx.inverse_line_graph, G)
# Diamond + 2 connected edges
G = nx.diamond_graph()
G.add_edges_from([(4, 0), (4, 3)])
pytest.raises(nx.NetworkXError, nx.inverse_line_graph, G)
# Diamond + K3 + one edge (+ 2*K3)
G = nx.diamond_graph()
G.add_edges_from([(4, 0), (4, 1), (4, 2), (5, 3)])
pytest.raises(nx.NetworkXError, nx.inverse_line_graph, G)
G.add_edges_from([(5, 1), (5, 2)])
pytest.raises(nx.NetworkXError, nx.inverse_line_graph, G)
# 4 triangles
G = nx.diamond_graph()
G.add_edges_from([(4, 0), (4, 1), (5, 2), (5, 3)])
pytest.raises(nx.NetworkXError, nx.inverse_line_graph, G)
def test_wrong_graph_type(self):
G = nx.DiGraph()
G_edges = [[0, 1], [0, 2], [0, 3]]
G.add_edges_from(G_edges)
pytest.raises(nx.NetworkXNotImplemented, nx.inverse_line_graph, G)
G = nx.MultiGraph()
G_edges = [[0, 1], [0, 2], [0, 3]]
G.add_edges_from(G_edges)
pytest.raises(nx.NetworkXNotImplemented, nx.inverse_line_graph, G)
def test_line_inverse_line_complete(self):
G = nx.complete_graph(10)
H = nx.line_graph(G)
J = nx.inverse_line_graph(H)
assert nx.is_isomorphic(G, J)
def test_line_inverse_line_path(self):
G = nx.path_graph(10)
H = nx.line_graph(G)
J = nx.inverse_line_graph(H)
assert nx.is_isomorphic(G, J)
def test_line_inverse_line_hypercube(self):
G = nx.hypercube_graph(5)
H = nx.line_graph(G)
J = nx.inverse_line_graph(H)
assert nx.is_isomorphic(G, J)
def test_line_inverse_line_cycle(self):
G = nx.cycle_graph(10)
H = nx.line_graph(G)
J = nx.inverse_line_graph(H)
assert nx.is_isomorphic(G, J)
def test_line_inverse_line_star(self):
G = nx.star_graph(20)
H = nx.line_graph(G)
J = nx.inverse_line_graph(H)
assert nx.is_isomorphic(G, J)
def test_line_inverse_line_multipartite(self):
G = nx.complete_multipartite_graph(3, 4, 5)
H = nx.line_graph(G)
J = nx.inverse_line_graph(H)
assert nx.is_isomorphic(G, J)
def test_line_inverse_line_dgm(self):
G = nx.dorogovtsev_goltsev_mendes_graph(4)
H = nx.line_graph(G)
J = nx.inverse_line_graph(H)
assert nx.is_isomorphic(G, J)
def test_line_different_node_types(self):
G = nx.path_graph([1, 2, 3, "a", "b", "c"])
H = nx.line_graph(G)
J = nx.inverse_line_graph(H)
assert nx.is_isomorphic(G, J)
class TestGeneratorPrivateFunctions:
def test_triangles_error(self):
G = nx.diamond_graph()
pytest.raises(nx.NetworkXError, line._triangles, G, (4, 0))
pytest.raises(nx.NetworkXError, line._triangles, G, (0, 3))
def test_odd_triangles_error(self):
G = nx.diamond_graph()
pytest.raises(nx.NetworkXError, line._odd_triangle, G, (0, 1, 4))
pytest.raises(nx.NetworkXError, line._odd_triangle, G, (0, 1, 3))
def test_select_starting_cell_error(self):
G = nx.diamond_graph()
pytest.raises(nx.NetworkXError, line._select_starting_cell, G, (4, 0))
pytest.raises(nx.NetworkXError, line._select_starting_cell, G, (0, 3))
def test_diamond_graph(self):
G = nx.diamond_graph()
for edge in G.edges:
cell = line._select_starting_cell(G, starting_edge=edge)
# Starting cell should always be one of the two triangles
assert len(cell) == 3
assert all(v in G[u] for u in cell for v in cell if u != v)
|