1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
|
"""
Implementation of the Wright, Richmond, Odlyzko and McKay (WROM)
algorithm for the enumeration of all non-isomorphic free trees of a
given order. Rooted trees are represented by level sequences, i.e.,
lists in which the i-th element specifies the distance of vertex i to
the root.
"""
__all__ = ["nonisomorphic_trees", "number_of_nonisomorphic_trees"]
import networkx as nx
@nx._dispatchable(graphs=None, returns_graph=True)
def nonisomorphic_trees(order, create="graph"):
"""Generates lists of nonisomorphic trees
Parameters
----------
order : int
order of the desired tree(s)
create : one of {"graph", "matrix"} (default="graph")
If ``"graph"`` is selected a list of ``Graph`` instances will be returned,
if matrix is selected a list of adjacency matrices will be returned.
.. deprecated:: 3.3
The `create` argument is deprecated and will be removed in NetworkX
version 3.5. In the future, `nonisomorphic_trees` will yield graph
instances by default. To generate adjacency matrices, call
``nx.to_numpy_array`` on the output, e.g.::
[nx.to_numpy_array(G) for G in nx.nonisomorphic_trees(N)]
Yields
------
list
A list of nonisomorphic trees, in one of two formats depending on the
value of the `create` parameter:
- ``create="graph"``: yields a list of `networkx.Graph` instances
- ``create="matrix"``: yields a list of list-of-lists representing adjacency matrices
"""
if order < 2:
raise ValueError
# start at the path graph rooted at its center
layout = list(range(order // 2 + 1)) + list(range(1, (order + 1) // 2))
while layout is not None:
layout = _next_tree(layout)
if layout is not None:
if create == "graph":
yield _layout_to_graph(layout)
elif create == "matrix":
import warnings
warnings.warn(
(
"\n\nThe 'create=matrix' argument of nonisomorphic_trees\n"
"is deprecated and will be removed in version 3.5.\n"
"Use ``nx.to_numpy_array`` to convert graphs to adjacency "
"matrices, e.g.::\n\n"
" [nx.to_numpy_array(G) for G in nx.nonisomorphic_trees(N)]"
),
category=DeprecationWarning,
stacklevel=2,
)
yield _layout_to_matrix(layout)
layout = _next_rooted_tree(layout)
@nx._dispatchable(graphs=None)
def number_of_nonisomorphic_trees(order):
"""Returns the number of nonisomorphic trees
Parameters
----------
order : int
order of the desired tree(s)
Returns
-------
length : Number of nonisomorphic graphs for the given order
References
----------
"""
return sum(1 for _ in nonisomorphic_trees(order))
def _next_rooted_tree(predecessor, p=None):
"""One iteration of the Beyer-Hedetniemi algorithm."""
if p is None:
p = len(predecessor) - 1
while predecessor[p] == 1:
p -= 1
if p == 0:
return None
q = p - 1
while predecessor[q] != predecessor[p] - 1:
q -= 1
result = list(predecessor)
for i in range(p, len(result)):
result[i] = result[i - p + q]
return result
def _next_tree(candidate):
"""One iteration of the Wright, Richmond, Odlyzko and McKay
algorithm."""
# valid representation of a free tree if:
# there are at least two vertices at layer 1
# (this is always the case because we start at the path graph)
left, rest = _split_tree(candidate)
# and the left subtree of the root
# is less high than the tree with the left subtree removed
left_height = max(left)
rest_height = max(rest)
valid = rest_height >= left_height
if valid and rest_height == left_height:
# and, if left and rest are of the same height,
# if left does not encompass more vertices
if len(left) > len(rest):
valid = False
# and, if they have the same number or vertices,
# if left does not come after rest lexicographically
elif len(left) == len(rest) and left > rest:
valid = False
if valid:
return candidate
else:
# jump to the next valid free tree
p = len(left)
new_candidate = _next_rooted_tree(candidate, p)
if candidate[p] > 2:
new_left, new_rest = _split_tree(new_candidate)
new_left_height = max(new_left)
suffix = range(1, new_left_height + 2)
new_candidate[-len(suffix) :] = suffix
return new_candidate
def _split_tree(layout):
"""Returns a tuple of two layouts, one containing the left
subtree of the root vertex, and one containing the original tree
with the left subtree removed."""
one_found = False
m = None
for i in range(len(layout)):
if layout[i] == 1:
if one_found:
m = i
break
else:
one_found = True
if m is None:
m = len(layout)
left = [layout[i] - 1 for i in range(1, m)]
rest = [0] + [layout[i] for i in range(m, len(layout))]
return (left, rest)
def _layout_to_matrix(layout):
"""Create the adjacency matrix for the tree specified by the
given layout (level sequence)."""
result = [[0] * len(layout) for i in range(len(layout))]
stack = []
for i in range(len(layout)):
i_level = layout[i]
if stack:
j = stack[-1]
j_level = layout[j]
while j_level >= i_level:
stack.pop()
j = stack[-1]
j_level = layout[j]
result[i][j] = result[j][i] = 1
stack.append(i)
return result
def _layout_to_graph(layout):
"""Create a NetworkX Graph for the tree specified by the
given layout(level sequence)"""
G = nx.Graph()
stack = []
for i in range(len(layout)):
i_level = layout[i]
if stack:
j = stack[-1]
j_level = layout[j]
while j_level >= i_level:
stack.pop()
j = stack[-1]
j_level = layout[j]
G.add_edge(i, j)
stack.append(i)
return G
|