1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
|
"""Unit tests for matplotlib drawing functions."""
import itertools
import os
import warnings
import pytest
mpl = pytest.importorskip("matplotlib")
np = pytest.importorskip("numpy")
mpl.use("PS")
plt = pytest.importorskip("matplotlib.pyplot")
plt.rcParams["text.usetex"] = False
import networkx as nx
barbell = nx.barbell_graph(4, 6)
def test_draw():
try:
functions = [
nx.draw_circular,
nx.draw_kamada_kawai,
nx.draw_planar,
nx.draw_random,
nx.draw_spectral,
nx.draw_spring,
nx.draw_shell,
]
options = [{"node_color": "black", "node_size": 100, "width": 3}]
for function, option in itertools.product(functions, options):
function(barbell, **option)
plt.savefig("test.ps")
except ModuleNotFoundError: # draw_kamada_kawai requires scipy
pass
finally:
try:
os.unlink("test.ps")
except OSError:
pass
def test_draw_shell_nlist():
try:
nlist = [list(range(4)), list(range(4, 10)), list(range(10, 14))]
nx.draw_shell(barbell, nlist=nlist)
plt.savefig("test.ps")
finally:
try:
os.unlink("test.ps")
except OSError:
pass
def test_edge_colormap():
colors = range(barbell.number_of_edges())
nx.draw_spring(
barbell, edge_color=colors, width=4, edge_cmap=plt.cm.Blues, with_labels=True
)
# plt.show()
def test_arrows():
nx.draw_spring(barbell.to_directed())
# plt.show()
@pytest.mark.parametrize(
("edge_color", "expected"),
(
(None, "black"), # Default
("r", "red"), # Non-default color string
(["r"], "red"), # Single non-default color in a list
((1.0, 1.0, 0.0), "yellow"), # single color as rgb tuple
([(1.0, 1.0, 0.0)], "yellow"), # single color as rgb tuple in list
((0, 1, 0, 1), "lime"), # single color as rgba tuple
([(0, 1, 0, 1)], "lime"), # single color as rgba tuple in list
("#0000ff", "blue"), # single color hex code
(["#0000ff"], "blue"), # hex code in list
),
)
@pytest.mark.parametrize("edgelist", (None, [(0, 1)]))
def test_single_edge_color_undirected(edge_color, expected, edgelist):
"""Tests ways of specifying all edges have a single color for edges
drawn with a LineCollection"""
G = nx.path_graph(3)
drawn_edges = nx.draw_networkx_edges(
G, pos=nx.random_layout(G), edgelist=edgelist, edge_color=edge_color
)
assert mpl.colors.same_color(drawn_edges.get_color(), expected)
@pytest.mark.parametrize(
("edge_color", "expected"),
(
(None, "black"), # Default
("r", "red"), # Non-default color string
(["r"], "red"), # Single non-default color in a list
((1.0, 1.0, 0.0), "yellow"), # single color as rgb tuple
([(1.0, 1.0, 0.0)], "yellow"), # single color as rgb tuple in list
((0, 1, 0, 1), "lime"), # single color as rgba tuple
([(0, 1, 0, 1)], "lime"), # single color as rgba tuple in list
("#0000ff", "blue"), # single color hex code
(["#0000ff"], "blue"), # hex code in list
),
)
@pytest.mark.parametrize("edgelist", (None, [(0, 1)]))
def test_single_edge_color_directed(edge_color, expected, edgelist):
"""Tests ways of specifying all edges have a single color for edges drawn
with FancyArrowPatches"""
G = nx.path_graph(3, create_using=nx.DiGraph)
drawn_edges = nx.draw_networkx_edges(
G, pos=nx.random_layout(G), edgelist=edgelist, edge_color=edge_color
)
for fap in drawn_edges:
assert mpl.colors.same_color(fap.get_edgecolor(), expected)
def test_edge_color_tuple_interpretation():
"""If edge_color is a sequence with the same length as edgelist, then each
value in edge_color is mapped onto each edge via colormap."""
G = nx.path_graph(6, create_using=nx.DiGraph)
pos = {n: (n, n) for n in range(len(G))}
# num edges != 3 or 4 --> edge_color interpreted as rgb(a)
for ec in ((0, 0, 1), (0, 0, 1, 1)):
# More than 4 edges
drawn_edges = nx.draw_networkx_edges(G, pos, edge_color=ec)
for fap in drawn_edges:
assert mpl.colors.same_color(fap.get_edgecolor(), ec)
# Fewer than 3 edges
drawn_edges = nx.draw_networkx_edges(
G, pos, edgelist=[(0, 1), (1, 2)], edge_color=ec
)
for fap in drawn_edges:
assert mpl.colors.same_color(fap.get_edgecolor(), ec)
# num edges == 3, len(edge_color) == 4: interpreted as rgba
drawn_edges = nx.draw_networkx_edges(
G, pos, edgelist=[(0, 1), (1, 2), (2, 3)], edge_color=(0, 0, 1, 1)
)
for fap in drawn_edges:
assert mpl.colors.same_color(fap.get_edgecolor(), "blue")
# num edges == 4, len(edge_color) == 3: interpreted as rgb
drawn_edges = nx.draw_networkx_edges(
G, pos, edgelist=[(0, 1), (1, 2), (2, 3), (3, 4)], edge_color=(0, 0, 1)
)
for fap in drawn_edges:
assert mpl.colors.same_color(fap.get_edgecolor(), "blue")
# num edges == len(edge_color) == 3: interpreted with cmap, *not* as rgb
drawn_edges = nx.draw_networkx_edges(
G, pos, edgelist=[(0, 1), (1, 2), (2, 3)], edge_color=(0, 0, 1)
)
assert mpl.colors.same_color(
drawn_edges[0].get_edgecolor(), drawn_edges[1].get_edgecolor()
)
for fap in drawn_edges:
assert not mpl.colors.same_color(fap.get_edgecolor(), "blue")
# num edges == len(edge_color) == 4: interpreted with cmap, *not* as rgba
drawn_edges = nx.draw_networkx_edges(
G, pos, edgelist=[(0, 1), (1, 2), (2, 3), (3, 4)], edge_color=(0, 0, 1, 1)
)
assert mpl.colors.same_color(
drawn_edges[0].get_edgecolor(), drawn_edges[1].get_edgecolor()
)
assert mpl.colors.same_color(
drawn_edges[2].get_edgecolor(), drawn_edges[3].get_edgecolor()
)
for fap in drawn_edges:
assert not mpl.colors.same_color(fap.get_edgecolor(), "blue")
def test_fewer_edge_colors_than_num_edges_directed():
"""Test that the edge colors are cycled when there are fewer specified
colors than edges."""
G = barbell.to_directed()
pos = nx.random_layout(barbell)
edgecolors = ("r", "g", "b")
drawn_edges = nx.draw_networkx_edges(G, pos, edge_color=edgecolors)
for fap, expected in zip(drawn_edges, itertools.cycle(edgecolors)):
assert mpl.colors.same_color(fap.get_edgecolor(), expected)
def test_more_edge_colors_than_num_edges_directed():
"""Test that extra edge colors are ignored when there are more specified
colors than edges."""
G = nx.path_graph(4, create_using=nx.DiGraph) # 3 edges
pos = nx.random_layout(barbell)
edgecolors = ("r", "g", "b", "c") # 4 edge colors
drawn_edges = nx.draw_networkx_edges(G, pos, edge_color=edgecolors)
for fap, expected in zip(drawn_edges, edgecolors[:-1]):
assert mpl.colors.same_color(fap.get_edgecolor(), expected)
def test_edge_color_string_with_global_alpha_undirected():
edge_collection = nx.draw_networkx_edges(
barbell,
pos=nx.random_layout(barbell),
edgelist=[(0, 1), (1, 2)],
edge_color="purple",
alpha=0.2,
)
ec = edge_collection.get_color().squeeze() # as rgba tuple
assert len(edge_collection.get_paths()) == 2
assert mpl.colors.same_color(ec[:-1], "purple")
assert ec[-1] == 0.2
def test_edge_color_string_with_global_alpha_directed():
drawn_edges = nx.draw_networkx_edges(
barbell.to_directed(),
pos=nx.random_layout(barbell),
edgelist=[(0, 1), (1, 2)],
edge_color="purple",
alpha=0.2,
)
assert len(drawn_edges) == 2
for fap in drawn_edges:
ec = fap.get_edgecolor() # As rgba tuple
assert mpl.colors.same_color(ec[:-1], "purple")
assert ec[-1] == 0.2
@pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph))
def test_edge_width_default_value(graph_type):
"""Test the default linewidth for edges drawn either via LineCollection or
FancyArrowPatches."""
G = nx.path_graph(2, create_using=graph_type)
pos = {n: (n, n) for n in range(len(G))}
drawn_edges = nx.draw_networkx_edges(G, pos)
if isinstance(drawn_edges, list): # directed case: list of FancyArrowPatch
drawn_edges = drawn_edges[0]
assert drawn_edges.get_linewidth() == 1
@pytest.mark.parametrize(
("edgewidth", "expected"),
(
(3, 3), # single-value, non-default
([3], 3), # Single value as a list
),
)
def test_edge_width_single_value_undirected(edgewidth, expected):
G = nx.path_graph(4)
pos = {n: (n, n) for n in range(len(G))}
drawn_edges = nx.draw_networkx_edges(G, pos, width=edgewidth)
assert len(drawn_edges.get_paths()) == 3
assert drawn_edges.get_linewidth() == expected
@pytest.mark.parametrize(
("edgewidth", "expected"),
(
(3, 3), # single-value, non-default
([3], 3), # Single value as a list
),
)
def test_edge_width_single_value_directed(edgewidth, expected):
G = nx.path_graph(4, create_using=nx.DiGraph)
pos = {n: (n, n) for n in range(len(G))}
drawn_edges = nx.draw_networkx_edges(G, pos, width=edgewidth)
assert len(drawn_edges) == 3
for fap in drawn_edges:
assert fap.get_linewidth() == expected
@pytest.mark.parametrize(
"edgelist",
(
[(0, 1), (1, 2), (2, 3)], # one width specification per edge
None, # fewer widths than edges - widths cycle
[(0, 1), (1, 2)], # More widths than edges - unused widths ignored
),
)
def test_edge_width_sequence(edgelist):
G = barbell.to_directed()
pos = nx.random_layout(G)
widths = (0.5, 2.0, 12.0)
drawn_edges = nx.draw_networkx_edges(G, pos, edgelist=edgelist, width=widths)
for fap, expected_width in zip(drawn_edges, itertools.cycle(widths)):
assert fap.get_linewidth() == expected_width
def test_edge_color_with_edge_vmin_vmax():
"""Test that edge_vmin and edge_vmax properly set the dynamic range of the
color map when num edges == len(edge_colors)."""
G = nx.path_graph(3, create_using=nx.DiGraph)
pos = nx.random_layout(G)
# Extract colors from the original (unscaled) colormap
drawn_edges = nx.draw_networkx_edges(G, pos, edge_color=[0, 1.0])
orig_colors = [e.get_edgecolor() for e in drawn_edges]
# Colors from scaled colormap
drawn_edges = nx.draw_networkx_edges(
G, pos, edge_color=[0.2, 0.8], edge_vmin=0.2, edge_vmax=0.8
)
scaled_colors = [e.get_edgecolor() for e in drawn_edges]
assert mpl.colors.same_color(orig_colors, scaled_colors)
def test_directed_edges_linestyle_default():
"""Test default linestyle for edges drawn with FancyArrowPatches."""
G = nx.path_graph(4, create_using=nx.DiGraph) # Graph with 3 edges
pos = {n: (n, n) for n in range(len(G))}
# edge with default style
drawn_edges = nx.draw_networkx_edges(G, pos)
assert len(drawn_edges) == 3
for fap in drawn_edges:
assert fap.get_linestyle() == "solid"
@pytest.mark.parametrize(
"style",
(
"dashed", # edge with string style
"--", # edge with simplified string style
(1, (1, 1)), # edge with (offset, onoffseq) style
),
)
def test_directed_edges_linestyle_single_value(style):
"""Tests support for specifying linestyles with a single value to be applied to
all edges in ``draw_networkx_edges`` for FancyArrowPatch outputs
(e.g. directed edges)."""
G = nx.path_graph(4, create_using=nx.DiGraph) # Graph with 3 edges
pos = {n: (n, n) for n in range(len(G))}
drawn_edges = nx.draw_networkx_edges(G, pos, style=style)
assert len(drawn_edges) == 3
for fap in drawn_edges:
assert fap.get_linestyle() == style
@pytest.mark.parametrize(
"style_seq",
(
["dashed"], # edge with string style in list
["--"], # edge with simplified string style in list
[(1, (1, 1))], # edge with (offset, onoffseq) style in list
["--", "-", ":"], # edges with styles for each edge
["--", "-"], # edges with fewer styles than edges (styles cycle)
["--", "-", ":", "-."], # edges with more styles than edges (extra unused)
),
)
def test_directed_edges_linestyle_sequence(style_seq):
"""Tests support for specifying linestyles with sequences in
``draw_networkx_edges`` for FancyArrowPatch outputs (e.g. directed edges)."""
G = nx.path_graph(4, create_using=nx.DiGraph) # Graph with 3 edges
pos = {n: (n, n) for n in range(len(G))}
drawn_edges = nx.draw_networkx_edges(G, pos, style=style_seq)
assert len(drawn_edges) == 3
for fap, style in zip(drawn_edges, itertools.cycle(style_seq)):
assert fap.get_linestyle() == style
def test_return_types():
from matplotlib.collections import LineCollection, PathCollection
from matplotlib.patches import FancyArrowPatch
G = nx.cubical_graph(nx.Graph)
dG = nx.cubical_graph(nx.DiGraph)
pos = nx.spring_layout(G)
dpos = nx.spring_layout(dG)
# nodes
nodes = nx.draw_networkx_nodes(G, pos)
assert isinstance(nodes, PathCollection)
# edges
edges = nx.draw_networkx_edges(dG, dpos, arrows=True)
assert isinstance(edges, list)
if len(edges) > 0:
assert isinstance(edges[0], FancyArrowPatch)
edges = nx.draw_networkx_edges(dG, dpos, arrows=False)
assert isinstance(edges, LineCollection)
edges = nx.draw_networkx_edges(G, dpos, arrows=None)
assert isinstance(edges, LineCollection)
edges = nx.draw_networkx_edges(dG, pos, arrows=None)
assert isinstance(edges, list)
if len(edges) > 0:
assert isinstance(edges[0], FancyArrowPatch)
def test_labels_and_colors():
G = nx.cubical_graph()
pos = nx.spring_layout(G) # positions for all nodes
# nodes
nx.draw_networkx_nodes(
G, pos, nodelist=[0, 1, 2, 3], node_color="r", node_size=500, alpha=0.75
)
nx.draw_networkx_nodes(
G,
pos,
nodelist=[4, 5, 6, 7],
node_color="b",
node_size=500,
alpha=[0.25, 0.5, 0.75, 1.0],
)
# edges
nx.draw_networkx_edges(G, pos, width=1.0, alpha=0.5)
nx.draw_networkx_edges(
G,
pos,
edgelist=[(0, 1), (1, 2), (2, 3), (3, 0)],
width=8,
alpha=0.5,
edge_color="r",
)
nx.draw_networkx_edges(
G,
pos,
edgelist=[(4, 5), (5, 6), (6, 7), (7, 4)],
width=8,
alpha=0.5,
edge_color="b",
)
nx.draw_networkx_edges(
G,
pos,
edgelist=[(4, 5), (5, 6), (6, 7), (7, 4)],
arrows=True,
min_source_margin=0.5,
min_target_margin=0.75,
width=8,
edge_color="b",
)
# some math labels
labels = {}
labels[0] = r"$a$"
labels[1] = r"$b$"
labels[2] = r"$c$"
labels[3] = r"$d$"
labels[4] = r"$\alpha$"
labels[5] = r"$\beta$"
labels[6] = r"$\gamma$"
labels[7] = r"$\delta$"
colors = {n: "k" if n % 2 == 0 else "r" for n in range(8)}
nx.draw_networkx_labels(G, pos, labels, font_size=16)
nx.draw_networkx_labels(G, pos, labels, font_size=16, font_color=colors)
nx.draw_networkx_edge_labels(G, pos, edge_labels=None, rotate=False)
nx.draw_networkx_edge_labels(G, pos, edge_labels={(4, 5): "4-5"})
# plt.show()
@pytest.mark.mpl_image_compare
def test_house_with_colors():
G = nx.house_graph()
# explicitly set positions
fig, ax = plt.subplots()
pos = {0: (0, 0), 1: (1, 0), 2: (0, 1), 3: (1, 1), 4: (0.5, 2.0)}
# Plot nodes with different properties for the "wall" and "roof" nodes
nx.draw_networkx_nodes(
G,
pos,
node_size=3000,
nodelist=[0, 1, 2, 3],
node_color="tab:blue",
)
nx.draw_networkx_nodes(
G, pos, node_size=2000, nodelist=[4], node_color="tab:orange"
)
nx.draw_networkx_edges(G, pos, alpha=0.5, width=6)
# Customize axes
ax.margins(0.11)
plt.tight_layout()
plt.axis("off")
return fig
def test_axes():
fig, ax = plt.subplots()
nx.draw(barbell, ax=ax)
nx.draw_networkx_edge_labels(barbell, nx.circular_layout(barbell), ax=ax)
def test_empty_graph():
G = nx.Graph()
nx.draw(G)
def test_draw_empty_nodes_return_values():
# See Issue #3833
import matplotlib.collections # call as mpl.collections
G = nx.Graph([(1, 2), (2, 3)])
DG = nx.DiGraph([(1, 2), (2, 3)])
pos = nx.circular_layout(G)
assert isinstance(
nx.draw_networkx_nodes(G, pos, nodelist=[]), mpl.collections.PathCollection
)
assert isinstance(
nx.draw_networkx_nodes(DG, pos, nodelist=[]), mpl.collections.PathCollection
)
# drawing empty edges used to return an empty LineCollection or empty list.
# Now it is always an empty list (because edges are now lists of FancyArrows)
assert nx.draw_networkx_edges(G, pos, edgelist=[], arrows=True) == []
assert nx.draw_networkx_edges(G, pos, edgelist=[], arrows=False) == []
assert nx.draw_networkx_edges(DG, pos, edgelist=[], arrows=False) == []
assert nx.draw_networkx_edges(DG, pos, edgelist=[], arrows=True) == []
def test_multigraph_edgelist_tuples():
# See Issue #3295
G = nx.path_graph(3, create_using=nx.MultiDiGraph)
nx.draw_networkx(G, edgelist=[(0, 1, 0)])
nx.draw_networkx(G, edgelist=[(0, 1, 0)], node_size=[10, 20, 0])
def test_alpha_iter():
pos = nx.random_layout(barbell)
fig = plt.figure()
# with fewer alpha elements than nodes
fig.add_subplot(131) # Each test in a new axis object
nx.draw_networkx_nodes(barbell, pos, alpha=[0.1, 0.2])
# with equal alpha elements and nodes
num_nodes = len(barbell.nodes)
alpha = [x / num_nodes for x in range(num_nodes)]
colors = range(num_nodes)
fig.add_subplot(132)
nx.draw_networkx_nodes(barbell, pos, node_color=colors, alpha=alpha)
# with more alpha elements than nodes
alpha.append(1)
fig.add_subplot(133)
nx.draw_networkx_nodes(barbell, pos, alpha=alpha)
def test_multiple_node_shapes():
G = nx.path_graph(4)
ax = plt.figure().add_subplot(111)
nx.draw(G, node_shape=["o", "h", "s", "^"], ax=ax)
scatters = [
s for s in ax.get_children() if isinstance(s, mpl.collections.PathCollection)
]
assert len(scatters) == 4
def test_individualized_font_attributes():
G = nx.karate_club_graph()
ax = plt.figure().add_subplot(111)
nx.draw(
G,
ax=ax,
font_color={n: "k" if n % 2 else "r" for n in G.nodes()},
font_size={n: int(n / (34 / 15) + 5) for n in G.nodes()},
)
for n, t in zip(
G.nodes(),
[
t
for t in ax.get_children()
if isinstance(t, mpl.text.Text) and len(t.get_text()) > 0
],
):
expected = "black" if n % 2 else "red"
assert mpl.colors.same_color(t.get_color(), expected)
assert int(n / (34 / 15) + 5) == t.get_size()
def test_individualized_edge_attributes():
G = nx.karate_club_graph()
ax = plt.figure().add_subplot(111)
arrowstyles = ["-|>" if (u + v) % 2 == 0 else "-[" for u, v in G.edges()]
arrowsizes = [10 * (u % 2 + v % 2) + 10 for u, v in G.edges()]
nx.draw(G, ax=ax, arrows=True, arrowstyle=arrowstyles, arrowsize=arrowsizes)
arrows = [
f for f in ax.get_children() if isinstance(f, mpl.patches.FancyArrowPatch)
]
for e, a in zip(G.edges(), arrows):
assert a.get_mutation_scale() == 10 * (e[0] % 2 + e[1] % 2) + 10
expected = (
mpl.patches.ArrowStyle.BracketB
if sum(e) % 2
else mpl.patches.ArrowStyle.CurveFilledB
)
assert isinstance(a.get_arrowstyle(), expected)
def test_error_invalid_kwds():
with pytest.raises(ValueError, match="Received invalid argument"):
nx.draw(barbell, foo="bar")
def test_draw_networkx_arrowsize_incorrect_size():
G = nx.DiGraph([(0, 1), (0, 2), (0, 3), (1, 3)])
arrowsize = [1, 2, 3]
with pytest.raises(
ValueError, match="arrowsize should have the same length as edgelist"
):
nx.draw(G, arrowsize=arrowsize)
@pytest.mark.parametrize("arrowsize", (30, [10, 20, 30]))
def test_draw_edges_arrowsize(arrowsize):
G = nx.DiGraph([(0, 1), (0, 2), (1, 2)])
pos = {0: (0, 0), 1: (0, 1), 2: (1, 0)}
edges = nx.draw_networkx_edges(G, pos=pos, arrowsize=arrowsize)
arrowsize = itertools.repeat(arrowsize) if isinstance(arrowsize, int) else arrowsize
for fap, expected in zip(edges, arrowsize):
assert isinstance(fap, mpl.patches.FancyArrowPatch)
assert fap.get_mutation_scale() == expected
@pytest.mark.parametrize("arrowstyle", ("-|>", ["-|>", "-[", "<|-|>"]))
def test_draw_edges_arrowstyle(arrowstyle):
G = nx.DiGraph([(0, 1), (0, 2), (1, 2)])
pos = {0: (0, 0), 1: (0, 1), 2: (1, 0)}
edges = nx.draw_networkx_edges(G, pos=pos, arrowstyle=arrowstyle)
arrowstyle = (
itertools.repeat(arrowstyle) if isinstance(arrowstyle, str) else arrowstyle
)
arrow_objects = {
"-|>": mpl.patches.ArrowStyle.CurveFilledB,
"-[": mpl.patches.ArrowStyle.BracketB,
"<|-|>": mpl.patches.ArrowStyle.CurveFilledAB,
}
for fap, expected in zip(edges, arrowstyle):
assert isinstance(fap, mpl.patches.FancyArrowPatch)
assert isinstance(fap.get_arrowstyle(), arrow_objects[expected])
def test_np_edgelist():
# see issue #4129
nx.draw_networkx(barbell, edgelist=np.array([(0, 2), (0, 3)]))
def test_draw_nodes_missing_node_from_position():
G = nx.path_graph(3)
pos = {0: (0, 0), 1: (1, 1)} # No position for node 2
with pytest.raises(nx.NetworkXError, match="has no position"):
nx.draw_networkx_nodes(G, pos)
# NOTE: parametrizing on marker to test both branches of internal
# nx.draw_networkx_edges.to_marker_edge function
@pytest.mark.parametrize("node_shape", ("o", "s"))
def test_draw_edges_min_source_target_margins(node_shape):
"""Test that there is a wider gap between the node and the start of an
incident edge when min_source_margin is specified.
This test checks that the use of min_{source/target}_margin kwargs result
in shorter (more padding) between the edges and source and target nodes.
As a crude visual example, let 's' and 't' represent source and target
nodes, respectively:
Default:
s-----------------------------t
With margins:
s ----------------------- t
"""
# Create a single axis object to get consistent pixel coords across
# multiple draws
fig, ax = plt.subplots()
G = nx.DiGraph([(0, 1)])
pos = {0: (0, 0), 1: (1, 0)} # horizontal layout
# Get leftmost and rightmost points of the FancyArrowPatch object
# representing the edge between nodes 0 and 1 (in pixel coordinates)
default_patch = nx.draw_networkx_edges(G, pos, ax=ax, node_shape=node_shape)[0]
default_extent = default_patch.get_extents().corners()[::2, 0]
# Now, do the same but with "padding" for the source and target via the
# min_{source/target}_margin kwargs
padded_patch = nx.draw_networkx_edges(
G,
pos,
ax=ax,
node_shape=node_shape,
min_source_margin=100,
min_target_margin=100,
)[0]
padded_extent = padded_patch.get_extents().corners()[::2, 0]
# With padding, the left-most extent of the edge should be further to the
# right
assert padded_extent[0] > default_extent[0]
# And the rightmost extent of the edge, further to the left
assert padded_extent[1] < default_extent[1]
# NOTE: parametrizing on marker to test both branches of internal
# nx.draw_networkx_edges.to_marker_edge function
@pytest.mark.parametrize("node_shape", ("o", "s"))
def test_draw_edges_min_source_target_margins_individual(node_shape):
"""Test that there is a wider gap between the node and the start of an
incident edge when min_source_margin is specified.
This test checks that the use of min_{source/target}_margin kwargs result
in shorter (more padding) between the edges and source and target nodes.
As a crude visual example, let 's' and 't' represent source and target
nodes, respectively:
Default:
s-----------------------------t
With margins:
s ----------------------- t
"""
# Create a single axis object to get consistent pixel coords across
# multiple draws
fig, ax = plt.subplots()
G = nx.DiGraph([(0, 1), (1, 2)])
pos = {0: (0, 0), 1: (1, 0), 2: (2, 0)} # horizontal layout
# Get leftmost and rightmost points of the FancyArrowPatch object
# representing the edge between nodes 0 and 1 (in pixel coordinates)
default_patch = nx.draw_networkx_edges(G, pos, ax=ax, node_shape=node_shape)
default_extent = [d.get_extents().corners()[::2, 0] for d in default_patch]
# Now, do the same but with "padding" for the source and target via the
# min_{source/target}_margin kwargs
padded_patch = nx.draw_networkx_edges(
G,
pos,
ax=ax,
node_shape=node_shape,
min_source_margin=[98, 102],
min_target_margin=[98, 102],
)
padded_extent = [p.get_extents().corners()[::2, 0] for p in padded_patch]
for d, p in zip(default_extent, padded_extent):
print(f"{p=}, {d=}")
# With padding, the left-most extent of the edge should be further to the
# right
assert p[0] > d[0]
# And the rightmost extent of the edge, further to the left
assert p[1] < d[1]
def test_nonzero_selfloop_with_single_node():
"""Ensure that selfloop extent is non-zero when there is only one node."""
# Create explicit axis object for test
fig, ax = plt.subplots()
# Graph with single node + self loop
G = nx.DiGraph()
G.add_node(0)
G.add_edge(0, 0)
# Draw
patch = nx.draw_networkx_edges(G, {0: (0, 0)})[0]
# The resulting patch must have non-zero extent
bbox = patch.get_extents()
assert bbox.width > 0 and bbox.height > 0
# Cleanup
plt.delaxes(ax)
plt.close()
def test_nonzero_selfloop_with_single_edge_in_edgelist():
"""Ensure that selfloop extent is non-zero when only a single edge is
specified in the edgelist.
"""
# Create explicit axis object for test
fig, ax = plt.subplots()
# Graph with selfloop
G = nx.path_graph(2, create_using=nx.DiGraph)
G.add_edge(1, 1)
pos = {n: (n, n) for n in G.nodes}
# Draw only the selfloop edge via the `edgelist` kwarg
patch = nx.draw_networkx_edges(G, pos, edgelist=[(1, 1)])[0]
# The resulting patch must have non-zero extent
bbox = patch.get_extents()
assert bbox.width > 0 and bbox.height > 0
# Cleanup
plt.delaxes(ax)
plt.close()
def test_apply_alpha():
"""Test apply_alpha when there is a mismatch between the number of
supplied colors and elements.
"""
nodelist = [0, 1, 2]
colorlist = ["r", "g", "b"]
alpha = 0.5
rgba_colors = nx.drawing.nx_pylab.apply_alpha(colorlist, alpha, nodelist)
assert all(rgba_colors[:, -1] == alpha)
def test_draw_edges_toggling_with_arrows_kwarg():
"""
The `arrows` keyword argument is used as a 3-way switch to select which
type of object to use for drawing edges:
- ``arrows=None`` -> default (FancyArrowPatches for directed, else LineCollection)
- ``arrows=True`` -> FancyArrowPatches
- ``arrows=False`` -> LineCollection
"""
import matplotlib.collections
import matplotlib.patches
UG = nx.path_graph(3)
DG = nx.path_graph(3, create_using=nx.DiGraph)
pos = {n: (n, n) for n in UG}
# Use FancyArrowPatches when arrows=True, regardless of graph type
for G in (UG, DG):
edges = nx.draw_networkx_edges(G, pos, arrows=True)
assert len(edges) == len(G.edges)
assert isinstance(edges[0], mpl.patches.FancyArrowPatch)
# Use LineCollection when arrows=False, regardless of graph type
for G in (UG, DG):
edges = nx.draw_networkx_edges(G, pos, arrows=False)
assert isinstance(edges, mpl.collections.LineCollection)
# Default behavior when arrows=None: FAPs for directed, LC's for undirected
edges = nx.draw_networkx_edges(UG, pos)
assert isinstance(edges, mpl.collections.LineCollection)
edges = nx.draw_networkx_edges(DG, pos)
assert len(edges) == len(G.edges)
assert isinstance(edges[0], mpl.patches.FancyArrowPatch)
@pytest.mark.parametrize("drawing_func", (nx.draw, nx.draw_networkx))
def test_draw_networkx_arrows_default_undirected(drawing_func):
import matplotlib.collections
G = nx.path_graph(3)
fig, ax = plt.subplots()
drawing_func(G, ax=ax)
assert any(isinstance(c, mpl.collections.LineCollection) for c in ax.collections)
assert not ax.patches
plt.delaxes(ax)
plt.close()
@pytest.mark.parametrize("drawing_func", (nx.draw, nx.draw_networkx))
def test_draw_networkx_arrows_default_directed(drawing_func):
import matplotlib.collections
G = nx.path_graph(3, create_using=nx.DiGraph)
fig, ax = plt.subplots()
drawing_func(G, ax=ax)
assert not any(
isinstance(c, mpl.collections.LineCollection) for c in ax.collections
)
assert ax.patches
plt.delaxes(ax)
plt.close()
def test_edgelist_kwarg_not_ignored():
# See gh-4994
G = nx.path_graph(3)
G.add_edge(0, 0)
fig, ax = plt.subplots()
nx.draw(G, edgelist=[(0, 1), (1, 2)], ax=ax) # Exclude self-loop from edgelist
assert not ax.patches
plt.delaxes(ax)
plt.close()
@pytest.mark.parametrize(
("G", "expected_n_edges"),
([nx.DiGraph(), 2], [nx.MultiGraph(), 4], [nx.MultiDiGraph(), 4]),
)
def test_draw_networkx_edges_multiedge_connectionstyle(G, expected_n_edges):
"""Draws edges correctly for 3 types of graphs and checks for valid length"""
for i, (u, v) in enumerate([(0, 1), (0, 1), (0, 1), (0, 2)]):
G.add_edge(u, v, weight=round(i / 3, 2))
pos = {n: (n, n) for n in G}
# Raises on insufficient connectionstyle length
for conn_style in [
"arc3,rad=0.1",
["arc3,rad=0.1", "arc3,rad=0.1"],
["arc3,rad=0.1", "arc3,rad=0.1", "arc3,rad=0.2"],
]:
nx.draw_networkx_edges(G, pos, connectionstyle=conn_style)
arrows = nx.draw_networkx_edges(G, pos, connectionstyle=conn_style)
assert len(arrows) == expected_n_edges
@pytest.mark.parametrize(
("G", "expected_n_edges"),
([nx.DiGraph(), 2], [nx.MultiGraph(), 4], [nx.MultiDiGraph(), 4]),
)
def test_draw_networkx_edge_labels_multiedge_connectionstyle(G, expected_n_edges):
"""Draws labels correctly for 3 types of graphs and checks for valid length and class names"""
for i, (u, v) in enumerate([(0, 1), (0, 1), (0, 1), (0, 2)]):
G.add_edge(u, v, weight=round(i / 3, 2))
pos = {n: (n, n) for n in G}
# Raises on insufficient connectionstyle length
arrows = nx.draw_networkx_edges(
G, pos, connectionstyle=["arc3,rad=0.1", "arc3,rad=0.1", "arc3,rad=0.1"]
)
for conn_style in [
"arc3,rad=0.1",
["arc3,rad=0.1", "arc3,rad=0.2"],
["arc3,rad=0.1", "arc3,rad=0.1", "arc3,rad=0.1"],
]:
text_items = nx.draw_networkx_edge_labels(G, pos, connectionstyle=conn_style)
assert len(text_items) == expected_n_edges
for ti in text_items.values():
assert ti.__class__.__name__ == "CurvedArrowText"
def test_draw_networkx_edge_label_multiedge():
G = nx.MultiGraph()
G.add_edge(0, 1, weight=10)
G.add_edge(0, 1, weight=20)
edge_labels = nx.get_edge_attributes(G, "weight") # Includes edge keys
pos = {n: (n, n) for n in G}
text_items = nx.draw_networkx_edge_labels(
G,
pos,
edge_labels=edge_labels,
connectionstyle=["arc3,rad=0.1", "arc3,rad=0.2"],
)
assert len(text_items) == 2
def test_draw_networkx_edge_label_empty_dict():
"""Regression test for draw_networkx_edge_labels with empty dict. See
gh-5372."""
G = nx.path_graph(3)
pos = {n: (n, n) for n in G.nodes}
assert nx.draw_networkx_edge_labels(G, pos, edge_labels={}) == {}
def test_draw_networkx_edges_undirected_selfloop_colors():
"""When an edgelist is supplied along with a sequence of colors, check that
the self-loops have the correct colors."""
fig, ax = plt.subplots()
# Edge list and corresponding colors
edgelist = [(1, 3), (1, 2), (2, 3), (1, 1), (3, 3), (2, 2)]
edge_colors = ["pink", "cyan", "black", "red", "blue", "green"]
G = nx.Graph(edgelist)
pos = {n: (n, n) for n in G.nodes}
nx.draw_networkx_edges(G, pos, ax=ax, edgelist=edgelist, edge_color=edge_colors)
# Verify that there are three fancy arrow patches (1 per self loop)
assert len(ax.patches) == 3
# These are points that should be contained in the self loops. For example,
# sl_points[0] will be (1, 1.1), which is inside the "path" of the first
# self-loop but outside the others
sl_points = np.array(edgelist[-3:]) + np.array([0, 0.1])
# Check that the mapping between self-loop locations and their colors is
# correct
for fap, clr, slp in zip(ax.patches, edge_colors[-3:], sl_points):
assert fap.get_path().contains_point(slp)
assert mpl.colors.same_color(fap.get_edgecolor(), clr)
plt.delaxes(ax)
plt.close()
@pytest.mark.parametrize(
"fap_only_kwarg", # Non-default values for kwargs that only apply to FAPs
(
{"arrowstyle": "-"},
{"arrowsize": 20},
{"connectionstyle": "arc3,rad=0.2"},
{"min_source_margin": 10},
{"min_target_margin": 10},
),
)
def test_user_warnings_for_unused_edge_drawing_kwargs(fap_only_kwarg):
"""Users should get a warning when they specify a non-default value for
one of the kwargs that applies only to edges drawn with FancyArrowPatches,
but FancyArrowPatches aren't being used under the hood."""
G = nx.path_graph(3)
pos = {n: (n, n) for n in G}
fig, ax = plt.subplots()
# By default, an undirected graph will use LineCollection to represent
# the edges
kwarg_name = list(fap_only_kwarg.keys())[0]
with pytest.warns(
UserWarning, match=f"\n\nThe {kwarg_name} keyword argument is not applicable"
):
nx.draw_networkx_edges(G, pos, ax=ax, **fap_only_kwarg)
# FancyArrowPatches are always used when `arrows=True` is specified.
# Check that warnings are *not* raised in this case
with warnings.catch_warnings():
# Escalate warnings -> errors so tests fail if warnings are raised
warnings.simplefilter("error")
nx.draw_networkx_edges(G, pos, ax=ax, arrows=True, **fap_only_kwarg)
plt.delaxes(ax)
plt.close()
@pytest.mark.parametrize("draw_fn", (nx.draw, nx.draw_circular))
def test_no_warning_on_default_draw_arrowstyle(draw_fn):
# See gh-7284
fig, ax = plt.subplots()
G = nx.cycle_graph(5)
with warnings.catch_warnings(record=True) as w:
draw_fn(G, ax=ax)
assert len(w) == 0
plt.delaxes(ax)
plt.close()
@pytest.mark.parametrize("hide_ticks", [False, True])
@pytest.mark.parametrize(
"method",
[
nx.draw_networkx,
nx.draw_networkx_edge_labels,
nx.draw_networkx_edges,
nx.draw_networkx_labels,
nx.draw_networkx_nodes,
],
)
def test_hide_ticks(method, hide_ticks):
G = nx.path_graph(3)
pos = {n: (n, n) for n in G.nodes}
_, ax = plt.subplots()
method(G, pos=pos, ax=ax, hide_ticks=hide_ticks)
for axis in [ax.xaxis, ax.yaxis]:
assert bool(axis.get_ticklabels()) != hide_ticks
plt.delaxes(ax)
plt.close()
|