aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/networkx/classes/tests/dispatch_interface.py
blob: 5cc908d707c8efa30ce1e334313e1f946bdb5348 (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# This file contains utilities for testing the dispatching feature

# A full test of all dispatchable algorithms is performed by
# modifying the pytest invocation and setting an environment variable
# NETWORKX_TEST_BACKEND=nx_loopback pytest
# This is comprehensive, but only tests the `test_override_dispatch`
# function in networkx.classes.backends.

# To test the `_dispatchable` function directly, several tests scattered throughout
# NetworkX have been augmented to test normal and dispatch mode.
# Searching for `dispatch_interface` should locate the specific tests.

import networkx as nx
from networkx import DiGraph, Graph, MultiDiGraph, MultiGraph, PlanarEmbedding
from networkx.classes.reportviews import NodeView


class LoopbackGraph(Graph):
    __networkx_backend__ = "nx_loopback"


class LoopbackDiGraph(DiGraph):
    __networkx_backend__ = "nx_loopback"


class LoopbackMultiGraph(MultiGraph):
    __networkx_backend__ = "nx_loopback"


class LoopbackMultiDiGraph(MultiDiGraph):
    __networkx_backend__ = "nx_loopback"


class LoopbackPlanarEmbedding(PlanarEmbedding):
    __networkx_backend__ = "nx_loopback"


def convert(graph):
    if isinstance(graph, PlanarEmbedding):
        return LoopbackPlanarEmbedding(graph)
    if isinstance(graph, MultiDiGraph):
        return LoopbackMultiDiGraph(graph)
    if isinstance(graph, MultiGraph):
        return LoopbackMultiGraph(graph)
    if isinstance(graph, DiGraph):
        return LoopbackDiGraph(graph)
    if isinstance(graph, Graph):
        return LoopbackGraph(graph)
    raise TypeError(f"Unsupported type of graph: {type(graph)}")


class LoopbackBackendInterface:
    def __getattr__(self, item):
        try:
            return nx.utils.backends._registered_algorithms[item].orig_func
        except KeyError:
            raise AttributeError(item) from None

    @staticmethod
    def convert_from_nx(
        graph,
        *,
        edge_attrs=None,
        node_attrs=None,
        preserve_edge_attrs=None,
        preserve_node_attrs=None,
        preserve_graph_attrs=None,
        name=None,
        graph_name=None,
    ):
        if name in {
            # Raise if input graph changes. See test_dag.py::test_topological_sort6
            "lexicographical_topological_sort",
            "topological_generations",
            "topological_sort",
            # Would be nice to some day avoid these cutoffs of full testing
        }:
            return graph
        if isinstance(graph, NodeView):
            # Convert to a Graph with only nodes (no edges)
            new_graph = Graph()
            new_graph.add_nodes_from(graph.items())
            graph = new_graph
            G = LoopbackGraph()
        elif not isinstance(graph, Graph):
            raise TypeError(
                f"Bad type for graph argument {graph_name} in {name}: {type(graph)}"
            )
        elif graph.__class__ in {Graph, LoopbackGraph}:
            G = LoopbackGraph()
        elif graph.__class__ in {DiGraph, LoopbackDiGraph}:
            G = LoopbackDiGraph()
        elif graph.__class__ in {MultiGraph, LoopbackMultiGraph}:
            G = LoopbackMultiGraph()
        elif graph.__class__ in {MultiDiGraph, LoopbackMultiDiGraph}:
            G = LoopbackMultiDiGraph()
        elif graph.__class__ in {PlanarEmbedding, LoopbackPlanarEmbedding}:
            G = LoopbackDiGraph()  # or LoopbackPlanarEmbedding
        else:
            # Would be nice to handle these better some day
            # nx.algorithms.approximation.kcomponents._AntiGraph
            # nx.classes.tests.test_multidigraph.MultiDiGraphSubClass
            # nx.classes.tests.test_multigraph.MultiGraphSubClass
            G = graph.__class__()

        if preserve_graph_attrs:
            G.graph.update(graph.graph)

        # add nodes
        G.add_nodes_from(graph)
        if preserve_node_attrs:
            for n, dd in G._node.items():
                dd.update(graph.nodes[n])
        elif node_attrs:
            for n, dd in G._node.items():
                dd.update(
                    (attr, graph._node[n].get(attr, default))
                    for attr, default in node_attrs.items()
                    if default is not None or attr in graph._node[n]
                )

        # tools to build datadict and keydict
        if preserve_edge_attrs:

            def G_new_datadict(old_dd):
                return G.edge_attr_dict_factory(old_dd)
        elif edge_attrs:

            def G_new_datadict(old_dd):
                return G.edge_attr_dict_factory(
                    (attr, old_dd.get(attr, default))
                    for attr, default in edge_attrs.items()
                    if default is not None or attr in old_dd
                )
        else:

            def G_new_datadict(old_dd):
                return G.edge_attr_dict_factory()

        if G.is_multigraph():

            def G_new_inner(keydict):
                kd = G.adjlist_inner_dict_factory(
                    (k, G_new_datadict(dd)) for k, dd in keydict.items()
                )
                return kd
        else:
            G_new_inner = G_new_datadict

        # add edges keeping the same order in _adj and _pred
        G_adj = G._adj
        if G.is_directed():
            for n, nbrs in graph._adj.items():
                G_adj[n].update((nbr, G_new_inner(dd)) for nbr, dd in nbrs.items())
            # ensure same datadict for pred and adj; and pred order of graph._pred
            G_pred = G._pred
            for n, nbrs in graph._pred.items():
                G_pred[n].update((nbr, G_adj[nbr][n]) for nbr in nbrs)
        else:  # undirected
            for n, nbrs in graph._adj.items():
                # ensure same datadict for both ways; and adj order of graph._adj
                G_adj[n].update(
                    (nbr, G_adj[nbr][n] if n in G_adj[nbr] else G_new_inner(dd))
                    for nbr, dd in nbrs.items()
                )

        return G

    @staticmethod
    def convert_to_nx(obj, *, name=None):
        return obj

    @staticmethod
    def on_start_tests(items):
        # Verify that items can be xfailed
        for item in items:
            assert hasattr(item, "add_marker")

    def can_run(self, name, args, kwargs):
        # It is unnecessary to define this function if algorithms are fully supported.
        # We include it for illustration purposes.
        return hasattr(self, name)


backend_interface = LoopbackBackendInterface()