1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
|
from functools import partial
import pytest
import networkx as nx
class TestBFS:
@classmethod
def setup_class(cls):
# simple graph
G = nx.Graph()
G.add_edges_from([(0, 1), (1, 2), (1, 3), (2, 4), (3, 4)])
cls.G = G
def test_successor(self):
assert dict(nx.bfs_successors(self.G, source=0)) == {0: [1], 1: [2, 3], 2: [4]}
def test_predecessor(self):
assert dict(nx.bfs_predecessors(self.G, source=0)) == {1: 0, 2: 1, 3: 1, 4: 2}
def test_bfs_tree(self):
T = nx.bfs_tree(self.G, source=0)
assert sorted(T.nodes()) == sorted(self.G.nodes())
assert sorted(T.edges()) == [(0, 1), (1, 2), (1, 3), (2, 4)]
def test_bfs_edges(self):
edges = nx.bfs_edges(self.G, source=0)
assert list(edges) == [(0, 1), (1, 2), (1, 3), (2, 4)]
def test_bfs_edges_reverse(self):
D = nx.DiGraph()
D.add_edges_from([(0, 1), (1, 2), (1, 3), (2, 4), (3, 4)])
edges = nx.bfs_edges(D, source=4, reverse=True)
assert list(edges) == [(4, 2), (4, 3), (2, 1), (1, 0)]
def test_bfs_edges_sorting(self):
D = nx.DiGraph()
D.add_edges_from([(0, 1), (0, 2), (1, 4), (1, 3), (2, 5)])
sort_desc = partial(sorted, reverse=True)
edges_asc = nx.bfs_edges(D, source=0, sort_neighbors=sorted)
edges_desc = nx.bfs_edges(D, source=0, sort_neighbors=sort_desc)
assert list(edges_asc) == [(0, 1), (0, 2), (1, 3), (1, 4), (2, 5)]
assert list(edges_desc) == [(0, 2), (0, 1), (2, 5), (1, 4), (1, 3)]
def test_bfs_tree_isolates(self):
G = nx.Graph()
G.add_node(1)
G.add_node(2)
T = nx.bfs_tree(G, source=1)
assert sorted(T.nodes()) == [1]
assert sorted(T.edges()) == []
def test_bfs_layers(self):
expected = {
0: [0],
1: [1],
2: [2, 3],
3: [4],
}
assert dict(enumerate(nx.bfs_layers(self.G, sources=[0]))) == expected
assert dict(enumerate(nx.bfs_layers(self.G, sources=0))) == expected
def test_bfs_layers_missing_source(self):
with pytest.raises(nx.NetworkXError):
next(nx.bfs_layers(self.G, sources="abc"))
with pytest.raises(nx.NetworkXError):
next(nx.bfs_layers(self.G, sources=["abc"]))
def test_descendants_at_distance(self):
for distance, descendants in enumerate([{0}, {1}, {2, 3}, {4}]):
assert nx.descendants_at_distance(self.G, 0, distance) == descendants
def test_descendants_at_distance_missing_source(self):
with pytest.raises(nx.NetworkXError):
nx.descendants_at_distance(self.G, "abc", 0)
def test_bfs_labeled_edges_directed(self):
D = nx.cycle_graph(5, create_using=nx.DiGraph)
expected = [
(0, 1, "tree"),
(1, 2, "tree"),
(2, 3, "tree"),
(3, 4, "tree"),
(4, 0, "reverse"),
]
answer = list(nx.bfs_labeled_edges(D, 0))
assert expected == answer
D.add_edge(4, 4)
expected.append((4, 4, "level"))
answer = list(nx.bfs_labeled_edges(D, 0))
assert expected == answer
D.add_edge(0, 2)
D.add_edge(1, 5)
D.add_edge(2, 5)
D.remove_edge(4, 4)
expected = [
(0, 1, "tree"),
(0, 2, "tree"),
(1, 2, "level"),
(1, 5, "tree"),
(2, 3, "tree"),
(2, 5, "forward"),
(3, 4, "tree"),
(4, 0, "reverse"),
]
answer = list(nx.bfs_labeled_edges(D, 0))
assert expected == answer
G = D.to_undirected()
G.add_edge(4, 4)
expected = [
(0, 1, "tree"),
(0, 2, "tree"),
(0, 4, "tree"),
(1, 2, "level"),
(1, 5, "tree"),
(2, 3, "tree"),
(2, 5, "forward"),
(4, 3, "forward"),
(4, 4, "level"),
]
answer = list(nx.bfs_labeled_edges(G, 0))
assert expected == answer
class TestBreadthLimitedSearch:
@classmethod
def setup_class(cls):
# a tree
G = nx.Graph()
nx.add_path(G, [0, 1, 2, 3, 4, 5, 6])
nx.add_path(G, [2, 7, 8, 9, 10])
cls.G = G
# a disconnected graph
D = nx.Graph()
D.add_edges_from([(0, 1), (2, 3)])
nx.add_path(D, [2, 7, 8, 9, 10])
cls.D = D
def test_limited_bfs_successor(self):
assert dict(nx.bfs_successors(self.G, source=1, depth_limit=3)) == {
1: [0, 2],
2: [3, 7],
3: [4],
7: [8],
}
result = {
n: sorted(s) for n, s in nx.bfs_successors(self.D, source=7, depth_limit=2)
}
assert result == {8: [9], 2: [3], 7: [2, 8]}
def test_limited_bfs_predecessor(self):
assert dict(nx.bfs_predecessors(self.G, source=1, depth_limit=3)) == {
0: 1,
2: 1,
3: 2,
4: 3,
7: 2,
8: 7,
}
assert dict(nx.bfs_predecessors(self.D, source=7, depth_limit=2)) == {
2: 7,
3: 2,
8: 7,
9: 8,
}
def test_limited_bfs_tree(self):
T = nx.bfs_tree(self.G, source=3, depth_limit=1)
assert sorted(T.edges()) == [(3, 2), (3, 4)]
def test_limited_bfs_edges(self):
edges = nx.bfs_edges(self.G, source=9, depth_limit=4)
assert list(edges) == [(9, 8), (9, 10), (8, 7), (7, 2), (2, 1), (2, 3)]
def test_limited_bfs_layers(self):
assert dict(enumerate(nx.bfs_layers(self.G, sources=[0]))) == {
0: [0],
1: [1],
2: [2],
3: [3, 7],
4: [4, 8],
5: [5, 9],
6: [6, 10],
}
assert dict(enumerate(nx.bfs_layers(self.D, sources=2))) == {
0: [2],
1: [3, 7],
2: [8],
3: [9],
4: [10],
}
def test_limited_descendants_at_distance(self):
for distance, descendants in enumerate(
[{0}, {1}, {2}, {3, 7}, {4, 8}, {5, 9}, {6, 10}]
):
assert nx.descendants_at_distance(self.G, 0, distance) == descendants
for distance, descendants in enumerate([{2}, {3, 7}, {8}, {9}, {10}]):
assert nx.descendants_at_distance(self.D, 2, distance) == descendants
|