1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
|
"""Basic algorithms for breadth-first searching the nodes of a graph."""
from collections import deque
import networkx as nx
__all__ = [
"bfs_edges",
"bfs_tree",
"bfs_predecessors",
"bfs_successors",
"descendants_at_distance",
"bfs_layers",
"bfs_labeled_edges",
"generic_bfs_edges",
]
@nx._dispatchable
def generic_bfs_edges(G, source, neighbors=None, depth_limit=None):
"""Iterate over edges in a breadth-first search.
The breadth-first search begins at `source` and enqueues the
neighbors of newly visited nodes specified by the `neighbors`
function.
Parameters
----------
G : NetworkX graph
source : node
Starting node for the breadth-first search; this function
iterates over only those edges in the component reachable from
this node.
neighbors : function
A function that takes a newly visited node of the graph as input
and returns an *iterator* (not just a list) of nodes that are
neighbors of that node with custom ordering. If not specified, this is
just the ``G.neighbors`` method, but in general it can be any function
that returns an iterator over some or all of the neighbors of a
given node, in any order.
depth_limit : int, optional(default=len(G))
Specify the maximum search depth.
Yields
------
edge
Edges in the breadth-first search starting from `source`.
Examples
--------
>>> G = nx.path_graph(7)
>>> list(nx.generic_bfs_edges(G, source=0))
[(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]
>>> list(nx.generic_bfs_edges(G, source=2))
[(2, 1), (2, 3), (1, 0), (3, 4), (4, 5), (5, 6)]
>>> list(nx.generic_bfs_edges(G, source=2, depth_limit=2))
[(2, 1), (2, 3), (1, 0), (3, 4)]
The `neighbors` param can be used to specify the visitation order of each
node's neighbors generically. In the following example, we modify the default
neighbor to return *odd* nodes first:
>>> def odd_first(n):
... return sorted(G.neighbors(n), key=lambda x: x % 2, reverse=True)
>>> G = nx.star_graph(5)
>>> list(nx.generic_bfs_edges(G, source=0)) # Default neighbor ordering
[(0, 1), (0, 2), (0, 3), (0, 4), (0, 5)]
>>> list(nx.generic_bfs_edges(G, source=0, neighbors=odd_first))
[(0, 1), (0, 3), (0, 5), (0, 2), (0, 4)]
Notes
-----
This implementation is from `PADS`_, which was in the public domain
when it was first accessed in July, 2004. The modifications
to allow depth limits are based on the Wikipedia article
"`Depth-limited-search`_".
.. _PADS: http://www.ics.uci.edu/~eppstein/PADS/BFS.py
.. _Depth-limited-search: https://en.wikipedia.org/wiki/Depth-limited_search
"""
if neighbors is None:
neighbors = G.neighbors
if depth_limit is None:
depth_limit = len(G)
seen = {source}
n = len(G)
depth = 0
next_parents_children = [(source, neighbors(source))]
while next_parents_children and depth < depth_limit:
this_parents_children = next_parents_children
next_parents_children = []
for parent, children in this_parents_children:
for child in children:
if child not in seen:
seen.add(child)
next_parents_children.append((child, neighbors(child)))
yield parent, child
if len(seen) == n:
return
depth += 1
@nx._dispatchable
def bfs_edges(G, source, reverse=False, depth_limit=None, sort_neighbors=None):
"""Iterate over edges in a breadth-first-search starting at source.
Parameters
----------
G : NetworkX graph
source : node
Specify starting node for breadth-first search; this function
iterates over only those edges in the component reachable from
this node.
reverse : bool, optional
If True traverse a directed graph in the reverse direction
depth_limit : int, optional(default=len(G))
Specify the maximum search depth
sort_neighbors : function (default=None)
A function that takes an iterator over nodes as the input, and
returns an iterable of the same nodes with a custom ordering.
For example, `sorted` will sort the nodes in increasing order.
Yields
------
edge: 2-tuple of nodes
Yields edges resulting from the breadth-first search.
Examples
--------
To get the edges in a breadth-first search::
>>> G = nx.path_graph(3)
>>> list(nx.bfs_edges(G, 0))
[(0, 1), (1, 2)]
>>> list(nx.bfs_edges(G, source=0, depth_limit=1))
[(0, 1)]
To get the nodes in a breadth-first search order::
>>> G = nx.path_graph(3)
>>> root = 2
>>> edges = nx.bfs_edges(G, root)
>>> nodes = [root] + [v for u, v in edges]
>>> nodes
[2, 1, 0]
Notes
-----
The naming of this function is very similar to
:func:`~networkx.algorithms.traversal.edgebfs.edge_bfs`. The difference
is that ``edge_bfs`` yields edges even if they extend back to an already
explored node while this generator yields the edges of the tree that results
from a breadth-first-search (BFS) so no edges are reported if they extend
to already explored nodes. That means ``edge_bfs`` reports all edges while
``bfs_edges`` only reports those traversed by a node-based BFS. Yet another
description is that ``bfs_edges`` reports the edges traversed during BFS
while ``edge_bfs`` reports all edges in the order they are explored.
Based on the breadth-first search implementation in PADS [1]_
by D. Eppstein, July 2004; with modifications to allow depth limits
as described in [2]_.
References
----------
.. [1] http://www.ics.uci.edu/~eppstein/PADS/BFS.py.
.. [2] https://en.wikipedia.org/wiki/Depth-limited_search
See Also
--------
bfs_tree
:func:`~networkx.algorithms.traversal.depth_first_search.dfs_edges`
:func:`~networkx.algorithms.traversal.edgebfs.edge_bfs`
"""
if reverse and G.is_directed():
successors = G.predecessors
else:
successors = G.neighbors
if sort_neighbors is not None:
yield from generic_bfs_edges(
G, source, lambda node: iter(sort_neighbors(successors(node))), depth_limit
)
else:
yield from generic_bfs_edges(G, source, successors, depth_limit)
@nx._dispatchable(returns_graph=True)
def bfs_tree(G, source, reverse=False, depth_limit=None, sort_neighbors=None):
"""Returns an oriented tree constructed from of a breadth-first-search
starting at source.
Parameters
----------
G : NetworkX graph
source : node
Specify starting node for breadth-first search
reverse : bool, optional
If True traverse a directed graph in the reverse direction
depth_limit : int, optional(default=len(G))
Specify the maximum search depth
sort_neighbors : function (default=None)
A function that takes an iterator over nodes as the input, and
returns an iterable of the same nodes with a custom ordering.
For example, `sorted` will sort the nodes in increasing order.
Returns
-------
T: NetworkX DiGraph
An oriented tree
Examples
--------
>>> G = nx.path_graph(3)
>>> list(nx.bfs_tree(G, 1).edges())
[(1, 0), (1, 2)]
>>> H = nx.Graph()
>>> nx.add_path(H, [0, 1, 2, 3, 4, 5, 6])
>>> nx.add_path(H, [2, 7, 8, 9, 10])
>>> sorted(list(nx.bfs_tree(H, source=3, depth_limit=3).edges()))
[(1, 0), (2, 1), (2, 7), (3, 2), (3, 4), (4, 5), (5, 6), (7, 8)]
Notes
-----
Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py
by D. Eppstein, July 2004. The modifications
to allow depth limits based on the Wikipedia article
"`Depth-limited-search`_".
.. _Depth-limited-search: https://en.wikipedia.org/wiki/Depth-limited_search
See Also
--------
dfs_tree
bfs_edges
edge_bfs
"""
T = nx.DiGraph()
T.add_node(source)
edges_gen = bfs_edges(
G,
source,
reverse=reverse,
depth_limit=depth_limit,
sort_neighbors=sort_neighbors,
)
T.add_edges_from(edges_gen)
return T
@nx._dispatchable
def bfs_predecessors(G, source, depth_limit=None, sort_neighbors=None):
"""Returns an iterator of predecessors in breadth-first-search from source.
Parameters
----------
G : NetworkX graph
source : node
Specify starting node for breadth-first search
depth_limit : int, optional(default=len(G))
Specify the maximum search depth
sort_neighbors : function (default=None)
A function that takes an iterator over nodes as the input, and
returns an iterable of the same nodes with a custom ordering.
For example, `sorted` will sort the nodes in increasing order.
Returns
-------
pred: iterator
(node, predecessor) iterator where `predecessor` is the predecessor of
`node` in a breadth first search starting from `source`.
Examples
--------
>>> G = nx.path_graph(3)
>>> dict(nx.bfs_predecessors(G, 0))
{1: 0, 2: 1}
>>> H = nx.Graph()
>>> H.add_edges_from([(0, 1), (0, 2), (1, 3), (1, 4), (2, 5), (2, 6)])
>>> dict(nx.bfs_predecessors(H, 0))
{1: 0, 2: 0, 3: 1, 4: 1, 5: 2, 6: 2}
>>> M = nx.Graph()
>>> nx.add_path(M, [0, 1, 2, 3, 4, 5, 6])
>>> nx.add_path(M, [2, 7, 8, 9, 10])
>>> sorted(nx.bfs_predecessors(M, source=1, depth_limit=3))
[(0, 1), (2, 1), (3, 2), (4, 3), (7, 2), (8, 7)]
>>> N = nx.DiGraph()
>>> nx.add_path(N, [0, 1, 2, 3, 4, 7])
>>> nx.add_path(N, [3, 5, 6, 7])
>>> sorted(nx.bfs_predecessors(N, source=2))
[(3, 2), (4, 3), (5, 3), (6, 5), (7, 4)]
Notes
-----
Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py
by D. Eppstein, July 2004. The modifications
to allow depth limits based on the Wikipedia article
"`Depth-limited-search`_".
.. _Depth-limited-search: https://en.wikipedia.org/wiki/Depth-limited_search
See Also
--------
bfs_tree
bfs_edges
edge_bfs
"""
for s, t in bfs_edges(
G, source, depth_limit=depth_limit, sort_neighbors=sort_neighbors
):
yield (t, s)
@nx._dispatchable
def bfs_successors(G, source, depth_limit=None, sort_neighbors=None):
"""Returns an iterator of successors in breadth-first-search from source.
Parameters
----------
G : NetworkX graph
source : node
Specify starting node for breadth-first search
depth_limit : int, optional(default=len(G))
Specify the maximum search depth
sort_neighbors : function (default=None)
A function that takes an iterator over nodes as the input, and
returns an iterable of the same nodes with a custom ordering.
For example, `sorted` will sort the nodes in increasing order.
Returns
-------
succ: iterator
(node, successors) iterator where `successors` is the non-empty list of
successors of `node` in a breadth first search from `source`.
To appear in the iterator, `node` must have successors.
Examples
--------
>>> G = nx.path_graph(3)
>>> dict(nx.bfs_successors(G, 0))
{0: [1], 1: [2]}
>>> H = nx.Graph()
>>> H.add_edges_from([(0, 1), (0, 2), (1, 3), (1, 4), (2, 5), (2, 6)])
>>> dict(nx.bfs_successors(H, 0))
{0: [1, 2], 1: [3, 4], 2: [5, 6]}
>>> G = nx.Graph()
>>> nx.add_path(G, [0, 1, 2, 3, 4, 5, 6])
>>> nx.add_path(G, [2, 7, 8, 9, 10])
>>> dict(nx.bfs_successors(G, source=1, depth_limit=3))
{1: [0, 2], 2: [3, 7], 3: [4], 7: [8]}
>>> G = nx.DiGraph()
>>> nx.add_path(G, [0, 1, 2, 3, 4, 5])
>>> dict(nx.bfs_successors(G, source=3))
{3: [4], 4: [5]}
Notes
-----
Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py
by D. Eppstein, July 2004.The modifications
to allow depth limits based on the Wikipedia article
"`Depth-limited-search`_".
.. _Depth-limited-search: https://en.wikipedia.org/wiki/Depth-limited_search
See Also
--------
bfs_tree
bfs_edges
edge_bfs
"""
parent = source
children = []
for p, c in bfs_edges(
G, source, depth_limit=depth_limit, sort_neighbors=sort_neighbors
):
if p == parent:
children.append(c)
continue
yield (parent, children)
children = [c]
parent = p
yield (parent, children)
@nx._dispatchable
def bfs_layers(G, sources):
"""Returns an iterator of all the layers in breadth-first search traversal.
Parameters
----------
G : NetworkX graph
A graph over which to find the layers using breadth-first search.
sources : node in `G` or list of nodes in `G`
Specify starting nodes for single source or multiple sources breadth-first search
Yields
------
layer: list of nodes
Yields list of nodes at the same distance from sources
Examples
--------
>>> G = nx.path_graph(5)
>>> dict(enumerate(nx.bfs_layers(G, [0, 4])))
{0: [0, 4], 1: [1, 3], 2: [2]}
>>> H = nx.Graph()
>>> H.add_edges_from([(0, 1), (0, 2), (1, 3), (1, 4), (2, 5), (2, 6)])
>>> dict(enumerate(nx.bfs_layers(H, [1])))
{0: [1], 1: [0, 3, 4], 2: [2], 3: [5, 6]}
>>> dict(enumerate(nx.bfs_layers(H, [1, 6])))
{0: [1, 6], 1: [0, 3, 4, 2], 2: [5]}
"""
if sources in G:
sources = [sources]
current_layer = list(sources)
visited = set(sources)
for source in current_layer:
if source not in G:
raise nx.NetworkXError(f"The node {source} is not in the graph.")
# this is basically BFS, except that the current layer only stores the nodes at
# same distance from sources at each iteration
while current_layer:
yield current_layer
next_layer = []
for node in current_layer:
for child in G[node]:
if child not in visited:
visited.add(child)
next_layer.append(child)
current_layer = next_layer
REVERSE_EDGE = "reverse"
TREE_EDGE = "tree"
FORWARD_EDGE = "forward"
LEVEL_EDGE = "level"
@nx._dispatchable
def bfs_labeled_edges(G, sources):
"""Iterate over edges in a breadth-first search (BFS) labeled by type.
We generate triple of the form (*u*, *v*, *d*), where (*u*, *v*) is the
edge being explored in the breadth-first search and *d* is one of the
strings 'tree', 'forward', 'level', or 'reverse'. A 'tree' edge is one in
which *v* is first discovered and placed into the layer below *u*. A
'forward' edge is one in which *u* is on the layer above *v* and *v* has
already been discovered. A 'level' edge is one in which both *u* and *v*
occur on the same layer. A 'reverse' edge is one in which *u* is on a layer
below *v*.
We emit each edge exactly once. In an undirected graph, 'reverse' edges do
not occur, because each is discovered either as a 'tree' or 'forward' edge.
Parameters
----------
G : NetworkX graph
A graph over which to find the layers using breadth-first search.
sources : node in `G` or list of nodes in `G`
Starting nodes for single source or multiple sources breadth-first search
Yields
------
edges: generator
A generator of triples (*u*, *v*, *d*) where (*u*, *v*) is the edge being
explored and *d* is described above.
Examples
--------
>>> G = nx.cycle_graph(4, create_using=nx.DiGraph)
>>> list(nx.bfs_labeled_edges(G, 0))
[(0, 1, 'tree'), (1, 2, 'tree'), (2, 3, 'tree'), (3, 0, 'reverse')]
>>> G = nx.complete_graph(3)
>>> list(nx.bfs_labeled_edges(G, 0))
[(0, 1, 'tree'), (0, 2, 'tree'), (1, 2, 'level')]
>>> list(nx.bfs_labeled_edges(G, [0, 1]))
[(0, 1, 'level'), (0, 2, 'tree'), (1, 2, 'forward')]
"""
if sources in G:
sources = [sources]
neighbors = G._adj
directed = G.is_directed()
visited = set()
visit = visited.discard if directed else visited.add
# We use visited in a negative sense, so the visited set stays empty for the
# directed case and level edges are reported on their first occurrence in
# the undirected case. Note our use of visited.discard -- this is built-in
# thus somewhat faster than a python-defined def nop(x): pass
depth = {s: 0 for s in sources}
queue = deque(depth.items())
push = queue.append
pop = queue.popleft
while queue:
u, du = pop()
for v in neighbors[u]:
if v not in depth:
depth[v] = dv = du + 1
push((v, dv))
yield u, v, TREE_EDGE
else:
dv = depth[v]
if du == dv:
if v not in visited:
yield u, v, LEVEL_EDGE
elif du < dv:
yield u, v, FORWARD_EDGE
elif directed:
yield u, v, REVERSE_EDGE
visit(u)
@nx._dispatchable
def descendants_at_distance(G, source, distance):
"""Returns all nodes at a fixed `distance` from `source` in `G`.
Parameters
----------
G : NetworkX graph
A graph
source : node in `G`
distance : the distance of the wanted nodes from `source`
Returns
-------
set()
The descendants of `source` in `G` at the given `distance` from `source`
Examples
--------
>>> G = nx.path_graph(5)
>>> nx.descendants_at_distance(G, 2, 2)
{0, 4}
>>> H = nx.DiGraph()
>>> H.add_edges_from([(0, 1), (0, 2), (1, 3), (1, 4), (2, 5), (2, 6)])
>>> nx.descendants_at_distance(H, 0, 2)
{3, 4, 5, 6}
>>> nx.descendants_at_distance(H, 5, 0)
{5}
>>> nx.descendants_at_distance(H, 5, 1)
set()
"""
if source not in G:
raise nx.NetworkXError(f"The node {source} is not in the graph.")
bfs_generator = nx.bfs_layers(G, source)
for i, layer in enumerate(bfs_generator):
if i == distance:
return set(layer)
return set()
|