1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
|
import pytest
import networkx as nx
from networkx.algorithms.planarity import (
check_planarity_recursive,
get_counterexample,
get_counterexample_recursive,
)
class TestLRPlanarity:
"""Nose Unit tests for the :mod:`networkx.algorithms.planarity` module.
Tests three things:
1. Check that the result is correct
(returns planar if and only if the graph is actually planar)
2. In case a counter example is returned: Check if it is correct
3. In case an embedding is returned: Check if its actually an embedding
"""
@staticmethod
def check_graph(G, is_planar=None):
"""Raises an exception if the lr_planarity check returns a wrong result
Parameters
----------
G : NetworkX graph
is_planar : bool
The expected result of the planarity check.
If set to None only counter example or embedding are verified.
"""
# obtain results of planarity check
is_planar_lr, result = nx.check_planarity(G, True)
is_planar_lr_rec, result_rec = check_planarity_recursive(G, True)
if is_planar is not None:
# set a message for the assert
if is_planar:
msg = "Wrong planarity check result. Should be planar."
else:
msg = "Wrong planarity check result. Should be non-planar."
# check if the result is as expected
assert is_planar == is_planar_lr, msg
assert is_planar == is_planar_lr_rec, msg
if is_planar_lr:
# check embedding
check_embedding(G, result)
check_embedding(G, result_rec)
else:
# check counter example
check_counterexample(G, result)
check_counterexample(G, result_rec)
def test_simple_planar_graph(self):
e = [
(1, 2),
(2, 3),
(3, 4),
(4, 6),
(6, 7),
(7, 1),
(1, 5),
(5, 2),
(2, 4),
(4, 5),
(5, 7),
]
self.check_graph(nx.Graph(e), is_planar=True)
def test_planar_with_selfloop(self):
e = [
(1, 1),
(2, 2),
(3, 3),
(4, 4),
(5, 5),
(1, 2),
(1, 3),
(1, 5),
(2, 5),
(2, 4),
(3, 4),
(3, 5),
(4, 5),
]
self.check_graph(nx.Graph(e), is_planar=True)
def test_k3_3(self):
self.check_graph(nx.complete_bipartite_graph(3, 3), is_planar=False)
def test_k5(self):
self.check_graph(nx.complete_graph(5), is_planar=False)
def test_multiple_components_planar(self):
e = [(1, 2), (2, 3), (3, 1), (4, 5), (5, 6), (6, 4)]
self.check_graph(nx.Graph(e), is_planar=True)
def test_multiple_components_non_planar(self):
G = nx.complete_graph(5)
# add another planar component to the non planar component
# G stays non planar
G.add_edges_from([(6, 7), (7, 8), (8, 6)])
self.check_graph(G, is_planar=False)
def test_non_planar_with_selfloop(self):
G = nx.complete_graph(5)
# add self loops
for i in range(5):
G.add_edge(i, i)
self.check_graph(G, is_planar=False)
def test_non_planar1(self):
# tests a graph that has no subgraph directly isomorph to K5 or K3_3
e = [
(1, 5),
(1, 6),
(1, 7),
(2, 6),
(2, 3),
(3, 5),
(3, 7),
(4, 5),
(4, 6),
(4, 7),
]
self.check_graph(nx.Graph(e), is_planar=False)
def test_loop(self):
# test a graph with a selfloop
e = [(1, 2), (2, 2)]
G = nx.Graph(e)
self.check_graph(G, is_planar=True)
def test_comp(self):
# test multiple component graph
e = [(1, 2), (3, 4)]
G = nx.Graph(e)
G.remove_edge(1, 2)
self.check_graph(G, is_planar=True)
def test_goldner_harary(self):
# test goldner-harary graph (a maximal planar graph)
e = [
(1, 2),
(1, 3),
(1, 4),
(1, 5),
(1, 7),
(1, 8),
(1, 10),
(1, 11),
(2, 3),
(2, 4),
(2, 6),
(2, 7),
(2, 9),
(2, 10),
(2, 11),
(3, 4),
(4, 5),
(4, 6),
(4, 7),
(5, 7),
(6, 7),
(7, 8),
(7, 9),
(7, 10),
(8, 10),
(9, 10),
(10, 11),
]
G = nx.Graph(e)
self.check_graph(G, is_planar=True)
def test_planar_multigraph(self):
G = nx.MultiGraph([(1, 2), (1, 2), (1, 2), (1, 2), (2, 3), (3, 1)])
self.check_graph(G, is_planar=True)
def test_non_planar_multigraph(self):
G = nx.MultiGraph(nx.complete_graph(5))
G.add_edges_from([(1, 2)] * 5)
self.check_graph(G, is_planar=False)
def test_planar_digraph(self):
G = nx.DiGraph([(1, 2), (2, 3), (2, 4), (4, 1), (4, 2), (1, 4), (3, 2)])
self.check_graph(G, is_planar=True)
def test_non_planar_digraph(self):
G = nx.DiGraph(nx.complete_graph(5))
G.remove_edge(1, 2)
G.remove_edge(4, 1)
self.check_graph(G, is_planar=False)
def test_single_component(self):
# Test a graph with only a single node
G = nx.Graph()
G.add_node(1)
self.check_graph(G, is_planar=True)
def test_graph1(self):
G = nx.Graph(
[
(3, 10),
(2, 13),
(1, 13),
(7, 11),
(0, 8),
(8, 13),
(0, 2),
(0, 7),
(0, 10),
(1, 7),
]
)
self.check_graph(G, is_planar=True)
def test_graph2(self):
G = nx.Graph(
[
(1, 2),
(4, 13),
(0, 13),
(4, 5),
(7, 10),
(1, 7),
(0, 3),
(2, 6),
(5, 6),
(7, 13),
(4, 8),
(0, 8),
(0, 9),
(2, 13),
(6, 7),
(3, 6),
(2, 8),
]
)
self.check_graph(G, is_planar=False)
def test_graph3(self):
G = nx.Graph(
[
(0, 7),
(3, 11),
(3, 4),
(8, 9),
(4, 11),
(1, 7),
(1, 13),
(1, 11),
(3, 5),
(5, 7),
(1, 3),
(0, 4),
(5, 11),
(5, 13),
]
)
self.check_graph(G, is_planar=False)
def test_counterexample_planar(self):
with pytest.raises(nx.NetworkXException):
# Try to get a counterexample of a planar graph
G = nx.Graph()
G.add_node(1)
get_counterexample(G)
def test_counterexample_planar_recursive(self):
with pytest.raises(nx.NetworkXException):
# Try to get a counterexample of a planar graph
G = nx.Graph()
G.add_node(1)
get_counterexample_recursive(G)
def test_edge_removal_from_planar_embedding(self):
# PlanarEmbedding.check_structure() must succeed after edge removal
edges = ((0, 1), (1, 2), (2, 3), (3, 4), (4, 0), (0, 2), (0, 3))
G = nx.Graph(edges)
cert, P = nx.check_planarity(G)
assert cert is True
P.remove_edge(0, 2)
self.check_graph(P, is_planar=True)
P.add_half_edge_ccw(1, 3, 2)
P.add_half_edge_cw(3, 1, 2)
self.check_graph(P, is_planar=True)
P.remove_edges_from(((0, 3), (1, 3)))
self.check_graph(P, is_planar=True)
def check_embedding(G, embedding):
"""Raises an exception if the combinatorial embedding is not correct
Parameters
----------
G : NetworkX graph
embedding : a dict mapping nodes to a list of edges
This specifies the ordering of the outgoing edges from a node for
a combinatorial embedding
Notes
-----
Checks the following things:
- The type of the embedding is correct
- The nodes and edges match the original graph
- Every half edge has its matching opposite half edge
- No intersections of edges (checked by Euler's formula)
"""
if not isinstance(embedding, nx.PlanarEmbedding):
raise nx.NetworkXException("Bad embedding. Not of type nx.PlanarEmbedding")
# Check structure
embedding.check_structure()
# Check that graphs are equivalent
assert set(G.nodes) == set(
embedding.nodes
), "Bad embedding. Nodes don't match the original graph."
# Check that the edges are equal
g_edges = set()
for edge in G.edges:
if edge[0] != edge[1]:
g_edges.add((edge[0], edge[1]))
g_edges.add((edge[1], edge[0]))
assert g_edges == set(
embedding.edges
), "Bad embedding. Edges don't match the original graph."
def check_counterexample(G, sub_graph):
"""Raises an exception if the counterexample is wrong.
Parameters
----------
G : NetworkX graph
subdivision_nodes : set
A set of nodes inducing a subgraph as a counterexample
"""
# 1. Create the sub graph
sub_graph = nx.Graph(sub_graph)
# 2. Remove self loops
for u in sub_graph:
if sub_graph.has_edge(u, u):
sub_graph.remove_edge(u, u)
# keep track of nodes we might need to contract
contract = list(sub_graph)
# 3. Contract Edges
while len(contract) > 0:
contract_node = contract.pop()
if contract_node not in sub_graph:
# Node was already contracted
continue
degree = sub_graph.degree[contract_node]
# Check if we can remove the node
if degree == 2:
# Get the two neighbors
neighbors = iter(sub_graph[contract_node])
u = next(neighbors)
v = next(neighbors)
# Save nodes for later
contract.append(u)
contract.append(v)
# Contract edge
sub_graph.remove_node(contract_node)
sub_graph.add_edge(u, v)
# 4. Check for isomorphism with K5 or K3_3 graphs
if len(sub_graph) == 5:
if not nx.is_isomorphic(nx.complete_graph(5), sub_graph):
raise nx.NetworkXException("Bad counter example.")
elif len(sub_graph) == 6:
if not nx.is_isomorphic(nx.complete_bipartite_graph(3, 3), sub_graph):
raise nx.NetworkXException("Bad counter example.")
else:
raise nx.NetworkXException("Bad counter example.")
class TestPlanarEmbeddingClass:
def test_add_half_edge(self):
embedding = nx.PlanarEmbedding()
embedding.add_half_edge(0, 1)
with pytest.raises(
nx.NetworkXException, match="Invalid clockwise reference node."
):
embedding.add_half_edge(0, 2, cw=3)
with pytest.raises(
nx.NetworkXException, match="Invalid counterclockwise reference node."
):
embedding.add_half_edge(0, 2, ccw=3)
with pytest.raises(
nx.NetworkXException, match="Only one of cw/ccw can be specified."
):
embedding.add_half_edge(0, 2, cw=1, ccw=1)
with pytest.raises(
nx.NetworkXException,
match=(
r"Node already has out-half-edge\(s\), either"
" cw or ccw reference node required."
),
):
embedding.add_half_edge(0, 2)
# these should work
embedding.add_half_edge(0, 2, cw=1)
embedding.add_half_edge(0, 3, ccw=1)
assert sorted(embedding.edges(data=True)) == [
(0, 1, {"ccw": 2, "cw": 3}),
(0, 2, {"cw": 1, "ccw": 3}),
(0, 3, {"cw": 2, "ccw": 1}),
]
def test_get_data(self):
embedding = self.get_star_embedding(4)
data = embedding.get_data()
data_cmp = {0: [3, 2, 1], 1: [0], 2: [0], 3: [0]}
assert data == data_cmp
def test_edge_removal(self):
embedding = nx.PlanarEmbedding()
embedding.set_data(
{
1: [2, 5, 7],
2: [1, 3, 4, 5],
3: [2, 4],
4: [3, 6, 5, 2],
5: [7, 1, 2, 4],
6: [4, 7],
7: [6, 1, 5],
}
)
# remove_edges_from() calls remove_edge(), so both are tested here
embedding.remove_edges_from(((5, 4), (1, 5)))
embedding.check_structure()
embedding_expected = nx.PlanarEmbedding()
embedding_expected.set_data(
{
1: [2, 7],
2: [1, 3, 4, 5],
3: [2, 4],
4: [3, 6, 2],
5: [7, 2],
6: [4, 7],
7: [6, 1, 5],
}
)
assert nx.utils.graphs_equal(embedding, embedding_expected)
def test_missing_edge_orientation(self):
embedding = nx.PlanarEmbedding({1: {2: {}}, 2: {1: {}}})
with pytest.raises(nx.NetworkXException):
# Invalid structure because the orientation of the edge was not set
embedding.check_structure()
def test_invalid_edge_orientation(self):
embedding = nx.PlanarEmbedding(
{
1: {2: {"cw": 2, "ccw": 2}},
2: {1: {"cw": 1, "ccw": 1}},
1: {3: {}},
3: {1: {}},
}
)
with pytest.raises(nx.NetworkXException):
embedding.check_structure()
def test_missing_half_edge(self):
embedding = nx.PlanarEmbedding()
embedding.add_half_edge(1, 2)
with pytest.raises(nx.NetworkXException):
# Invalid structure because other half edge is missing
embedding.check_structure()
def test_not_fulfilling_euler_formula(self):
embedding = nx.PlanarEmbedding()
for i in range(5):
ref = None
for j in range(5):
if i != j:
embedding.add_half_edge(i, j, cw=ref)
ref = j
with pytest.raises(nx.NetworkXException):
embedding.check_structure()
def test_missing_reference(self):
embedding = nx.PlanarEmbedding()
with pytest.raises(nx.NetworkXException, match="Invalid reference node."):
embedding.add_half_edge(1, 2, ccw=3)
def test_connect_components(self):
embedding = nx.PlanarEmbedding()
embedding.connect_components(1, 2)
def test_successful_face_traversal(self):
embedding = nx.PlanarEmbedding()
embedding.add_half_edge(1, 2)
embedding.add_half_edge(2, 1)
face = embedding.traverse_face(1, 2)
assert face == [1, 2]
def test_unsuccessful_face_traversal(self):
embedding = nx.PlanarEmbedding(
{1: {2: {"cw": 3, "ccw": 2}}, 2: {1: {"cw": 3, "ccw": 1}}}
)
with pytest.raises(nx.NetworkXException):
embedding.traverse_face(1, 2)
def test_forbidden_methods(self):
embedding = nx.PlanarEmbedding()
embedding.add_node(42) # no exception
embedding.add_nodes_from([(23, 24)]) # no exception
with pytest.raises(NotImplementedError):
embedding.add_edge(1, 3)
with pytest.raises(NotImplementedError):
embedding.add_edges_from([(0, 2), (1, 4)])
with pytest.raises(NotImplementedError):
embedding.add_weighted_edges_from([(0, 2, 350), (1, 4, 125)])
@staticmethod
def get_star_embedding(n):
embedding = nx.PlanarEmbedding()
ref = None
for i in range(1, n):
embedding.add_half_edge(0, i, cw=ref)
ref = i
embedding.add_half_edge(i, 0)
return embedding
|