1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
|
"""Unit tests for the :mod:`networkx.algorithms.efficiency` module."""
import networkx as nx
class TestEfficiency:
def setup_method(self):
# G1 is a disconnected graph
self.G1 = nx.Graph()
self.G1.add_nodes_from([1, 2, 3])
# G2 is a cycle graph
self.G2 = nx.cycle_graph(4)
# G3 is the triangle graph with one additional edge
self.G3 = nx.lollipop_graph(3, 1)
def test_efficiency_disconnected_nodes(self):
"""
When nodes are disconnected, efficiency is 0
"""
assert nx.efficiency(self.G1, 1, 2) == 0
def test_local_efficiency_disconnected_graph(self):
"""
In a disconnected graph the efficiency is 0
"""
assert nx.local_efficiency(self.G1) == 0
def test_efficiency(self):
assert nx.efficiency(self.G2, 0, 1) == 1
assert nx.efficiency(self.G2, 0, 2) == 1 / 2
def test_global_efficiency(self):
assert nx.global_efficiency(self.G2) == 5 / 6
def test_global_efficiency_complete_graph(self):
"""
Tests that the average global efficiency of the complete graph is one.
"""
for n in range(2, 10):
G = nx.complete_graph(n)
assert nx.global_efficiency(G) == 1
def test_local_efficiency_complete_graph(self):
"""
Test that the local efficiency for a complete graph with at least 3
nodes should be one. For a graph with only 2 nodes, the induced
subgraph has no edges.
"""
for n in range(3, 10):
G = nx.complete_graph(n)
assert nx.local_efficiency(G) == 1
def test_using_ego_graph(self):
"""
Test that the ego graph is used when computing local efficiency.
For more information, see GitHub issue #2710.
"""
assert nx.local_efficiency(self.G3) == 7 / 12
|