aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/networkx/algorithms/isomorphism/vf2pp.py
blob: 3093d9c977eed4458458783424fad10284176e2f (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
"""
***************
VF2++ Algorithm
***************

An implementation of the VF2++ algorithm [1]_ for Graph Isomorphism testing.

The simplest interface to use this module is to call:

`vf2pp_is_isomorphic`: to check whether two graphs are isomorphic.
`vf2pp_isomorphism`: to obtain the node mapping between two graphs,
in case they are isomorphic.
`vf2pp_all_isomorphisms`: to generate all possible mappings between two graphs,
if isomorphic.

Introduction
------------
The VF2++ algorithm, follows a similar logic to that of VF2, while also
introducing new easy-to-check cutting rules and determining the optimal access
order of nodes. It is also implemented in a non-recursive manner, which saves
both time and space, when compared to its previous counterpart.

The optimal node ordering is obtained after taking into consideration both the
degree but also the label rarity of each node.
This way we place the nodes that are more likely to match, first in the order,
thus examining the most promising branches in the beginning.
The rules also consider node labels, making it easier to prune unfruitful
branches early in the process.

Examples
--------

Suppose G1 and G2 are Isomorphic Graphs. Verification is as follows:

Without node labels:

>>> import networkx as nx
>>> G1 = nx.path_graph(4)
>>> G2 = nx.path_graph(4)
>>> nx.vf2pp_is_isomorphic(G1, G2, node_label=None)
True
>>> nx.vf2pp_isomorphism(G1, G2, node_label=None)
{1: 1, 2: 2, 0: 0, 3: 3}

With node labels:

>>> G1 = nx.path_graph(4)
>>> G2 = nx.path_graph(4)
>>> mapped = {1: 1, 2: 2, 3: 3, 0: 0}
>>> nx.set_node_attributes(
...     G1, dict(zip(G1, ["blue", "red", "green", "yellow"])), "label"
... )
>>> nx.set_node_attributes(
...     G2,
...     dict(zip([mapped[u] for u in G1], ["blue", "red", "green", "yellow"])),
...     "label",
... )
>>> nx.vf2pp_is_isomorphic(G1, G2, node_label="label")
True
>>> nx.vf2pp_isomorphism(G1, G2, node_label="label")
{1: 1, 2: 2, 0: 0, 3: 3}

References
----------
.. [1] Jüttner, Alpár & Madarasi, Péter. (2018). "VF2++—An improved subgraph
   isomorphism algorithm". Discrete Applied Mathematics. 242.
   https://doi.org/10.1016/j.dam.2018.02.018

"""

import collections

import networkx as nx

__all__ = ["vf2pp_isomorphism", "vf2pp_is_isomorphic", "vf2pp_all_isomorphisms"]

_GraphParameters = collections.namedtuple(
    "_GraphParameters",
    [
        "G1",
        "G2",
        "G1_labels",
        "G2_labels",
        "nodes_of_G1Labels",
        "nodes_of_G2Labels",
        "G2_nodes_of_degree",
    ],
)

_StateParameters = collections.namedtuple(
    "_StateParameters",
    [
        "mapping",
        "reverse_mapping",
        "T1",
        "T1_in",
        "T1_tilde",
        "T1_tilde_in",
        "T2",
        "T2_in",
        "T2_tilde",
        "T2_tilde_in",
    ],
)


@nx._dispatchable(graphs={"G1": 0, "G2": 1}, node_attrs={"node_label": "default_label"})
def vf2pp_isomorphism(G1, G2, node_label=None, default_label=None):
    """Return an isomorphic mapping between `G1` and `G2` if it exists.

    Parameters
    ----------
    G1, G2 : NetworkX Graph or MultiGraph instances.
        The two graphs to check for isomorphism.

    node_label : str, optional
        The name of the node attribute to be used when comparing nodes.
        The default is `None`, meaning node attributes are not considered
        in the comparison. Any node that doesn't have the `node_label`
        attribute uses `default_label` instead.

    default_label : scalar
        Default value to use when a node doesn't have an attribute
        named `node_label`. Default is `None`.

    Returns
    -------
    dict or None
        Node mapping if the two graphs are isomorphic. None otherwise.
    """
    try:
        mapping = next(vf2pp_all_isomorphisms(G1, G2, node_label, default_label))
        return mapping
    except StopIteration:
        return None


@nx._dispatchable(graphs={"G1": 0, "G2": 1}, node_attrs={"node_label": "default_label"})
def vf2pp_is_isomorphic(G1, G2, node_label=None, default_label=None):
    """Examines whether G1 and G2 are isomorphic.

    Parameters
    ----------
    G1, G2 : NetworkX Graph or MultiGraph instances.
        The two graphs to check for isomorphism.

    node_label : str, optional
        The name of the node attribute to be used when comparing nodes.
        The default is `None`, meaning node attributes are not considered
        in the comparison. Any node that doesn't have the `node_label`
        attribute uses `default_label` instead.

    default_label : scalar
        Default value to use when a node doesn't have an attribute
        named `node_label`. Default is `None`.

    Returns
    -------
    bool
        True if the two graphs are isomorphic, False otherwise.
    """
    if vf2pp_isomorphism(G1, G2, node_label, default_label) is not None:
        return True
    return False


@nx._dispatchable(graphs={"G1": 0, "G2": 1}, node_attrs={"node_label": "default_label"})
def vf2pp_all_isomorphisms(G1, G2, node_label=None, default_label=None):
    """Yields all the possible mappings between G1 and G2.

    Parameters
    ----------
    G1, G2 : NetworkX Graph or MultiGraph instances.
        The two graphs to check for isomorphism.

    node_label : str, optional
        The name of the node attribute to be used when comparing nodes.
        The default is `None`, meaning node attributes are not considered
        in the comparison. Any node that doesn't have the `node_label`
        attribute uses `default_label` instead.

    default_label : scalar
        Default value to use when a node doesn't have an attribute
        named `node_label`. Default is `None`.

    Yields
    ------
    dict
        Isomorphic mapping between the nodes in `G1` and `G2`.
    """
    if G1.number_of_nodes() == 0 or G2.number_of_nodes() == 0:
        return False

    # Create the degree dicts based on graph type
    if G1.is_directed():
        G1_degree = {
            n: (in_degree, out_degree)
            for (n, in_degree), (_, out_degree) in zip(G1.in_degree, G1.out_degree)
        }
        G2_degree = {
            n: (in_degree, out_degree)
            for (n, in_degree), (_, out_degree) in zip(G2.in_degree, G2.out_degree)
        }
    else:
        G1_degree = dict(G1.degree)
        G2_degree = dict(G2.degree)

    if not G1.is_directed():
        find_candidates = _find_candidates
        restore_Tinout = _restore_Tinout
    else:
        find_candidates = _find_candidates_Di
        restore_Tinout = _restore_Tinout_Di

    # Check that both graphs have the same number of nodes and degree sequence
    if G1.order() != G2.order():
        return False
    if sorted(G1_degree.values()) != sorted(G2_degree.values()):
        return False

    # Initialize parameters and cache necessary information about degree and labels
    graph_params, state_params = _initialize_parameters(
        G1, G2, G2_degree, node_label, default_label
    )

    # Check if G1 and G2 have the same labels, and that number of nodes per label is equal between the two graphs
    if not _precheck_label_properties(graph_params):
        return False

    # Calculate the optimal node ordering
    node_order = _matching_order(graph_params)

    # Initialize the stack
    stack = []
    candidates = iter(
        find_candidates(node_order[0], graph_params, state_params, G1_degree)
    )
    stack.append((node_order[0], candidates))

    mapping = state_params.mapping
    reverse_mapping = state_params.reverse_mapping

    # Index of the node from the order, currently being examined
    matching_node = 1

    while stack:
        current_node, candidate_nodes = stack[-1]

        try:
            candidate = next(candidate_nodes)
        except StopIteration:
            # If no remaining candidates, return to a previous state, and follow another branch
            stack.pop()
            matching_node -= 1
            if stack:
                # Pop the previously added u-v pair, and look for a different candidate _v for u
                popped_node1, _ = stack[-1]
                popped_node2 = mapping[popped_node1]
                mapping.pop(popped_node1)
                reverse_mapping.pop(popped_node2)
                restore_Tinout(popped_node1, popped_node2, graph_params, state_params)
            continue

        if _feasibility(current_node, candidate, graph_params, state_params):
            # Terminate if mapping is extended to its full
            if len(mapping) == G2.number_of_nodes() - 1:
                cp_mapping = mapping.copy()
                cp_mapping[current_node] = candidate
                yield cp_mapping
                continue

            # Feasibility rules pass, so extend the mapping and update the parameters
            mapping[current_node] = candidate
            reverse_mapping[candidate] = current_node
            _update_Tinout(current_node, candidate, graph_params, state_params)
            # Append the next node and its candidates to the stack
            candidates = iter(
                find_candidates(
                    node_order[matching_node], graph_params, state_params, G1_degree
                )
            )
            stack.append((node_order[matching_node], candidates))
            matching_node += 1


def _precheck_label_properties(graph_params):
    G1, G2, G1_labels, G2_labels, nodes_of_G1Labels, nodes_of_G2Labels, _ = graph_params
    if any(
        label not in nodes_of_G1Labels or len(nodes_of_G1Labels[label]) != len(nodes)
        for label, nodes in nodes_of_G2Labels.items()
    ):
        return False
    return True


def _initialize_parameters(G1, G2, G2_degree, node_label=None, default_label=-1):
    """Initializes all the necessary parameters for VF2++

    Parameters
    ----------
    G1,G2: NetworkX Graph or MultiGraph instances.
        The two graphs to check for isomorphism or monomorphism

    G1_labels,G2_labels: dict
        The label of every node in G1 and G2 respectively

    Returns
    -------
    graph_params: namedtuple
        Contains all the Graph-related parameters:

        G1,G2
        G1_labels,G2_labels: dict

    state_params: namedtuple
        Contains all the State-related parameters:

        mapping: dict
            The mapping as extended so far. Maps nodes of G1 to nodes of G2

        reverse_mapping: dict
            The reverse mapping as extended so far. Maps nodes from G2 to nodes of G1. It's basically "mapping" reversed

        T1, T2: set
            Ti contains uncovered neighbors of covered nodes from Gi, i.e. nodes that are not in the mapping, but are
            neighbors of nodes that are.

        T1_out, T2_out: set
            Ti_out contains all the nodes from Gi, that are neither in the mapping nor in Ti
    """
    G1_labels = dict(G1.nodes(data=node_label, default=default_label))
    G2_labels = dict(G2.nodes(data=node_label, default=default_label))

    graph_params = _GraphParameters(
        G1,
        G2,
        G1_labels,
        G2_labels,
        nx.utils.groups(G1_labels),
        nx.utils.groups(G2_labels),
        nx.utils.groups(G2_degree),
    )

    T1, T1_in = set(), set()
    T2, T2_in = set(), set()
    if G1.is_directed():
        T1_tilde, T1_tilde_in = (
            set(G1.nodes()),
            set(),
        )  # todo: do we need Ti_tilde_in? What nodes does it have?
        T2_tilde, T2_tilde_in = set(G2.nodes()), set()
    else:
        T1_tilde, T1_tilde_in = set(G1.nodes()), set()
        T2_tilde, T2_tilde_in = set(G2.nodes()), set()

    state_params = _StateParameters(
        {},
        {},
        T1,
        T1_in,
        T1_tilde,
        T1_tilde_in,
        T2,
        T2_in,
        T2_tilde,
        T2_tilde_in,
    )

    return graph_params, state_params


def _matching_order(graph_params):
    """The node ordering as introduced in VF2++.

    Notes
    -----
    Taking into account the structure of the Graph and the node labeling, the nodes are placed in an order such that,
    most of the unfruitful/infeasible branches of the search space can be pruned on high levels, significantly
    decreasing the number of visited states. The premise is that, the algorithm will be able to recognize
    inconsistencies early, proceeding to go deep into the search tree only if it's needed.

    Parameters
    ----------
    graph_params: namedtuple
        Contains:

            G1,G2: NetworkX Graph or MultiGraph instances.
                The two graphs to check for isomorphism or monomorphism.

            G1_labels,G2_labels: dict
                The label of every node in G1 and G2 respectively.

    Returns
    -------
    node_order: list
        The ordering of the nodes.
    """
    G1, G2, G1_labels, _, _, nodes_of_G2Labels, _ = graph_params
    if not G1 and not G2:
        return {}

    if G1.is_directed():
        G1 = G1.to_undirected(as_view=True)

    V1_unordered = set(G1.nodes())
    label_rarity = {label: len(nodes) for label, nodes in nodes_of_G2Labels.items()}
    used_degrees = {node: 0 for node in G1}
    node_order = []

    while V1_unordered:
        max_rarity = min(label_rarity[G1_labels[x]] for x in V1_unordered)
        rarest_nodes = [
            n for n in V1_unordered if label_rarity[G1_labels[n]] == max_rarity
        ]
        max_node = max(rarest_nodes, key=G1.degree)

        for dlevel_nodes in nx.bfs_layers(G1, max_node):
            nodes_to_add = dlevel_nodes.copy()
            while nodes_to_add:
                max_used_degree = max(used_degrees[n] for n in nodes_to_add)
                max_used_degree_nodes = [
                    n for n in nodes_to_add if used_degrees[n] == max_used_degree
                ]
                max_degree = max(G1.degree[n] for n in max_used_degree_nodes)
                max_degree_nodes = [
                    n for n in max_used_degree_nodes if G1.degree[n] == max_degree
                ]
                next_node = min(
                    max_degree_nodes, key=lambda x: label_rarity[G1_labels[x]]
                )

                node_order.append(next_node)
                for node in G1.neighbors(next_node):
                    used_degrees[node] += 1

                nodes_to_add.remove(next_node)
                label_rarity[G1_labels[next_node]] -= 1
                V1_unordered.discard(next_node)

    return node_order


def _find_candidates(
    u, graph_params, state_params, G1_degree
):  # todo: make the 4th argument the degree of u
    """Given node u of G1, finds the candidates of u from G2.

    Parameters
    ----------
    u: Graph node
        The node from G1 for which to find the candidates from G2.

    graph_params: namedtuple
        Contains all the Graph-related parameters:

        G1,G2: NetworkX Graph or MultiGraph instances.
            The two graphs to check for isomorphism or monomorphism

        G1_labels,G2_labels: dict
            The label of every node in G1 and G2 respectively

    state_params: namedtuple
        Contains all the State-related parameters:

        mapping: dict
            The mapping as extended so far. Maps nodes of G1 to nodes of G2

        reverse_mapping: dict
            The reverse mapping as extended so far. Maps nodes from G2 to nodes of G1. It's basically "mapping" reversed

        T1, T2: set
            Ti contains uncovered neighbors of covered nodes from Gi, i.e. nodes that are not in the mapping, but are
            neighbors of nodes that are.

        T1_tilde, T2_tilde: set
            Ti_tilde contains all the nodes from Gi, that are neither in the mapping nor in Ti

    Returns
    -------
    candidates: set
        The nodes from G2 which are candidates for u.
    """
    G1, G2, G1_labels, _, _, nodes_of_G2Labels, G2_nodes_of_degree = graph_params
    mapping, reverse_mapping, _, _, _, _, _, _, T2_tilde, _ = state_params

    covered_nbrs = [nbr for nbr in G1[u] if nbr in mapping]
    if not covered_nbrs:
        candidates = set(nodes_of_G2Labels[G1_labels[u]])
        candidates.intersection_update(G2_nodes_of_degree[G1_degree[u]])
        candidates.intersection_update(T2_tilde)
        candidates.difference_update(reverse_mapping)
        if G1.is_multigraph():
            candidates.difference_update(
                {
                    node
                    for node in candidates
                    if G1.number_of_edges(u, u) != G2.number_of_edges(node, node)
                }
            )
        return candidates

    nbr1 = covered_nbrs[0]
    common_nodes = set(G2[mapping[nbr1]])

    for nbr1 in covered_nbrs[1:]:
        common_nodes.intersection_update(G2[mapping[nbr1]])

    common_nodes.difference_update(reverse_mapping)
    common_nodes.intersection_update(G2_nodes_of_degree[G1_degree[u]])
    common_nodes.intersection_update(nodes_of_G2Labels[G1_labels[u]])
    if G1.is_multigraph():
        common_nodes.difference_update(
            {
                node
                for node in common_nodes
                if G1.number_of_edges(u, u) != G2.number_of_edges(node, node)
            }
        )
    return common_nodes


def _find_candidates_Di(u, graph_params, state_params, G1_degree):
    G1, G2, G1_labels, _, _, nodes_of_G2Labels, G2_nodes_of_degree = graph_params
    mapping, reverse_mapping, _, _, _, _, _, _, T2_tilde, _ = state_params

    covered_successors = [succ for succ in G1[u] if succ in mapping]
    covered_predecessors = [pred for pred in G1.pred[u] if pred in mapping]

    if not (covered_successors or covered_predecessors):
        candidates = set(nodes_of_G2Labels[G1_labels[u]])
        candidates.intersection_update(G2_nodes_of_degree[G1_degree[u]])
        candidates.intersection_update(T2_tilde)
        candidates.difference_update(reverse_mapping)
        if G1.is_multigraph():
            candidates.difference_update(
                {
                    node
                    for node in candidates
                    if G1.number_of_edges(u, u) != G2.number_of_edges(node, node)
                }
            )
        return candidates

    if covered_successors:
        succ1 = covered_successors[0]
        common_nodes = set(G2.pred[mapping[succ1]])

        for succ1 in covered_successors[1:]:
            common_nodes.intersection_update(G2.pred[mapping[succ1]])
    else:
        pred1 = covered_predecessors.pop()
        common_nodes = set(G2[mapping[pred1]])

    for pred1 in covered_predecessors:
        common_nodes.intersection_update(G2[mapping[pred1]])

    common_nodes.difference_update(reverse_mapping)
    common_nodes.intersection_update(G2_nodes_of_degree[G1_degree[u]])
    common_nodes.intersection_update(nodes_of_G2Labels[G1_labels[u]])
    if G1.is_multigraph():
        common_nodes.difference_update(
            {
                node
                for node in common_nodes
                if G1.number_of_edges(u, u) != G2.number_of_edges(node, node)
            }
        )
    return common_nodes


def _feasibility(node1, node2, graph_params, state_params):
    """Given a candidate pair of nodes u and v from G1 and G2 respectively, checks if it's feasible to extend the
    mapping, i.e. if u and v can be matched.

    Notes
    -----
    This function performs all the necessary checking by applying both consistency and cutting rules.

    Parameters
    ----------
    node1, node2: Graph node
        The candidate pair of nodes being checked for matching

    graph_params: namedtuple
        Contains all the Graph-related parameters:

        G1,G2: NetworkX Graph or MultiGraph instances.
            The two graphs to check for isomorphism or monomorphism

        G1_labels,G2_labels: dict
            The label of every node in G1 and G2 respectively

    state_params: namedtuple
        Contains all the State-related parameters:

        mapping: dict
            The mapping as extended so far. Maps nodes of G1 to nodes of G2

        reverse_mapping: dict
            The reverse mapping as extended so far. Maps nodes from G2 to nodes of G1. It's basically "mapping" reversed

        T1, T2: set
            Ti contains uncovered neighbors of covered nodes from Gi, i.e. nodes that are not in the mapping, but are
            neighbors of nodes that are.

        T1_out, T2_out: set
            Ti_out contains all the nodes from Gi, that are neither in the mapping nor in Ti

    Returns
    -------
    True if all checks are successful, False otherwise.
    """
    G1 = graph_params.G1

    if _cut_PT(node1, node2, graph_params, state_params):
        return False

    if G1.is_multigraph():
        if not _consistent_PT(node1, node2, graph_params, state_params):
            return False

    return True


def _cut_PT(u, v, graph_params, state_params):
    """Implements the cutting rules for the ISO problem.

    Parameters
    ----------
    u, v: Graph node
        The two candidate nodes being examined.

    graph_params: namedtuple
        Contains all the Graph-related parameters:

        G1,G2: NetworkX Graph or MultiGraph instances.
            The two graphs to check for isomorphism or monomorphism

        G1_labels,G2_labels: dict
            The label of every node in G1 and G2 respectively

    state_params: namedtuple
        Contains all the State-related parameters:

        mapping: dict
            The mapping as extended so far. Maps nodes of G1 to nodes of G2

        reverse_mapping: dict
            The reverse mapping as extended so far. Maps nodes from G2 to nodes of G1. It's basically "mapping" reversed

        T1, T2: set
            Ti contains uncovered neighbors of covered nodes from Gi, i.e. nodes that are not in the mapping, but are
            neighbors of nodes that are.

        T1_tilde, T2_tilde: set
            Ti_out contains all the nodes from Gi, that are neither in the mapping nor in Ti

    Returns
    -------
    True if we should prune this branch, i.e. the node pair failed the cutting checks. False otherwise.
    """
    G1, G2, G1_labels, G2_labels, _, _, _ = graph_params
    (
        _,
        _,
        T1,
        T1_in,
        T1_tilde,
        _,
        T2,
        T2_in,
        T2_tilde,
        _,
    ) = state_params

    u_labels_predecessors, v_labels_predecessors = {}, {}
    if G1.is_directed():
        u_labels_predecessors = nx.utils.groups(
            {n1: G1_labels[n1] for n1 in G1.pred[u]}
        )
        v_labels_predecessors = nx.utils.groups(
            {n2: G2_labels[n2] for n2 in G2.pred[v]}
        )

        if set(u_labels_predecessors.keys()) != set(v_labels_predecessors.keys()):
            return True

    u_labels_successors = nx.utils.groups({n1: G1_labels[n1] for n1 in G1[u]})
    v_labels_successors = nx.utils.groups({n2: G2_labels[n2] for n2 in G2[v]})

    # if the neighbors of u, do not have the same labels as those of v, NOT feasible.
    if set(u_labels_successors.keys()) != set(v_labels_successors.keys()):
        return True

    for label, G1_nbh in u_labels_successors.items():
        G2_nbh = v_labels_successors[label]

        if G1.is_multigraph():
            # Check for every neighbor in the neighborhood, if u-nbr1 has same edges as v-nbr2
            u_nbrs_edges = sorted(G1.number_of_edges(u, x) for x in G1_nbh)
            v_nbrs_edges = sorted(G2.number_of_edges(v, x) for x in G2_nbh)
            if any(
                u_nbr_edges != v_nbr_edges
                for u_nbr_edges, v_nbr_edges in zip(u_nbrs_edges, v_nbrs_edges)
            ):
                return True

        if len(T1.intersection(G1_nbh)) != len(T2.intersection(G2_nbh)):
            return True
        if len(T1_tilde.intersection(G1_nbh)) != len(T2_tilde.intersection(G2_nbh)):
            return True
        if G1.is_directed() and len(T1_in.intersection(G1_nbh)) != len(
            T2_in.intersection(G2_nbh)
        ):
            return True

    if not G1.is_directed():
        return False

    for label, G1_pred in u_labels_predecessors.items():
        G2_pred = v_labels_predecessors[label]

        if G1.is_multigraph():
            # Check for every neighbor in the neighborhood, if u-nbr1 has same edges as v-nbr2
            u_pred_edges = sorted(G1.number_of_edges(u, x) for x in G1_pred)
            v_pred_edges = sorted(G2.number_of_edges(v, x) for x in G2_pred)
            if any(
                u_nbr_edges != v_nbr_edges
                for u_nbr_edges, v_nbr_edges in zip(u_pred_edges, v_pred_edges)
            ):
                return True

        if len(T1.intersection(G1_pred)) != len(T2.intersection(G2_pred)):
            return True
        if len(T1_tilde.intersection(G1_pred)) != len(T2_tilde.intersection(G2_pred)):
            return True
        if len(T1_in.intersection(G1_pred)) != len(T2_in.intersection(G2_pred)):
            return True

    return False


def _consistent_PT(u, v, graph_params, state_params):
    """Checks the consistency of extending the mapping using the current node pair.

    Parameters
    ----------
    u, v: Graph node
        The two candidate nodes being examined.

    graph_params: namedtuple
        Contains all the Graph-related parameters:

        G1,G2: NetworkX Graph or MultiGraph instances.
            The two graphs to check for isomorphism or monomorphism

        G1_labels,G2_labels: dict
            The label of every node in G1 and G2 respectively

    state_params: namedtuple
        Contains all the State-related parameters:

        mapping: dict
            The mapping as extended so far. Maps nodes of G1 to nodes of G2

        reverse_mapping: dict
            The reverse mapping as extended so far. Maps nodes from G2 to nodes of G1. It's basically "mapping" reversed

        T1, T2: set
            Ti contains uncovered neighbors of covered nodes from Gi, i.e. nodes that are not in the mapping, but are
            neighbors of nodes that are.

        T1_out, T2_out: set
            Ti_out contains all the nodes from Gi, that are neither in the mapping nor in Ti

    Returns
    -------
    True if the pair passes all the consistency checks successfully. False otherwise.
    """
    G1, G2 = graph_params.G1, graph_params.G2
    mapping, reverse_mapping = state_params.mapping, state_params.reverse_mapping

    for neighbor in G1[u]:
        if neighbor in mapping:
            if G1.number_of_edges(u, neighbor) != G2.number_of_edges(
                v, mapping[neighbor]
            ):
                return False

    for neighbor in G2[v]:
        if neighbor in reverse_mapping:
            if G1.number_of_edges(u, reverse_mapping[neighbor]) != G2.number_of_edges(
                v, neighbor
            ):
                return False

    if not G1.is_directed():
        return True

    for predecessor in G1.pred[u]:
        if predecessor in mapping:
            if G1.number_of_edges(predecessor, u) != G2.number_of_edges(
                mapping[predecessor], v
            ):
                return False

    for predecessor in G2.pred[v]:
        if predecessor in reverse_mapping:
            if G1.number_of_edges(
                reverse_mapping[predecessor], u
            ) != G2.number_of_edges(predecessor, v):
                return False

    return True


def _update_Tinout(new_node1, new_node2, graph_params, state_params):
    """Updates the Ti/Ti_out (i=1,2) when a new node pair u-v is added to the mapping.

    Notes
    -----
    This function should be called right after the feasibility checks are passed, and node1 is mapped to node2. The
    purpose of this function is to avoid brute force computing of Ti/Ti_out by iterating over all nodes of the graph
    and checking which nodes satisfy the necessary conditions. Instead, in every step of the algorithm we focus
    exclusively on the two nodes that are being added to the mapping, incrementally updating Ti/Ti_out.

    Parameters
    ----------
    new_node1, new_node2: Graph node
        The two new nodes, added to the mapping.

    graph_params: namedtuple
        Contains all the Graph-related parameters:

        G1,G2: NetworkX Graph or MultiGraph instances.
            The two graphs to check for isomorphism or monomorphism

        G1_labels,G2_labels: dict
            The label of every node in G1 and G2 respectively

    state_params: namedtuple
        Contains all the State-related parameters:

        mapping: dict
            The mapping as extended so far. Maps nodes of G1 to nodes of G2

        reverse_mapping: dict
            The reverse mapping as extended so far. Maps nodes from G2 to nodes of G1. It's basically "mapping" reversed

        T1, T2: set
            Ti contains uncovered neighbors of covered nodes from Gi, i.e. nodes that are not in the mapping, but are
            neighbors of nodes that are.

        T1_tilde, T2_tilde: set
            Ti_out contains all the nodes from Gi, that are neither in the mapping nor in Ti
    """
    G1, G2, _, _, _, _, _ = graph_params
    (
        mapping,
        reverse_mapping,
        T1,
        T1_in,
        T1_tilde,
        T1_tilde_in,
        T2,
        T2_in,
        T2_tilde,
        T2_tilde_in,
    ) = state_params

    uncovered_successors_G1 = {succ for succ in G1[new_node1] if succ not in mapping}
    uncovered_successors_G2 = {
        succ for succ in G2[new_node2] if succ not in reverse_mapping
    }

    # Add the uncovered neighbors of node1 and node2 in T1 and T2 respectively
    T1.update(uncovered_successors_G1)
    T2.update(uncovered_successors_G2)
    T1.discard(new_node1)
    T2.discard(new_node2)

    T1_tilde.difference_update(uncovered_successors_G1)
    T2_tilde.difference_update(uncovered_successors_G2)
    T1_tilde.discard(new_node1)
    T2_tilde.discard(new_node2)

    if not G1.is_directed():
        return

    uncovered_predecessors_G1 = {
        pred for pred in G1.pred[new_node1] if pred not in mapping
    }
    uncovered_predecessors_G2 = {
        pred for pred in G2.pred[new_node2] if pred not in reverse_mapping
    }

    T1_in.update(uncovered_predecessors_G1)
    T2_in.update(uncovered_predecessors_G2)
    T1_in.discard(new_node1)
    T2_in.discard(new_node2)

    T1_tilde.difference_update(uncovered_predecessors_G1)
    T2_tilde.difference_update(uncovered_predecessors_G2)
    T1_tilde.discard(new_node1)
    T2_tilde.discard(new_node2)


def _restore_Tinout(popped_node1, popped_node2, graph_params, state_params):
    """Restores the previous version of Ti/Ti_out when a node pair is deleted from the mapping.

    Parameters
    ----------
    popped_node1, popped_node2: Graph node
        The two nodes deleted from the mapping.

    graph_params: namedtuple
        Contains all the Graph-related parameters:

        G1,G2: NetworkX Graph or MultiGraph instances.
            The two graphs to check for isomorphism or monomorphism

        G1_labels,G2_labels: dict
            The label of every node in G1 and G2 respectively

    state_params: namedtuple
        Contains all the State-related parameters:

        mapping: dict
            The mapping as extended so far. Maps nodes of G1 to nodes of G2

        reverse_mapping: dict
            The reverse mapping as extended so far. Maps nodes from G2 to nodes of G1. It's basically "mapping" reversed

        T1, T2: set
            Ti contains uncovered neighbors of covered nodes from Gi, i.e. nodes that are not in the mapping, but are
            neighbors of nodes that are.

        T1_tilde, T2_tilde: set
            Ti_out contains all the nodes from Gi, that are neither in the mapping nor in Ti
    """
    # If the node we want to remove from the mapping, has at least one covered neighbor, add it to T1.
    G1, G2, _, _, _, _, _ = graph_params
    (
        mapping,
        reverse_mapping,
        T1,
        T1_in,
        T1_tilde,
        T1_tilde_in,
        T2,
        T2_in,
        T2_tilde,
        T2_tilde_in,
    ) = state_params

    is_added = False
    for neighbor in G1[popped_node1]:
        if neighbor in mapping:
            # if a neighbor of the excluded node1 is in the mapping, keep node1 in T1
            is_added = True
            T1.add(popped_node1)
        else:
            # check if its neighbor has another connection with a covered node. If not, only then exclude it from T1
            if any(nbr in mapping for nbr in G1[neighbor]):
                continue
            T1.discard(neighbor)
            T1_tilde.add(neighbor)

    # Case where the node is not present in neither the mapping nor T1. By definition, it should belong to T1_tilde
    if not is_added:
        T1_tilde.add(popped_node1)

    is_added = False
    for neighbor in G2[popped_node2]:
        if neighbor in reverse_mapping:
            is_added = True
            T2.add(popped_node2)
        else:
            if any(nbr in reverse_mapping for nbr in G2[neighbor]):
                continue
            T2.discard(neighbor)
            T2_tilde.add(neighbor)

    if not is_added:
        T2_tilde.add(popped_node2)


def _restore_Tinout_Di(popped_node1, popped_node2, graph_params, state_params):
    # If the node we want to remove from the mapping, has at least one covered neighbor, add it to T1.
    G1, G2, _, _, _, _, _ = graph_params
    (
        mapping,
        reverse_mapping,
        T1,
        T1_in,
        T1_tilde,
        T1_tilde_in,
        T2,
        T2_in,
        T2_tilde,
        T2_tilde_in,
    ) = state_params

    is_added = False
    for successor in G1[popped_node1]:
        if successor in mapping:
            # if a neighbor of the excluded node1 is in the mapping, keep node1 in T1
            is_added = True
            T1_in.add(popped_node1)
        else:
            # check if its neighbor has another connection with a covered node. If not, only then exclude it from T1
            if not any(pred in mapping for pred in G1.pred[successor]):
                T1.discard(successor)

            if not any(succ in mapping for succ in G1[successor]):
                T1_in.discard(successor)

            if successor not in T1:
                if successor not in T1_in:
                    T1_tilde.add(successor)

    for predecessor in G1.pred[popped_node1]:
        if predecessor in mapping:
            # if a neighbor of the excluded node1 is in the mapping, keep node1 in T1
            is_added = True
            T1.add(popped_node1)
        else:
            # check if its neighbor has another connection with a covered node. If not, only then exclude it from T1
            if not any(pred in mapping for pred in G1.pred[predecessor]):
                T1.discard(predecessor)

            if not any(succ in mapping for succ in G1[predecessor]):
                T1_in.discard(predecessor)

            if not (predecessor in T1 or predecessor in T1_in):
                T1_tilde.add(predecessor)

    # Case where the node is not present in neither the mapping nor T1. By definition it should belong to T1_tilde
    if not is_added:
        T1_tilde.add(popped_node1)

    is_added = False
    for successor in G2[popped_node2]:
        if successor in reverse_mapping:
            is_added = True
            T2_in.add(popped_node2)
        else:
            if not any(pred in reverse_mapping for pred in G2.pred[successor]):
                T2.discard(successor)

            if not any(succ in reverse_mapping for succ in G2[successor]):
                T2_in.discard(successor)

            if successor not in T2:
                if successor not in T2_in:
                    T2_tilde.add(successor)

    for predecessor in G2.pred[popped_node2]:
        if predecessor in reverse_mapping:
            # if a neighbor of the excluded node1 is in the mapping, keep node1 in T1
            is_added = True
            T2.add(popped_node2)
        else:
            # check if its neighbor has another connection with a covered node. If not, only then exclude it from T1
            if not any(pred in reverse_mapping for pred in G2.pred[predecessor]):
                T2.discard(predecessor)

            if not any(succ in reverse_mapping for succ in G2[predecessor]):
                T2_in.discard(predecessor)

            if not (predecessor in T2 or predecessor in T2_in):
                T2_tilde.add(predecessor)

    if not is_added:
        T2_tilde.add(popped_node2)