aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/networkx/algorithms/isomorphism/isomorph.py
blob: fc3a3fc6a50bf15c49ffc7e4b2b798413cb344b3 (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
"""
Graph isomorphism functions.
"""

import networkx as nx
from networkx.exception import NetworkXError

__all__ = [
    "could_be_isomorphic",
    "fast_could_be_isomorphic",
    "faster_could_be_isomorphic",
    "is_isomorphic",
]


@nx._dispatchable(graphs={"G1": 0, "G2": 1})
def could_be_isomorphic(G1, G2):
    """Returns False if graphs are definitely not isomorphic.
    True does NOT guarantee isomorphism.

    Parameters
    ----------
    G1, G2 : graphs
       The two graphs G1 and G2 must be the same type.

    Notes
    -----
    Checks for matching degree, triangle, and number of cliques sequences.
    The triangle sequence contains the number of triangles each node is part of.
    The clique sequence contains for each node the number of maximal cliques
    involving that node.

    """

    # Check global properties
    if G1.order() != G2.order():
        return False

    # Check local properties
    d1 = G1.degree()
    t1 = nx.triangles(G1)
    clqs_1 = list(nx.find_cliques(G1))
    c1 = {n: sum(1 for c in clqs_1 if n in c) for n in G1}  # number of cliques
    props1 = [[d, t1[v], c1[v]] for v, d in d1]
    props1.sort()

    d2 = G2.degree()
    t2 = nx.triangles(G2)
    clqs_2 = list(nx.find_cliques(G2))
    c2 = {n: sum(1 for c in clqs_2 if n in c) for n in G2}  # number of cliques
    props2 = [[d, t2[v], c2[v]] for v, d in d2]
    props2.sort()

    if props1 != props2:
        return False

    # OK...
    return True


graph_could_be_isomorphic = could_be_isomorphic


@nx._dispatchable(graphs={"G1": 0, "G2": 1})
def fast_could_be_isomorphic(G1, G2):
    """Returns False if graphs are definitely not isomorphic.

    True does NOT guarantee isomorphism.

    Parameters
    ----------
    G1, G2 : graphs
       The two graphs G1 and G2 must be the same type.

    Notes
    -----
    Checks for matching degree and triangle sequences. The triangle
    sequence contains the number of triangles each node is part of.
    """
    # Check global properties
    if G1.order() != G2.order():
        return False

    # Check local properties
    d1 = G1.degree()
    t1 = nx.triangles(G1)
    props1 = [[d, t1[v]] for v, d in d1]
    props1.sort()

    d2 = G2.degree()
    t2 = nx.triangles(G2)
    props2 = [[d, t2[v]] for v, d in d2]
    props2.sort()

    if props1 != props2:
        return False

    # OK...
    return True


fast_graph_could_be_isomorphic = fast_could_be_isomorphic


@nx._dispatchable(graphs={"G1": 0, "G2": 1})
def faster_could_be_isomorphic(G1, G2):
    """Returns False if graphs are definitely not isomorphic.

    True does NOT guarantee isomorphism.

    Parameters
    ----------
    G1, G2 : graphs
       The two graphs G1 and G2 must be the same type.

    Notes
    -----
    Checks for matching degree sequences.
    """
    # Check global properties
    if G1.order() != G2.order():
        return False

    # Check local properties
    d1 = sorted(d for n, d in G1.degree())
    d2 = sorted(d for n, d in G2.degree())

    if d1 != d2:
        return False

    # OK...
    return True


faster_graph_could_be_isomorphic = faster_could_be_isomorphic


@nx._dispatchable(
    graphs={"G1": 0, "G2": 1},
    preserve_edge_attrs="edge_match",
    preserve_node_attrs="node_match",
)
def is_isomorphic(G1, G2, node_match=None, edge_match=None):
    """Returns True if the graphs G1 and G2 are isomorphic and False otherwise.

    Parameters
    ----------
    G1, G2: graphs
        The two graphs G1 and G2 must be the same type.

    node_match : callable
        A function that returns True if node n1 in G1 and n2 in G2 should
        be considered equal during the isomorphism test.
        If node_match is not specified then node attributes are not considered.

        The function will be called like

           node_match(G1.nodes[n1], G2.nodes[n2]).

        That is, the function will receive the node attribute dictionaries
        for n1 and n2 as inputs.

    edge_match : callable
        A function that returns True if the edge attribute dictionary
        for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should
        be considered equal during the isomorphism test.  If edge_match is
        not specified then edge attributes are not considered.

        The function will be called like

           edge_match(G1[u1][v1], G2[u2][v2]).

        That is, the function will receive the edge attribute dictionaries
        of the edges under consideration.

    Notes
    -----
    Uses the vf2 algorithm [1]_.

    Examples
    --------
    >>> import networkx.algorithms.isomorphism as iso

    For digraphs G1 and G2, using 'weight' edge attribute (default: 1)

    >>> G1 = nx.DiGraph()
    >>> G2 = nx.DiGraph()
    >>> nx.add_path(G1, [1, 2, 3, 4], weight=1)
    >>> nx.add_path(G2, [10, 20, 30, 40], weight=2)
    >>> em = iso.numerical_edge_match("weight", 1)
    >>> nx.is_isomorphic(G1, G2)  # no weights considered
    True
    >>> nx.is_isomorphic(G1, G2, edge_match=em)  # match weights
    False

    For multidigraphs G1 and G2, using 'fill' node attribute (default: '')

    >>> G1 = nx.MultiDiGraph()
    >>> G2 = nx.MultiDiGraph()
    >>> G1.add_nodes_from([1, 2, 3], fill="red")
    >>> G2.add_nodes_from([10, 20, 30, 40], fill="red")
    >>> nx.add_path(G1, [1, 2, 3, 4], weight=3, linewidth=2.5)
    >>> nx.add_path(G2, [10, 20, 30, 40], weight=3)
    >>> nm = iso.categorical_node_match("fill", "red")
    >>> nx.is_isomorphic(G1, G2, node_match=nm)
    True

    For multidigraphs G1 and G2, using 'weight' edge attribute (default: 7)

    >>> G1.add_edge(1, 2, weight=7)
    1
    >>> G2.add_edge(10, 20)
    1
    >>> em = iso.numerical_multiedge_match("weight", 7, rtol=1e-6)
    >>> nx.is_isomorphic(G1, G2, edge_match=em)
    True

    For multigraphs G1 and G2, using 'weight' and 'linewidth' edge attributes
    with default values 7 and 2.5. Also using 'fill' node attribute with
    default value 'red'.

    >>> em = iso.numerical_multiedge_match(["weight", "linewidth"], [7, 2.5])
    >>> nm = iso.categorical_node_match("fill", "red")
    >>> nx.is_isomorphic(G1, G2, edge_match=em, node_match=nm)
    True

    See Also
    --------
    numerical_node_match, numerical_edge_match, numerical_multiedge_match
    categorical_node_match, categorical_edge_match, categorical_multiedge_match

    References
    ----------
    .. [1]  L. P. Cordella, P. Foggia, C. Sansone, M. Vento,
       "An Improved Algorithm for Matching Large Graphs",
       3rd IAPR-TC15 Workshop  on Graph-based Representations in
       Pattern Recognition, Cuen, pp. 149-159, 2001.
       https://www.researchgate.net/publication/200034365_An_Improved_Algorithm_for_Matching_Large_Graphs
    """
    if G1.is_directed() and G2.is_directed():
        GM = nx.algorithms.isomorphism.DiGraphMatcher
    elif (not G1.is_directed()) and (not G2.is_directed()):
        GM = nx.algorithms.isomorphism.GraphMatcher
    else:
        raise NetworkXError("Graphs G1 and G2 are not of the same type.")

    gm = GM(G1, G2, node_match=node_match, edge_match=edge_match)

    return gm.is_isomorphic()