aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/networkx/algorithms/centrality/current_flow_betweenness.py
blob: bfde279afc8729780be597c494f3e8fa4a281ab7 (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
"""Current-flow betweenness centrality measures."""

import networkx as nx
from networkx.algorithms.centrality.flow_matrix import (
    CGInverseLaplacian,
    FullInverseLaplacian,
    SuperLUInverseLaplacian,
    flow_matrix_row,
)
from networkx.utils import (
    not_implemented_for,
    py_random_state,
    reverse_cuthill_mckee_ordering,
)

__all__ = [
    "current_flow_betweenness_centrality",
    "approximate_current_flow_betweenness_centrality",
    "edge_current_flow_betweenness_centrality",
]


@not_implemented_for("directed")
@py_random_state(7)
@nx._dispatchable(edge_attrs="weight")
def approximate_current_flow_betweenness_centrality(
    G,
    normalized=True,
    weight=None,
    dtype=float,
    solver="full",
    epsilon=0.5,
    kmax=10000,
    seed=None,
):
    r"""Compute the approximate current-flow betweenness centrality for nodes.

    Approximates the current-flow betweenness centrality within absolute
    error of epsilon with high probability [1]_.


    Parameters
    ----------
    G : graph
      A NetworkX graph

    normalized : bool, optional (default=True)
      If True the betweenness values are normalized by 2/[(n-1)(n-2)] where
      n is the number of nodes in G.

    weight : string or None, optional (default=None)
      Key for edge data used as the edge weight.
      If None, then use 1 as each edge weight.
      The weight reflects the capacity or the strength of the
      edge.

    dtype : data type (float)
      Default data type for internal matrices.
      Set to np.float32 for lower memory consumption.

    solver : string (default='full')
       Type of linear solver to use for computing the flow matrix.
       Options are "full" (uses most memory), "lu" (recommended), and
       "cg" (uses least memory).

    epsilon: float
        Absolute error tolerance.

    kmax: int
       Maximum number of sample node pairs to use for approximation.

    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    Returns
    -------
    nodes : dictionary
       Dictionary of nodes with betweenness centrality as the value.

    See Also
    --------
    current_flow_betweenness_centrality

    Notes
    -----
    The running time is $O((1/\epsilon^2)m{\sqrt k} \log n)$
    and the space required is $O(m)$ for $n$ nodes and $m$ edges.

    If the edges have a 'weight' attribute they will be used as
    weights in this algorithm.  Unspecified weights are set to 1.

    References
    ----------
    .. [1] Ulrik Brandes and Daniel Fleischer:
       Centrality Measures Based on Current Flow.
       Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05).
       LNCS 3404, pp. 533-544. Springer-Verlag, 2005.
       https://doi.org/10.1007/978-3-540-31856-9_44
    """
    import numpy as np

    if not nx.is_connected(G):
        raise nx.NetworkXError("Graph not connected.")
    solvername = {
        "full": FullInverseLaplacian,
        "lu": SuperLUInverseLaplacian,
        "cg": CGInverseLaplacian,
    }
    n = G.number_of_nodes()
    ordering = list(reverse_cuthill_mckee_ordering(G))
    # make a copy with integer labels according to rcm ordering
    # this could be done without a copy if we really wanted to
    H = nx.relabel_nodes(G, dict(zip(ordering, range(n))))
    L = nx.laplacian_matrix(H, nodelist=range(n), weight=weight).asformat("csc")
    L = L.astype(dtype)
    C = solvername[solver](L, dtype=dtype)  # initialize solver
    betweenness = dict.fromkeys(H, 0.0)
    nb = (n - 1.0) * (n - 2.0)  # normalization factor
    cstar = n * (n - 1) / nb
    l = 1  # parameter in approximation, adjustable
    k = l * int(np.ceil((cstar / epsilon) ** 2 * np.log(n)))
    if k > kmax:
        msg = f"Number random pairs k>kmax ({k}>{kmax}) "
        raise nx.NetworkXError(msg, "Increase kmax or epsilon")
    cstar2k = cstar / (2 * k)
    for _ in range(k):
        s, t = pair = seed.sample(range(n), 2)
        b = np.zeros(n, dtype=dtype)
        b[s] = 1
        b[t] = -1
        p = C.solve(b)
        for v in H:
            if v in pair:
                continue
            for nbr in H[v]:
                w = H[v][nbr].get(weight, 1.0)
                betweenness[v] += float(w * np.abs(p[v] - p[nbr]) * cstar2k)
    if normalized:
        factor = 1.0
    else:
        factor = nb / 2.0
    # remap to original node names and "unnormalize" if required
    return {ordering[k]: v * factor for k, v in betweenness.items()}


@not_implemented_for("directed")
@nx._dispatchable(edge_attrs="weight")
def current_flow_betweenness_centrality(
    G, normalized=True, weight=None, dtype=float, solver="full"
):
    r"""Compute current-flow betweenness centrality for nodes.

    Current-flow betweenness centrality uses an electrical current
    model for information spreading in contrast to betweenness
    centrality which uses shortest paths.

    Current-flow betweenness centrality is also known as
    random-walk betweenness centrality [2]_.

    Parameters
    ----------
    G : graph
      A NetworkX graph

    normalized : bool, optional (default=True)
      If True the betweenness values are normalized by 2/[(n-1)(n-2)] where
      n is the number of nodes in G.

    weight : string or None, optional (default=None)
      Key for edge data used as the edge weight.
      If None, then use 1 as each edge weight.
      The weight reflects the capacity or the strength of the
      edge.

    dtype : data type (float)
      Default data type for internal matrices.
      Set to np.float32 for lower memory consumption.

    solver : string (default='full')
       Type of linear solver to use for computing the flow matrix.
       Options are "full" (uses most memory), "lu" (recommended), and
       "cg" (uses least memory).

    Returns
    -------
    nodes : dictionary
       Dictionary of nodes with betweenness centrality as the value.

    See Also
    --------
    approximate_current_flow_betweenness_centrality
    betweenness_centrality
    edge_betweenness_centrality
    edge_current_flow_betweenness_centrality

    Notes
    -----
    Current-flow betweenness can be computed in  $O(I(n-1)+mn \log n)$
    time [1]_, where $I(n-1)$ is the time needed to compute the
    inverse Laplacian.  For a full matrix this is $O(n^3)$ but using
    sparse methods you can achieve $O(nm{\sqrt k})$ where $k$ is the
    Laplacian matrix condition number.

    The space required is $O(nw)$ where $w$ is the width of the sparse
    Laplacian matrix.  Worse case is $w=n$ for $O(n^2)$.

    If the edges have a 'weight' attribute they will be used as
    weights in this algorithm.  Unspecified weights are set to 1.

    References
    ----------
    .. [1] Centrality Measures Based on Current Flow.
       Ulrik Brandes and Daniel Fleischer,
       Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05).
       LNCS 3404, pp. 533-544. Springer-Verlag, 2005.
       https://doi.org/10.1007/978-3-540-31856-9_44

    .. [2] A measure of betweenness centrality based on random walks,
       M. E. J. Newman, Social Networks 27, 39-54 (2005).
    """
    if not nx.is_connected(G):
        raise nx.NetworkXError("Graph not connected.")
    N = G.number_of_nodes()
    ordering = list(reverse_cuthill_mckee_ordering(G))
    # make a copy with integer labels according to rcm ordering
    # this could be done without a copy if we really wanted to
    H = nx.relabel_nodes(G, dict(zip(ordering, range(N))))
    betweenness = dict.fromkeys(H, 0.0)  # b[n]=0 for n in H
    for row, (s, t) in flow_matrix_row(H, weight=weight, dtype=dtype, solver=solver):
        pos = dict(zip(row.argsort()[::-1], range(N)))
        for i in range(N):
            betweenness[s] += (i - pos[i]) * row.item(i)
            betweenness[t] += (N - i - 1 - pos[i]) * row.item(i)
    if normalized:
        nb = (N - 1.0) * (N - 2.0)  # normalization factor
    else:
        nb = 2.0
    return {ordering[n]: (b - n) * 2.0 / nb for n, b in betweenness.items()}


@not_implemented_for("directed")
@nx._dispatchable(edge_attrs="weight")
def edge_current_flow_betweenness_centrality(
    G, normalized=True, weight=None, dtype=float, solver="full"
):
    r"""Compute current-flow betweenness centrality for edges.

    Current-flow betweenness centrality uses an electrical current
    model for information spreading in contrast to betweenness
    centrality which uses shortest paths.

    Current-flow betweenness centrality is also known as
    random-walk betweenness centrality [2]_.

    Parameters
    ----------
    G : graph
      A NetworkX graph

    normalized : bool, optional (default=True)
      If True the betweenness values are normalized by 2/[(n-1)(n-2)] where
      n is the number of nodes in G.

    weight : string or None, optional (default=None)
      Key for edge data used as the edge weight.
      If None, then use 1 as each edge weight.
      The weight reflects the capacity or the strength of the
      edge.

    dtype : data type (default=float)
      Default data type for internal matrices.
      Set to np.float32 for lower memory consumption.

    solver : string (default='full')
       Type of linear solver to use for computing the flow matrix.
       Options are "full" (uses most memory), "lu" (recommended), and
       "cg" (uses least memory).

    Returns
    -------
    nodes : dictionary
       Dictionary of edge tuples with betweenness centrality as the value.

    Raises
    ------
    NetworkXError
        The algorithm does not support DiGraphs.
        If the input graph is an instance of DiGraph class, NetworkXError
        is raised.

    See Also
    --------
    betweenness_centrality
    edge_betweenness_centrality
    current_flow_betweenness_centrality

    Notes
    -----
    Current-flow betweenness can be computed in $O(I(n-1)+mn \log n)$
    time [1]_, where $I(n-1)$ is the time needed to compute the
    inverse Laplacian.  For a full matrix this is $O(n^3)$ but using
    sparse methods you can achieve $O(nm{\sqrt k})$ where $k$ is the
    Laplacian matrix condition number.

    The space required is $O(nw)$ where $w$ is the width of the sparse
    Laplacian matrix.  Worse case is $w=n$ for $O(n^2)$.

    If the edges have a 'weight' attribute they will be used as
    weights in this algorithm.  Unspecified weights are set to 1.

    References
    ----------
    .. [1] Centrality Measures Based on Current Flow.
       Ulrik Brandes and Daniel Fleischer,
       Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05).
       LNCS 3404, pp. 533-544. Springer-Verlag, 2005.
       https://doi.org/10.1007/978-3-540-31856-9_44

    .. [2] A measure of betweenness centrality based on random walks,
       M. E. J. Newman, Social Networks 27, 39-54 (2005).
    """
    if not nx.is_connected(G):
        raise nx.NetworkXError("Graph not connected.")
    N = G.number_of_nodes()
    ordering = list(reverse_cuthill_mckee_ordering(G))
    # make a copy with integer labels according to rcm ordering
    # this could be done without a copy if we really wanted to
    H = nx.relabel_nodes(G, dict(zip(ordering, range(N))))
    edges = (tuple(sorted((u, v))) for u, v in H.edges())
    betweenness = dict.fromkeys(edges, 0.0)
    if normalized:
        nb = (N - 1.0) * (N - 2.0)  # normalization factor
    else:
        nb = 2.0
    for row, (e) in flow_matrix_row(H, weight=weight, dtype=dtype, solver=solver):
        pos = dict(zip(row.argsort()[::-1], range(1, N + 1)))
        for i in range(N):
            betweenness[e] += (i + 1 - pos[i]) * row.item(i)
            betweenness[e] += (N - i - pos[i]) * row.item(i)
        betweenness[e] /= nb
    return {(ordering[s], ordering[t]): b for (s, t), b in betweenness.items()}