1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
|
import pytest
import networkx as nx
from networkx.algorithms.approximation.steinertree import (
_remove_nonterminal_leaves,
metric_closure,
steiner_tree,
)
from networkx.utils import edges_equal
class TestSteinerTree:
@classmethod
def setup_class(cls):
G1 = nx.Graph()
G1.add_edge(1, 2, weight=10)
G1.add_edge(2, 3, weight=10)
G1.add_edge(3, 4, weight=10)
G1.add_edge(4, 5, weight=10)
G1.add_edge(5, 6, weight=10)
G1.add_edge(2, 7, weight=1)
G1.add_edge(7, 5, weight=1)
G2 = nx.Graph()
G2.add_edge(0, 5, weight=6)
G2.add_edge(1, 2, weight=2)
G2.add_edge(1, 5, weight=3)
G2.add_edge(2, 4, weight=4)
G2.add_edge(3, 5, weight=5)
G2.add_edge(4, 5, weight=1)
G3 = nx.Graph()
G3.add_edge(1, 2, weight=8)
G3.add_edge(1, 9, weight=3)
G3.add_edge(1, 8, weight=6)
G3.add_edge(1, 10, weight=2)
G3.add_edge(1, 14, weight=3)
G3.add_edge(2, 3, weight=6)
G3.add_edge(3, 4, weight=3)
G3.add_edge(3, 10, weight=2)
G3.add_edge(3, 11, weight=1)
G3.add_edge(4, 5, weight=1)
G3.add_edge(4, 11, weight=1)
G3.add_edge(5, 6, weight=4)
G3.add_edge(5, 11, weight=2)
G3.add_edge(5, 12, weight=1)
G3.add_edge(5, 13, weight=3)
G3.add_edge(6, 7, weight=2)
G3.add_edge(6, 12, weight=3)
G3.add_edge(6, 13, weight=1)
G3.add_edge(7, 8, weight=3)
G3.add_edge(7, 9, weight=3)
G3.add_edge(7, 11, weight=5)
G3.add_edge(7, 13, weight=2)
G3.add_edge(7, 14, weight=4)
G3.add_edge(8, 9, weight=2)
G3.add_edge(9, 14, weight=1)
G3.add_edge(10, 11, weight=2)
G3.add_edge(10, 14, weight=1)
G3.add_edge(11, 12, weight=1)
G3.add_edge(11, 14, weight=7)
G3.add_edge(12, 14, weight=3)
G3.add_edge(12, 15, weight=1)
G3.add_edge(13, 14, weight=4)
G3.add_edge(13, 15, weight=1)
G3.add_edge(14, 15, weight=2)
cls.G1 = G1
cls.G2 = G2
cls.G3 = G3
cls.G1_term_nodes = [1, 2, 3, 4, 5]
cls.G2_term_nodes = [0, 2, 3]
cls.G3_term_nodes = [1, 3, 5, 6, 8, 10, 11, 12, 13]
cls.methods = ["kou", "mehlhorn"]
def test_connected_metric_closure(self):
G = self.G1.copy()
G.add_node(100)
pytest.raises(nx.NetworkXError, metric_closure, G)
def test_metric_closure(self):
M = metric_closure(self.G1)
mc = [
(1, 2, {"distance": 10, "path": [1, 2]}),
(1, 3, {"distance": 20, "path": [1, 2, 3]}),
(1, 4, {"distance": 22, "path": [1, 2, 7, 5, 4]}),
(1, 5, {"distance": 12, "path": [1, 2, 7, 5]}),
(1, 6, {"distance": 22, "path": [1, 2, 7, 5, 6]}),
(1, 7, {"distance": 11, "path": [1, 2, 7]}),
(2, 3, {"distance": 10, "path": [2, 3]}),
(2, 4, {"distance": 12, "path": [2, 7, 5, 4]}),
(2, 5, {"distance": 2, "path": [2, 7, 5]}),
(2, 6, {"distance": 12, "path": [2, 7, 5, 6]}),
(2, 7, {"distance": 1, "path": [2, 7]}),
(3, 4, {"distance": 10, "path": [3, 4]}),
(3, 5, {"distance": 12, "path": [3, 2, 7, 5]}),
(3, 6, {"distance": 22, "path": [3, 2, 7, 5, 6]}),
(3, 7, {"distance": 11, "path": [3, 2, 7]}),
(4, 5, {"distance": 10, "path": [4, 5]}),
(4, 6, {"distance": 20, "path": [4, 5, 6]}),
(4, 7, {"distance": 11, "path": [4, 5, 7]}),
(5, 6, {"distance": 10, "path": [5, 6]}),
(5, 7, {"distance": 1, "path": [5, 7]}),
(6, 7, {"distance": 11, "path": [6, 5, 7]}),
]
assert edges_equal(list(M.edges(data=True)), mc)
def test_steiner_tree(self):
valid_steiner_trees = [
[
[
(1, 2, {"weight": 10}),
(2, 3, {"weight": 10}),
(2, 7, {"weight": 1}),
(3, 4, {"weight": 10}),
(5, 7, {"weight": 1}),
],
[
(1, 2, {"weight": 10}),
(2, 7, {"weight": 1}),
(3, 4, {"weight": 10}),
(4, 5, {"weight": 10}),
(5, 7, {"weight": 1}),
],
[
(1, 2, {"weight": 10}),
(2, 3, {"weight": 10}),
(2, 7, {"weight": 1}),
(4, 5, {"weight": 10}),
(5, 7, {"weight": 1}),
],
],
[
[
(0, 5, {"weight": 6}),
(1, 2, {"weight": 2}),
(1, 5, {"weight": 3}),
(3, 5, {"weight": 5}),
],
[
(0, 5, {"weight": 6}),
(4, 2, {"weight": 4}),
(4, 5, {"weight": 1}),
(3, 5, {"weight": 5}),
],
],
[
[
(1, 10, {"weight": 2}),
(3, 10, {"weight": 2}),
(3, 11, {"weight": 1}),
(5, 12, {"weight": 1}),
(6, 13, {"weight": 1}),
(8, 9, {"weight": 2}),
(9, 14, {"weight": 1}),
(10, 14, {"weight": 1}),
(11, 12, {"weight": 1}),
(12, 15, {"weight": 1}),
(13, 15, {"weight": 1}),
]
],
]
for method in self.methods:
for G, term_nodes, valid_trees in zip(
[self.G1, self.G2, self.G3],
[self.G1_term_nodes, self.G2_term_nodes, self.G3_term_nodes],
valid_steiner_trees,
):
S = steiner_tree(G, term_nodes, method=method)
assert any(
edges_equal(list(S.edges(data=True)), valid_tree)
for valid_tree in valid_trees
)
def test_multigraph_steiner_tree(self):
G = nx.MultiGraph()
G.add_edges_from(
[
(1, 2, 0, {"weight": 1}),
(2, 3, 0, {"weight": 999}),
(2, 3, 1, {"weight": 1}),
(3, 4, 0, {"weight": 1}),
(3, 5, 0, {"weight": 1}),
]
)
terminal_nodes = [2, 4, 5]
expected_edges = [
(2, 3, 1, {"weight": 1}), # edge with key 1 has lower weight
(3, 4, 0, {"weight": 1}),
(3, 5, 0, {"weight": 1}),
]
for method in self.methods:
S = steiner_tree(G, terminal_nodes, method=method)
assert edges_equal(S.edges(data=True, keys=True), expected_edges)
def test_remove_nonterminal_leaves(self):
G = nx.path_graph(10)
_remove_nonterminal_leaves(G, [4, 5, 6])
assert list(G) == [4, 5, 6] # only the terminal nodes are left
@pytest.mark.parametrize("method", ("kou", "mehlhorn"))
def test_steiner_tree_weight_attribute(method):
G = nx.star_graph(4)
# Add an edge attribute that is named something other than "weight"
nx.set_edge_attributes(G, {e: 10 for e in G.edges}, name="distance")
H = nx.approximation.steiner_tree(G, [1, 3], method=method, weight="distance")
assert nx.utils.edges_equal(H.edges, [(0, 1), (0, 3)])
@pytest.mark.parametrize("method", ("kou", "mehlhorn"))
def test_steiner_tree_multigraph_weight_attribute(method):
G = nx.cycle_graph(3, create_using=nx.MultiGraph)
nx.set_edge_attributes(G, {e: 10 for e in G.edges}, name="distance")
G.add_edge(2, 0, distance=5)
H = nx.approximation.steiner_tree(G, list(G), method=method, weight="distance")
assert len(H.edges) == 2 and H.has_edge(2, 0, key=1)
assert sum(dist for *_, dist in H.edges(data="distance")) == 15
@pytest.mark.parametrize("method", (None, "mehlhorn", "kou"))
def test_steiner_tree_methods(method):
G = nx.star_graph(4)
expected = nx.Graph([(0, 1), (0, 3)])
st = nx.approximation.steiner_tree(G, [1, 3], method=method)
assert nx.utils.edges_equal(st.edges, expected.edges)
def test_steiner_tree_method_invalid():
G = nx.star_graph(4)
with pytest.raises(
ValueError, match="invalid_method is not a valid choice for an algorithm."
):
nx.approximation.steiner_tree(G, terminal_nodes=[1, 3], method="invalid_method")
def test_steiner_tree_remove_non_terminal_leaves_self_loop_edges():
# To verify that the last step of the steiner tree approximation
# behaves in the case where a non-terminal leaf has a self loop edge
G = nx.path_graph(10)
# Add self loops to the terminal nodes
G.add_edges_from([(2, 2), (3, 3), (4, 4), (7, 7), (8, 8)])
# Remove non-terminal leaves
_remove_nonterminal_leaves(G, [4, 5, 6, 7])
# The terminal nodes should be left
assert list(G) == [4, 5, 6, 7] # only the terminal nodes are left
def test_steiner_tree_non_terminal_leaves_multigraph_self_loop_edges():
# To verify that the last step of the steiner tree approximation
# behaves in the case where a non-terminal leaf has a self loop edge
G = nx.MultiGraph()
G.add_edges_from([(i, i + 1) for i in range(10)])
G.add_edges_from([(2, 2), (3, 3), (4, 4), (4, 4), (7, 7)])
# Remove non-terminal leaves
_remove_nonterminal_leaves(G, [4, 5, 6, 7])
# Only the terminal nodes should be left
assert list(G) == [4, 5, 6, 7]
|