aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/mypy_extensions.py
blob: 6600b21157c9a7a262c6ca8395c8d3b2e006b6e1 (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
"""Defines experimental extensions to the standard "typing" module that are
supported by the mypy typechecker.

Example usage:
    from mypy_extensions import TypedDict
"""

from typing import Any

import sys
# _type_check is NOT a part of public typing API, it is used here only to mimic
# the (convenient) behavior of types provided by typing module.
from typing import _type_check  # type: ignore


def _check_fails(cls, other):
    try:
        if sys._getframe(1).f_globals['__name__'] not in ['abc', 'functools', 'typing']:
            # Typed dicts are only for static structural subtyping.
            raise TypeError('TypedDict does not support instance and class checks')
    except (AttributeError, ValueError):
        pass
    return False


def _dict_new(cls, *args, **kwargs):
    return dict(*args, **kwargs)


def _typeddict_new(cls, _typename, _fields=None, **kwargs):
    total = kwargs.pop('total', True)
    if _fields is None:
        _fields = kwargs
    elif kwargs:
        raise TypeError("TypedDict takes either a dict or keyword arguments,"
                        " but not both")

    ns = {'__annotations__': dict(_fields), '__total__': total}
    try:
        # Setting correct module is necessary to make typed dict classes pickleable.
        ns['__module__'] = sys._getframe(1).f_globals.get('__name__', '__main__')
    except (AttributeError, ValueError):
        pass

    return _TypedDictMeta(_typename, (), ns)


class _TypedDictMeta(type):
    def __new__(cls, name, bases, ns, total=True):
        # Create new typed dict class object.
        # This method is called directly when TypedDict is subclassed,
        # or via _typeddict_new when TypedDict is instantiated. This way
        # TypedDict supports all three syntaxes described in its docstring.
        # Subclasses and instances of TypedDict return actual dictionaries
        # via _dict_new.
        ns['__new__'] = _typeddict_new if name == 'TypedDict' else _dict_new
        tp_dict = super(_TypedDictMeta, cls).__new__(cls, name, (dict,), ns)

        anns = ns.get('__annotations__', {})
        msg = "TypedDict('Name', {f0: t0, f1: t1, ...}); each t must be a type"
        anns = {n: _type_check(tp, msg) for n, tp in anns.items()}
        for base in bases:
            anns.update(base.__dict__.get('__annotations__', {}))
        tp_dict.__annotations__ = anns
        if not hasattr(tp_dict, '__total__'):
            tp_dict.__total__ = total
        return tp_dict

    __instancecheck__ = __subclasscheck__ = _check_fails


TypedDict = _TypedDictMeta('TypedDict', (dict,), {})
TypedDict.__module__ = __name__
TypedDict.__doc__ = \
    """A simple typed name space. At runtime it is equivalent to a plain dict.

    TypedDict creates a dictionary type that expects all of its
    instances to have a certain set of keys, with each key
    associated with a value of a consistent type. This expectation
    is not checked at runtime but is only enforced by typecheckers.
    Usage::

        Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': str})
        a: Point2D = {'x': 1, 'y': 2, 'label': 'good'}  # OK
        b: Point2D = {'z': 3, 'label': 'bad'}           # Fails type check
        assert Point2D(x=1, y=2, label='first') == dict(x=1, y=2, label='first')

    The type info could be accessed via Point2D.__annotations__. TypedDict
    supports two additional equivalent forms::

        Point2D = TypedDict('Point2D', x=int, y=int, label=str)

        class Point2D(TypedDict):
            x: int
            y: int
            label: str

    The latter syntax is only supported in Python 3.6+, while two other
    syntax forms work for 3.2+
    """

# Argument constructors for making more-detailed Callables. These all just
# return their type argument, to make them complete noops in terms of the
# `typing` module.


def Arg(type=Any, name=None):
    """A normal positional argument"""
    return type


def DefaultArg(type=Any, name=None):
    """A positional argument with a default value"""
    return type


def NamedArg(type=Any, name=None):
    """A keyword-only argument"""
    return type


def DefaultNamedArg(type=Any, name=None):
    """A keyword-only argument with a default value"""
    return type


def VarArg(type=Any):
    """A *args-style variadic positional argument"""
    return type


def KwArg(type=Any):
    """A **kwargs-style variadic keyword argument"""
    return type


# Return type that indicates a function does not return
class NoReturn: pass


def trait(cls):
    return cls


def mypyc_attr(*attrs, **kwattrs):
    return lambda x: x


# TODO: We may want to try to properly apply this to any type
# variables left over...
class _FlexibleAliasClsApplied:
    def __init__(self, val):
        self.val = val

    def __getitem__(self, args):
        return self.val


class _FlexibleAliasCls:
    def __getitem__(self, args):
        return _FlexibleAliasClsApplied(args[-1])


FlexibleAlias = _FlexibleAliasCls()


class _NativeIntMeta(type):
    def __instancecheck__(cls, inst):
        return isinstance(inst, int)


_sentinel = object()


class i64(metaclass=_NativeIntMeta):
    def __new__(cls, x=0, base=_sentinel):
        if base is not _sentinel:
            return int(x, base)
        return int(x)


class i32(metaclass=_NativeIntMeta):
    def __new__(cls, x=0, base=_sentinel):
        if base is not _sentinel:
            return int(x, base)
        return int(x)


class i16(metaclass=_NativeIntMeta):
    def __new__(cls, x=0, base=_sentinel):
        if base is not _sentinel:
            return int(x, base)
        return int(x)


class u8(metaclass=_NativeIntMeta):
    def __new__(cls, x=0, base=_sentinel):
        if base is not _sentinel:
            return int(x, base)
        return int(x)


for _int_type in i64, i32, i16, u8:
    _int_type.__doc__ = \
        """A native fixed-width integer type when used with mypyc.

        In code not compiled with mypyc, behaves like the 'int' type in these
        runtime contexts:

        * {name}(x[, base=n]) converts a number or string to 'int'
        * isinstance(x, {name}) is the same as isinstance(x, int)
        """.format(name=_int_type.__name__)
del _int_type