1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
|
import time # type: ignore
from typing import Callable
import httpx
from litellm.litellm_core_utils.prompt_templates.factory import (
custom_prompt,
prompt_factory,
)
from litellm.utils import ModelResponse, Usage
llm = None
class VLLMError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
self.request = httpx.Request(method="POST", url="http://0.0.0.0:8000")
self.response = httpx.Response(status_code=status_code, request=self.request)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
# check if vllm is installed
def validate_environment(model: str):
global llm
try:
from vllm import LLM, SamplingParams # type: ignore
if llm is None:
llm = LLM(model=model)
return llm, SamplingParams
except Exception as e:
raise VLLMError(status_code=0, message=str(e))
def completion(
model: str,
messages: list,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
logging_obj,
optional_params: dict,
custom_prompt_dict={},
litellm_params=None,
logger_fn=None,
):
global llm
try:
llm, SamplingParams = validate_environment(model=model)
except Exception as e:
raise VLLMError(status_code=0, message=str(e))
sampling_params = SamplingParams(**optional_params)
if model in custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_details = custom_prompt_dict[model]
prompt = custom_prompt(
role_dict=model_prompt_details["roles"],
initial_prompt_value=model_prompt_details["initial_prompt_value"],
final_prompt_value=model_prompt_details["final_prompt_value"],
messages=messages,
)
else:
prompt = prompt_factory(model=model, messages=messages)
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key="",
additional_args={"complete_input_dict": sampling_params},
)
if llm:
outputs = llm.generate(prompt, sampling_params)
else:
raise VLLMError(
status_code=0, message="Need to pass in a model name to initialize vllm"
)
## COMPLETION CALL
if "stream" in optional_params and optional_params["stream"] is True:
return iter(outputs)
else:
## LOGGING
logging_obj.post_call(
input=prompt,
api_key="",
original_response=outputs,
additional_args={"complete_input_dict": sampling_params},
)
print_verbose(f"raw model_response: {outputs}")
## RESPONSE OBJECT
model_response.choices[0].message.content = outputs[0].outputs[0].text # type: ignore
## CALCULATING USAGE
prompt_tokens = len(outputs[0].prompt_token_ids)
completion_tokens = len(outputs[0].outputs[0].token_ids)
model_response.created = int(time.time())
model_response.model = model
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
setattr(model_response, "usage", usage)
return model_response
def batch_completions(
model: str, messages: list, optional_params=None, custom_prompt_dict={}
):
"""
Example usage:
import litellm
import os
from litellm import batch_completion
responses = batch_completion(
model="vllm/facebook/opt-125m",
messages = [
[
{
"role": "user",
"content": "good morning? "
}
],
[
{
"role": "user",
"content": "what's the time? "
}
]
]
)
"""
try:
llm, SamplingParams = validate_environment(model=model)
except Exception as e:
error_str = str(e)
raise VLLMError(status_code=0, message=error_str)
sampling_params = SamplingParams(**optional_params)
prompts = []
if model in custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_details = custom_prompt_dict[model]
for message in messages:
prompt = custom_prompt(
role_dict=model_prompt_details["roles"],
initial_prompt_value=model_prompt_details["initial_prompt_value"],
final_prompt_value=model_prompt_details["final_prompt_value"],
messages=message,
)
prompts.append(prompt)
else:
for message in messages:
prompt = prompt_factory(model=model, messages=message)
prompts.append(prompt)
if llm:
outputs = llm.generate(prompts, sampling_params)
else:
raise VLLMError(
status_code=0, message="Need to pass in a model name to initialize vllm"
)
final_outputs = []
for output in outputs:
model_response = ModelResponse()
## RESPONSE OBJECT
model_response.choices[0].message.content = output.outputs[0].text # type: ignore
## CALCULATING USAGE
prompt_tokens = len(output.prompt_token_ids)
completion_tokens = len(output.outputs[0].token_ids)
model_response.created = int(time.time())
model_response.model = model
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
setattr(model_response, "usage", usage)
final_outputs.append(model_response)
return final_outputs
def embedding():
# logic for parsing in - calling - parsing out model embedding calls
pass
|