1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
|
import json
import os
import time
from typing import Any, Callable, Optional, cast
import httpx
import litellm
from litellm.litellm_core_utils.core_helpers import map_finish_reason
from litellm.llms.bedrock.common_utils import ModelResponseIterator
from litellm.llms.custom_httpx.http_handler import _DEFAULT_TTL_FOR_HTTPX_CLIENTS
from litellm.types.llms.vertex_ai import *
from litellm.utils import CustomStreamWrapper, ModelResponse, Usage
class VertexAIError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
self.request = httpx.Request(
method="POST", url=" https://cloud.google.com/vertex-ai/"
)
self.response = httpx.Response(status_code=status_code, request=self.request)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class TextStreamer:
"""
Fake streaming iterator for Vertex AI Model Garden calls
"""
def __init__(self, text):
self.text = text.split() # let's assume words as a streaming unit
self.index = 0
def __iter__(self):
return self
def __next__(self):
if self.index < len(self.text):
result = self.text[self.index]
self.index += 1
return result
else:
raise StopIteration
def __aiter__(self):
return self
async def __anext__(self):
if self.index < len(self.text):
result = self.text[self.index]
self.index += 1
return result
else:
raise StopAsyncIteration # once we run out of data to stream, we raise this error
def _get_client_cache_key(
model: str, vertex_project: Optional[str], vertex_location: Optional[str]
):
_cache_key = f"{model}-{vertex_project}-{vertex_location}"
return _cache_key
def _get_client_from_cache(client_cache_key: str):
return litellm.in_memory_llm_clients_cache.get_cache(client_cache_key)
def _set_client_in_cache(client_cache_key: str, vertex_llm_model: Any):
litellm.in_memory_llm_clients_cache.set_cache(
key=client_cache_key,
value=vertex_llm_model,
ttl=_DEFAULT_TTL_FOR_HTTPX_CLIENTS,
)
def completion( # noqa: PLR0915
model: str,
messages: list,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
logging_obj,
optional_params: dict,
vertex_project=None,
vertex_location=None,
vertex_credentials=None,
litellm_params=None,
logger_fn=None,
acompletion: bool = False,
):
"""
NON-GEMINI/ANTHROPIC CALLS.
This is the handler for OLDER PALM MODELS and VERTEX AI MODEL GARDEN
For Vertex AI Anthropic: `vertex_anthropic.py`
For Gemini: `vertex_httpx.py`
"""
try:
import vertexai
except Exception:
raise VertexAIError(
status_code=400,
message="vertexai import failed please run `pip install google-cloud-aiplatform`. This is required for the 'vertex_ai/' route on LiteLLM",
)
if not (
hasattr(vertexai, "preview") or hasattr(vertexai.preview, "language_models")
):
raise VertexAIError(
status_code=400,
message="""Upgrade vertex ai. Run `pip install "google-cloud-aiplatform>=1.38"`""",
)
try:
import google.auth # type: ignore
from google.cloud import aiplatform # type: ignore
from google.cloud.aiplatform_v1beta1.types import (
content as gapic_content_types, # type: ignore
)
from google.protobuf import json_format # type: ignore
from google.protobuf.struct_pb2 import Value # type: ignore
from vertexai.language_models import CodeGenerationModel, TextGenerationModel
from vertexai.preview.generative_models import GenerativeModel
from vertexai.preview.language_models import ChatModel, CodeChatModel
## Load credentials with the correct quota project ref: https://github.com/googleapis/python-aiplatform/issues/2557#issuecomment-1709284744
print_verbose(
f"VERTEX AI: vertex_project={vertex_project}; vertex_location={vertex_location}"
)
_cache_key = _get_client_cache_key(
model=model, vertex_project=vertex_project, vertex_location=vertex_location
)
_vertex_llm_model_object = _get_client_from_cache(client_cache_key=_cache_key)
if _vertex_llm_model_object is None:
from google.auth.credentials import Credentials
if vertex_credentials is not None and isinstance(vertex_credentials, str):
import google.oauth2.service_account
json_obj = json.loads(vertex_credentials)
creds = (
google.oauth2.service_account.Credentials.from_service_account_info(
json_obj,
scopes=["https://www.googleapis.com/auth/cloud-platform"],
)
)
else:
creds, _ = google.auth.default(quota_project_id=vertex_project)
print_verbose(
f"VERTEX AI: creds={creds}; google application credentials: {os.getenv('GOOGLE_APPLICATION_CREDENTIALS')}"
)
vertexai.init(
project=vertex_project,
location=vertex_location,
credentials=cast(Credentials, creds),
)
## Load Config
config = litellm.VertexAIConfig.get_config()
for k, v in config.items():
if k not in optional_params:
optional_params[k] = v
## Process safety settings into format expected by vertex AI
safety_settings = None
if "safety_settings" in optional_params:
safety_settings = optional_params.pop("safety_settings")
if not isinstance(safety_settings, list):
raise ValueError("safety_settings must be a list")
if len(safety_settings) > 0 and not isinstance(safety_settings[0], dict):
raise ValueError("safety_settings must be a list of dicts")
safety_settings = [
gapic_content_types.SafetySetting(x) for x in safety_settings
]
# vertexai does not use an API key, it looks for credentials.json in the environment
prompt = " ".join(
[
message.get("content")
for message in messages
if isinstance(message.get("content", None), str)
]
)
mode = ""
request_str = ""
response_obj = None
instances = None
client_options = {
"api_endpoint": f"{vertex_location}-aiplatform.googleapis.com"
}
fake_stream = False
if (
model in litellm.vertex_language_models
or model in litellm.vertex_vision_models
):
llm_model: Any = _vertex_llm_model_object or GenerativeModel(model)
mode = "vision"
request_str += f"llm_model = GenerativeModel({model})\n"
elif model in litellm.vertex_chat_models:
llm_model = _vertex_llm_model_object or ChatModel.from_pretrained(model)
mode = "chat"
request_str += f"llm_model = ChatModel.from_pretrained({model})\n"
elif model in litellm.vertex_text_models:
llm_model = _vertex_llm_model_object or TextGenerationModel.from_pretrained(
model
)
mode = "text"
request_str += f"llm_model = TextGenerationModel.from_pretrained({model})\n"
elif model in litellm.vertex_code_text_models:
llm_model = _vertex_llm_model_object or CodeGenerationModel.from_pretrained(
model
)
mode = "text"
request_str += f"llm_model = CodeGenerationModel.from_pretrained({model})\n"
fake_stream = True
elif model in litellm.vertex_code_chat_models: # vertex_code_llm_models
llm_model = _vertex_llm_model_object or CodeChatModel.from_pretrained(model)
mode = "chat"
request_str += f"llm_model = CodeChatModel.from_pretrained({model})\n"
elif model == "private":
mode = "private"
model = optional_params.pop("model_id", None)
# private endpoint requires a dict instead of JSON
instances = [optional_params.copy()]
instances[0]["prompt"] = prompt
llm_model = aiplatform.PrivateEndpoint(
endpoint_name=model,
project=vertex_project,
location=vertex_location,
)
request_str += f"llm_model = aiplatform.PrivateEndpoint(endpoint_name={model}, project={vertex_project}, location={vertex_location})\n"
else: # assume vertex model garden on public endpoint
mode = "custom"
instances = [optional_params.copy()]
instances[0]["prompt"] = prompt
instances = [
json_format.ParseDict(instance_dict, Value())
for instance_dict in instances
]
# Will determine the API used based on async parameter
llm_model = None
# NOTE: async prediction and streaming under "private" mode isn't supported by aiplatform right now
if acompletion is True:
data = {
"llm_model": llm_model,
"mode": mode,
"prompt": prompt,
"logging_obj": logging_obj,
"request_str": request_str,
"model": model,
"model_response": model_response,
"encoding": encoding,
"messages": messages,
"print_verbose": print_verbose,
"client_options": client_options,
"instances": instances,
"vertex_location": vertex_location,
"vertex_project": vertex_project,
"safety_settings": safety_settings,
**optional_params,
}
if optional_params.get("stream", False) is True:
# async streaming
return async_streaming(**data)
return async_completion(**data)
completion_response = None
stream = optional_params.pop(
"stream", None
) # See note above on handling streaming for vertex ai
if mode == "chat":
chat = llm_model.start_chat()
request_str += "chat = llm_model.start_chat()\n"
if fake_stream is not True and stream is True:
# NOTE: VertexAI does not accept stream=True as a param and raises an error,
# we handle this by removing 'stream' from optional params and sending the request
# after we get the response we add optional_params["stream"] = True, since main.py needs to know it's a streaming response to then transform it for the OpenAI format
optional_params.pop(
"stream", None
) # vertex ai raises an error when passing stream in optional params
request_str += (
f"chat.send_message_streaming({prompt}, **{optional_params})\n"
)
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=None,
additional_args={
"complete_input_dict": optional_params,
"request_str": request_str,
},
)
model_response = chat.send_message_streaming(prompt, **optional_params)
return model_response
request_str += f"chat.send_message({prompt}, **{optional_params}).text\n"
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=None,
additional_args={
"complete_input_dict": optional_params,
"request_str": request_str,
},
)
completion_response = chat.send_message(prompt, **optional_params).text
elif mode == "text":
if fake_stream is not True and stream is True:
request_str += (
f"llm_model.predict_streaming({prompt}, **{optional_params})\n"
)
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=None,
additional_args={
"complete_input_dict": optional_params,
"request_str": request_str,
},
)
model_response = llm_model.predict_streaming(prompt, **optional_params)
return model_response
request_str += f"llm_model.predict({prompt}, **{optional_params}).text\n"
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=None,
additional_args={
"complete_input_dict": optional_params,
"request_str": request_str,
},
)
completion_response = llm_model.predict(prompt, **optional_params).text
elif mode == "custom":
"""
Vertex AI Model Garden
"""
if vertex_project is None or vertex_location is None:
raise ValueError(
"Vertex project and location are required for custom endpoint"
)
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=None,
additional_args={
"complete_input_dict": optional_params,
"request_str": request_str,
},
)
llm_model = aiplatform.gapic.PredictionServiceClient(
client_options=client_options
)
request_str += f"llm_model = aiplatform.gapic.PredictionServiceClient(client_options={client_options})\n"
endpoint_path = llm_model.endpoint_path(
project=vertex_project, location=vertex_location, endpoint=model
)
request_str += (
f"llm_model.predict(endpoint={endpoint_path}, instances={instances})\n"
)
response = llm_model.predict(
endpoint=endpoint_path, instances=instances
).predictions
completion_response = response[0]
if (
isinstance(completion_response, str)
and "\nOutput:\n" in completion_response
):
completion_response = completion_response.split("\nOutput:\n", 1)[1]
if stream is True:
response = TextStreamer(completion_response)
return response
elif mode == "private":
"""
Vertex AI Model Garden deployed on private endpoint
"""
if instances is None:
raise ValueError("instances are required for private endpoint")
if llm_model is None:
raise ValueError("Unable to pick client for private endpoint")
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=None,
additional_args={
"complete_input_dict": optional_params,
"request_str": request_str,
},
)
request_str += f"llm_model.predict(instances={instances})\n"
response = llm_model.predict(instances=instances).predictions
completion_response = response[0]
if (
isinstance(completion_response, str)
and "\nOutput:\n" in completion_response
):
completion_response = completion_response.split("\nOutput:\n", 1)[1]
if stream is True:
response = TextStreamer(completion_response)
return response
## LOGGING
logging_obj.post_call(
input=prompt, api_key=None, original_response=completion_response
)
## RESPONSE OBJECT
if isinstance(completion_response, litellm.Message):
model_response.choices[0].message = completion_response # type: ignore
elif len(str(completion_response)) > 0:
model_response.choices[0].message.content = str(completion_response) # type: ignore
model_response.created = int(time.time())
model_response.model = model
## CALCULATING USAGE
if model in litellm.vertex_language_models and response_obj is not None:
model_response.choices[0].finish_reason = map_finish_reason(
response_obj.candidates[0].finish_reason.name
)
usage = Usage(
prompt_tokens=response_obj.usage_metadata.prompt_token_count,
completion_tokens=response_obj.usage_metadata.candidates_token_count,
total_tokens=response_obj.usage_metadata.total_token_count,
)
else:
# init prompt tokens
# this block attempts to get usage from response_obj if it exists, if not it uses the litellm token counter
prompt_tokens, completion_tokens, _ = 0, 0, 0
if response_obj is not None:
if hasattr(response_obj, "usage_metadata") and hasattr(
response_obj.usage_metadata, "prompt_token_count"
):
prompt_tokens = response_obj.usage_metadata.prompt_token_count
completion_tokens = (
response_obj.usage_metadata.candidates_token_count
)
else:
prompt_tokens = len(encoding.encode(prompt))
completion_tokens = len(
encoding.encode(
model_response["choices"][0]["message"].get("content", "")
)
)
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
setattr(model_response, "usage", usage)
if fake_stream is True and stream is True:
return ModelResponseIterator(model_response)
return model_response
except Exception as e:
if isinstance(e, VertexAIError):
raise e
raise litellm.APIConnectionError(
message=str(e), llm_provider="vertex_ai", model=model
)
async def async_completion( # noqa: PLR0915
llm_model,
mode: str,
prompt: str,
model: str,
messages: list,
model_response: ModelResponse,
request_str: str,
print_verbose: Callable,
logging_obj,
encoding,
client_options=None,
instances=None,
vertex_project=None,
vertex_location=None,
safety_settings=None,
**optional_params,
):
"""
Add support for acompletion calls for gemini-pro
"""
try:
response_obj = None
completion_response = None
if mode == "chat":
# chat-bison etc.
chat = llm_model.start_chat()
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=None,
additional_args={
"complete_input_dict": optional_params,
"request_str": request_str,
},
)
response_obj = await chat.send_message_async(prompt, **optional_params)
completion_response = response_obj.text
elif mode == "text":
# gecko etc.
request_str += f"llm_model.predict({prompt}, **{optional_params}).text\n"
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=None,
additional_args={
"complete_input_dict": optional_params,
"request_str": request_str,
},
)
response_obj = await llm_model.predict_async(prompt, **optional_params)
completion_response = response_obj.text
elif mode == "custom":
"""
Vertex AI Model Garden
"""
from google.cloud import aiplatform # type: ignore
if vertex_project is None or vertex_location is None:
raise ValueError(
"Vertex project and location are required for custom endpoint"
)
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=None,
additional_args={
"complete_input_dict": optional_params,
"request_str": request_str,
},
)
llm_model = aiplatform.gapic.PredictionServiceAsyncClient(
client_options=client_options
)
request_str += f"llm_model = aiplatform.gapic.PredictionServiceAsyncClient(client_options={client_options})\n"
endpoint_path = llm_model.endpoint_path(
project=vertex_project, location=vertex_location, endpoint=model
)
request_str += (
f"llm_model.predict(endpoint={endpoint_path}, instances={instances})\n"
)
response_obj = await llm_model.predict(
endpoint=endpoint_path,
instances=instances,
)
response = response_obj.predictions
completion_response = response[0]
if (
isinstance(completion_response, str)
and "\nOutput:\n" in completion_response
):
completion_response = completion_response.split("\nOutput:\n", 1)[1]
elif mode == "private":
request_str += f"llm_model.predict_async(instances={instances})\n"
response_obj = await llm_model.predict_async(
instances=instances,
)
response = response_obj.predictions
completion_response = response[0]
if (
isinstance(completion_response, str)
and "\nOutput:\n" in completion_response
):
completion_response = completion_response.split("\nOutput:\n", 1)[1]
## LOGGING
logging_obj.post_call(
input=prompt, api_key=None, original_response=completion_response
)
## RESPONSE OBJECT
if isinstance(completion_response, litellm.Message):
model_response.choices[0].message = completion_response # type: ignore
elif len(str(completion_response)) > 0:
model_response.choices[0].message.content = str( # type: ignore
completion_response
)
model_response.created = int(time.time())
model_response.model = model
## CALCULATING USAGE
if model in litellm.vertex_language_models and response_obj is not None:
model_response.choices[0].finish_reason = map_finish_reason(
response_obj.candidates[0].finish_reason.name
)
usage = Usage(
prompt_tokens=response_obj.usage_metadata.prompt_token_count,
completion_tokens=response_obj.usage_metadata.candidates_token_count,
total_tokens=response_obj.usage_metadata.total_token_count,
)
else:
# init prompt tokens
# this block attempts to get usage from response_obj if it exists, if not it uses the litellm token counter
prompt_tokens, completion_tokens, _ = 0, 0, 0
if response_obj is not None and (
hasattr(response_obj, "usage_metadata")
and hasattr(response_obj.usage_metadata, "prompt_token_count")
):
prompt_tokens = response_obj.usage_metadata.prompt_token_count
completion_tokens = response_obj.usage_metadata.candidates_token_count
else:
prompt_tokens = len(encoding.encode(prompt))
completion_tokens = len(
encoding.encode(
model_response["choices"][0]["message"].get("content", "")
)
)
# set usage
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
setattr(model_response, "usage", usage)
return model_response
except Exception as e:
raise VertexAIError(status_code=500, message=str(e))
async def async_streaming( # noqa: PLR0915
llm_model,
mode: str,
prompt: str,
model: str,
model_response: ModelResponse,
messages: list,
print_verbose: Callable,
logging_obj,
request_str: str,
encoding=None,
client_options=None,
instances=None,
vertex_project=None,
vertex_location=None,
safety_settings=None,
**optional_params,
):
"""
Add support for async streaming calls for gemini-pro
"""
response: Any = None
if mode == "chat":
chat = llm_model.start_chat()
optional_params.pop(
"stream", None
) # vertex ai raises an error when passing stream in optional params
request_str += (
f"chat.send_message_streaming_async({prompt}, **{optional_params})\n"
)
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=None,
additional_args={
"complete_input_dict": optional_params,
"request_str": request_str,
},
)
response = chat.send_message_streaming_async(prompt, **optional_params)
elif mode == "text":
optional_params.pop(
"stream", None
) # See note above on handling streaming for vertex ai
request_str += (
f"llm_model.predict_streaming_async({prompt}, **{optional_params})\n"
)
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=None,
additional_args={
"complete_input_dict": optional_params,
"request_str": request_str,
},
)
response = llm_model.predict_streaming_async(prompt, **optional_params)
elif mode == "custom":
from google.cloud import aiplatform # type: ignore
if vertex_project is None or vertex_location is None:
raise ValueError(
"Vertex project and location are required for custom endpoint"
)
stream = optional_params.pop("stream", None)
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=None,
additional_args={
"complete_input_dict": optional_params,
"request_str": request_str,
},
)
llm_model = aiplatform.gapic.PredictionServiceAsyncClient(
client_options=client_options
)
request_str += f"llm_model = aiplatform.gapic.PredictionServiceAsyncClient(client_options={client_options})\n"
endpoint_path = llm_model.endpoint_path(
project=vertex_project, location=vertex_location, endpoint=model
)
request_str += (
f"client.predict(endpoint={endpoint_path}, instances={instances})\n"
)
response_obj = await llm_model.predict(
endpoint=endpoint_path,
instances=instances,
)
response = response_obj.predictions
completion_response = response[0]
if (
isinstance(completion_response, str)
and "\nOutput:\n" in completion_response
):
completion_response = completion_response.split("\nOutput:\n", 1)[1]
if stream:
response = TextStreamer(completion_response)
elif mode == "private":
if instances is None:
raise ValueError("Instances are required for private endpoint")
stream = optional_params.pop("stream", None)
_ = instances[0].pop("stream", None)
request_str += f"llm_model.predict_async(instances={instances})\n"
response_obj = await llm_model.predict_async(
instances=instances,
)
response = response_obj.predictions
completion_response = response[0]
if (
isinstance(completion_response, str)
and "\nOutput:\n" in completion_response
):
completion_response = completion_response.split("\nOutput:\n", 1)[1]
if stream:
response = TextStreamer(completion_response)
if response is None:
raise ValueError("Unable to generate response")
logging_obj.post_call(input=prompt, api_key=None, original_response=response)
streamwrapper = CustomStreamWrapper(
completion_stream=response,
model=model,
custom_llm_provider="vertex_ai",
logging_obj=logging_obj,
)
return streamwrapper
|