1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
|
import uuid
from typing import Dict
from litellm.llms.vertex_ai.common_utils import (
_convert_vertex_datetime_to_openai_datetime,
)
from litellm.types.llms.openai import BatchJobStatus, CreateBatchRequest
from litellm.types.llms.vertex_ai import *
from litellm.types.utils import LiteLLMBatch
class VertexAIBatchTransformation:
"""
Transforms OpenAI Batch requests to Vertex AI Batch requests
API Ref: https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/batch-prediction-gemini
"""
@classmethod
def transform_openai_batch_request_to_vertex_ai_batch_request(
cls,
request: CreateBatchRequest,
) -> VertexAIBatchPredictionJob:
"""
Transforms OpenAI Batch requests to Vertex AI Batch requests
"""
request_display_name = f"litellm-vertex-batch-{uuid.uuid4()}"
input_file_id = request.get("input_file_id")
if input_file_id is None:
raise ValueError("input_file_id is required, but not provided")
input_config: InputConfig = InputConfig(
gcsSource=GcsSource(uris=input_file_id), instancesFormat="jsonl"
)
model: str = cls._get_model_from_gcs_file(input_file_id)
output_config: OutputConfig = OutputConfig(
predictionsFormat="jsonl",
gcsDestination=GcsDestination(
outputUriPrefix=cls._get_gcs_uri_prefix_from_file(input_file_id)
),
)
return VertexAIBatchPredictionJob(
inputConfig=input_config,
outputConfig=output_config,
model=model,
displayName=request_display_name,
)
@classmethod
def transform_vertex_ai_batch_response_to_openai_batch_response(
cls, response: VertexBatchPredictionResponse
) -> LiteLLMBatch:
return LiteLLMBatch(
id=cls._get_batch_id_from_vertex_ai_batch_response(response),
completion_window="24hrs",
created_at=_convert_vertex_datetime_to_openai_datetime(
vertex_datetime=response.get("createTime", "")
),
endpoint="",
input_file_id=cls._get_input_file_id_from_vertex_ai_batch_response(
response
),
object="batch",
status=cls._get_batch_job_status_from_vertex_ai_batch_response(response),
error_file_id=None, # Vertex AI doesn't seem to have a direct equivalent
output_file_id=cls._get_output_file_id_from_vertex_ai_batch_response(
response
),
)
@classmethod
def _get_batch_id_from_vertex_ai_batch_response(
cls, response: VertexBatchPredictionResponse
) -> str:
"""
Gets the batch id from the Vertex AI Batch response safely
vertex response: `projects/510528649030/locations/us-central1/batchPredictionJobs/3814889423749775360`
returns: `3814889423749775360`
"""
_name = response.get("name", "")
if not _name:
return ""
# Split by '/' and get the last part if it exists
parts = _name.split("/")
return parts[-1] if parts else _name
@classmethod
def _get_input_file_id_from_vertex_ai_batch_response(
cls, response: VertexBatchPredictionResponse
) -> str:
"""
Gets the input file id from the Vertex AI Batch response
"""
input_file_id: str = ""
input_config = response.get("inputConfig")
if input_config is None:
return input_file_id
gcs_source = input_config.get("gcsSource")
if gcs_source is None:
return input_file_id
uris = gcs_source.get("uris", "")
if len(uris) == 0:
return input_file_id
return uris[0]
@classmethod
def _get_output_file_id_from_vertex_ai_batch_response(
cls, response: VertexBatchPredictionResponse
) -> str:
"""
Gets the output file id from the Vertex AI Batch response
"""
output_file_id: str = ""
output_config = response.get("outputConfig")
if output_config is None:
return output_file_id
gcs_destination = output_config.get("gcsDestination")
if gcs_destination is None:
return output_file_id
output_uri_prefix = gcs_destination.get("outputUriPrefix", "")
return output_uri_prefix
@classmethod
def _get_batch_job_status_from_vertex_ai_batch_response(
cls, response: VertexBatchPredictionResponse
) -> BatchJobStatus:
"""
Gets the batch job status from the Vertex AI Batch response
ref: https://cloud.google.com/vertex-ai/docs/reference/rest/v1/JobState
"""
state_mapping: Dict[str, BatchJobStatus] = {
"JOB_STATE_UNSPECIFIED": "failed",
"JOB_STATE_QUEUED": "validating",
"JOB_STATE_PENDING": "validating",
"JOB_STATE_RUNNING": "in_progress",
"JOB_STATE_SUCCEEDED": "completed",
"JOB_STATE_FAILED": "failed",
"JOB_STATE_CANCELLING": "cancelling",
"JOB_STATE_CANCELLED": "cancelled",
"JOB_STATE_PAUSED": "in_progress",
"JOB_STATE_EXPIRED": "expired",
"JOB_STATE_UPDATING": "in_progress",
"JOB_STATE_PARTIALLY_SUCCEEDED": "completed",
}
vertex_state = response.get("state", "JOB_STATE_UNSPECIFIED")
return state_mapping[vertex_state]
@classmethod
def _get_gcs_uri_prefix_from_file(cls, input_file_id: str) -> str:
"""
Gets the gcs uri prefix from the input file id
Example:
input_file_id: "gs://litellm-testing-bucket/vtx_batch.jsonl"
returns: "gs://litellm-testing-bucket"
input_file_id: "gs://litellm-testing-bucket/batches/vtx_batch.jsonl"
returns: "gs://litellm-testing-bucket/batches"
"""
# Split the path and remove the filename
path_parts = input_file_id.rsplit("/", 1)
return path_parts[0]
@classmethod
def _get_model_from_gcs_file(cls, gcs_file_uri: str) -> str:
"""
Extracts the model from the gcs file uri
When files are uploaded using LiteLLM (/v1/files), the model is stored in the gcs file uri
Why?
- Because Vertex Requires the `model` param in create batch jobs request, but OpenAI does not require this
gcs_file_uri format: gs://litellm-testing-bucket/litellm-vertex-files/publishers/google/models/gemini-1.5-flash-001/e9412502-2c91-42a6-8e61-f5c294cc0fc8
returns: "publishers/google/models/gemini-1.5-flash-001"
"""
from urllib.parse import unquote
decoded_uri = unquote(gcs_file_uri)
model_path = decoded_uri.split("publishers/")[1]
parts = model_path.split("/")
model = f"publishers/{'/'.join(parts[:3])}"
return model
|